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Statistical Study of In-Band Crosstalk Noise Using
the Multicanonical Monte Carlo Method

Thomas Kamalakis, Dimitris Varoutas, and Thomas Sphicopoulos

Abstract—In-band crosstalk can pose important limitations
in an all-optical wavelength-division-multiplexed network. In
this letter, the multicanonical Monte Carlo (MCMC) method is
applied for the study of the statistical behavior of the in-band
crosstalk noise. The proposed method is accurate, efficient, and
easy to use. The obtained error probabilities are compared with a
previously proposed semianalytical model and are found to be in
excellent agreement. The MCMC method is also used to study the
asymptotic behavior of in-band crosstalk noise.

Index Terms—Crosstalk, error analysis, optical receivers, wave-
length-division multiplexing (WDM).

I. INTRODUCTION

THE PERFORMANCE of wavelength-division-mul-
tiplexing (WDM) networks can be degraded by the

presence of in-band crosstalk noise. This noise arises at optical
cross-connects because, due to their imperfect filtering charac-
teristics, a small delayed version of the signal or a small portion
of light from other channels at the same frequency (in a network
with wavelength reuse) is routed along the same path as the
signal. Since in-band crosstalk noise is at the same wavelength
as the signal, it cannot be removed using additional filtering
and can degrade the error probability (EP) at the receiver.

In [1], a semianalytical model for the calculation of the EP in
the presence of in-band crosstalk at the receiver was proposed
assuming that the pulse variations of the signal and the crosstalk
components are the same. Although the semianalytic model pro-
vides a useful physical insight in the statistical nature of in-band
crosstalk noise, it relies on complex numerical integration tech-
niques and cannot be used accurately if the number of interferers
exceeds 70 [1]. Also, the semianalytic model cannot be applied
in situations where the crosstalk components and/or the signal
partially follow different optical paths within the network and as
a result, their pulse variations may vary due to dispersion, fiber
nonlinearity, and the filtering characteristics of the multiplexers
and demultiplexers along these paths.

In this letter, the multicanonical Monte Carlo (MCMC) [4],
[6] method is applied in the study of the statistical behavior of
in-band crosstalk noise. This method was first suggested as a
means of computing general-probability distribution functions
in communications theory in [5], where it was specifically ap-
plied to the probability density function (pdf) of polarization-
mode dispersion in an optical fiber and was then used in an EP
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calculation in [4]. Unlike standard Monte Carlo sampling, the
MCMC method increases the occurrences of the samples in the
tail regions of the pdf. This allows the accurate estimation of the
EP, even if its value is of the order of 10 , without an excessive
number of iterations. It may also be possible to further reduce
the computation time required using the random walk proce-
dure of [7]. Another advantage of this technique is its simplicity
and the fact that the signal and crosstalk channels can have dif-
ferent pulse variations. The results obtained with the MCMC
method are shown to agree very well with the semianalytical
model. The MCMC method is also used to study the asymp-
totic behavior of the in-band crosstalk noise as the number of
interferers becomes large. As shown in [2], the decision variable
at the receiver follows a chi-square distribution. The chi-square
distribution is shown to provide a reasonably accurate estimate
for the pdf when the number of interferers exceeds 70.

II. APPLICATION OF THE MCMC METHOD

The optical field at the input of the receiver photo-
diode can be represented in complex notation as

, where the optical frequency,
is the envelope of the optical field given by

(1)

where are the pulse variations of the signal and
the interfering components . Assuming that are
normalized so that , is the number
of photons in the signal, while is the number of photons
of interferer (for ). The phases are due to the
phase noise of the LASER sources and are assumed mutually
independent and uniformly distributed inside . Assuming
a simple integrate-and-dump electrical filter at the receiver, the
decision variable is given by [1]

(2)

In (2), the factor 1/2 in front of the integral of is due
to the complex notation adopted for . The coefficients
are given by . If the signal and the
interfering channel have the same pulse variations,

and . In order to calculate the pdf of
, the interval in which takes its values is divided into

small subintervals, , and a histogram is used to
measure the occurrences of that fall inside . For simplicity,
the length of each interval can be taken constant and equal to
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. On each iteration of the MCMC method, the estimated pdf
of is stored in the variables and as the number of iterations
increases, where .

The random samples of are generated using the Metropolis
algorithm [3]. The first sample of is calculated by randomly
selecting the phases and using (2). Let be the subinterval
in which the sample belongs. Using a symmetric zero-mean
distribution, the perturbations are randomly and indepen-
dently selected so that their variance is constant throughout each
iteration. The phases are used to compute a new
trial value of . Let be the subinterval in which
belongs. This new value is accepted with a probability

.
In each iteration, the occurrences of inside each interval

are recorded in the histograms . At the end of each iteration,
the values the are updated according to the values of the
using the recurrence relations introduced in [6]

(3)

where the exponents are given by

(4)

It should be noted that 0, if 0. Also, 0,
if 0. The are normalized so that their sum,
with respect to , is equal to unity. For 1, the values of

are all set equal to 1 , which means that the first
iteration corresponds to standard Monte Carlo sampling. As
increases, the information gained for the pdf of through the

is used to bias the samples and increase the occurrence of
the values of at the tails of its pdf. After the final iteration

, the values of provide an estimate for and
are normalized so that 1. The values of the pdf,
obtained by the MCMC method can be used in order to calculate
the error probabilities , when the signal bit is “1” and
“0,” respectively. The value of is estimated using

(5)

where is the index of the subinterval in which belongs.
A similar expression is used for the estimation of .

