
Incomplete Information in RDF?

Charalampos Nikolaou and Manolis Koubarakis

National and Kapodistrian University of Athens
{charnik,koubarak}@di.uoa.gr

Abstract. We extend RDF with the ability to represent property val-