III. RESULTS OF THE MCMC METHOD

In Fig. 1(a), the values of are plotted for the case of
10 interfering channels with equal amplitudes assuming that the
pulse variations are the same for the signal and the interferers
[i.e., ]. All the interferers have the same ampli-
tude ( , for 1). The energy of the signal is taken
to be 100 photoelectrons and the amplitude of the in-
terferers is chosen so that the optical signal-to-crosstalk ratio

is 20 dB. The dots correspond to the values of
obtained using the MCMC, for 10 iterations of 10

samples each. The solid line corresponds to the values obtained

Fig. 1. Values of (a) P and (b) P obtained using the semianalytical model
(solid-lines) and the MCMC method for identical (rectangles) and differing
pulses (triangles).

using the semianalytical model. This model takes into account
the crosstalk–crosstalk beating noise and computes the moment-
generating function (MGF) of the decision variable at
the receiver. The computation is accomplished through the two-
dimensional integral formulation of the MGF according
to which, can be written as [1]

(6)

where the is a product of Bessel functions of zeroth
order

(7)

In [1], accurate numerical techniques for the estimation of the
double integral of were presented. The calculation of the
EP is carried out using the saddle-point approximation. When
the signal bit is 0 (in which case 0, assuming a perfect
extinction ratio), the value of the EP is approximately

(8)

where is the receiver threshold and the saddle point in the
positive real axis of the function defined by

. Similarly, the value of the EP if
1 (in which case, ) is found by (8) if is re-

placed with the saddle point of in the negative real
axis. Using (8), the EP can be directly computed from the MGF
of . As shown in the figure, the two methods agree very well
even for very small error probabilities (of the order of 10 ).
In Fig. 1(b), the values of obtained by the MCMC method
and the semianalytical model are compared assuming that
0 (implying a perfect extinction ratio). The agreement between
the values obtained by the two methods is excellent in this case
as well. This suggests that the double integral formulation of
the MGF provides an accurate description for the statistical be-
havior of the decision variable at the receiver and that the numer-
ical methods used for the calculation of the double integral (6)
in [1] do indeed provide accurate results. In the case where the
pulse variations are not the same, the MCMC method can
still be used to calculate the error probabilities using the appro-
priate . If, for example, are return-to-zero Gaussian
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pulses approximately contained inside one bit period, each one
with standard deviation and centered at then it can
easily be shown that with

and .
In Fig. 1(a) and (b), the values of and are also plotted
in this case with triangles. The signal pulse is assumed
to be centered at 0. The values of for 0 have
been chosen randomly from a uniform distribution so that the
full-width at half-maximum (FWHM) of the interfering pulses

( ) 0 varies 30 , with respect to the FWHM of
. The centers of the interfering pulses have been ran-

domly chosen uniformly inside . As seen by the
figure, the values of and are somewhat different in this
case and the use semianalytical model (that assumes that the
pulse shapes of the interferers are the same as the signal) results
in an overestimation of the error probabilities.

IV. ASYMPTOTIC CONVERGENCE

The MCMC method can be used to study the asymptotic con-
vergence of the pdf of . It has been theoretically shown [2]
that as the number of interferers increases, the pdf of

asymptotically converges to the pdf of a chi-square random
variable

(9)

where is the in-band crosstalk noise power. In
Fig. 2(a), the pdf’s of in the case 1, obtained
for (rectangles) and 70 (triangles) are plotted
assuming 100 photoelectrons and SXR 20 dB. Also
plotted with rectangles is the pdf of when 0, obtained
by the MCMC method for 70. The solid lines correspond
to the pdfs obtained by (9) in the cases 1 and 0. As
shown in the figure, there is some difference between the pdf of

and its asymptotic form, for 10. However, this differ-
ence gradually diminishes as increases. In fact, for 70,
the pdf of is fairly close to its asymptotic chi-square form both
for 0 and 1. This is further illustrated in Fig. 2(b),
where and obtained by the MCMC method for 70
(triangles) and the asymptotic pdf are plotted (solid lines). It
is deduced that the error probabilities are approximately equal.
Hence, the chi-square pdf can be used to approximately describe
the statistical behavior of the decision variable when 70.

Fig. 2. (a) PDF ofX obtained using the MCMC and the asymptotic chi-square
form. (b) Error probabilities P and P obtained from the MCMC method for
M = 70 and the asymptotic pdf.

V. CONCLUSION

In this letter, the MCMC method is used to study the statis-
tical nature of the in-band crosstalk noise. The results obtained
by the MCMC method are found to agree very well with the
results of the previously proposed semianalytic model, which,
although providing a physical insight, relies on complex nu-
merical integration techniques. On the other hand, the MCMC
method is efficient, simple to use, and can handle the case where
the pulse variation of the signal and the crosstalk components
are different. The asymptotic behavior of the in-band crosstalk
noise is also studied using the MCMC method. It turns out that
the asymptotic chi-square pdf provides an accurate estimate for
the pdf of the decision variable if the number of interferers ex-
ceeds 70.
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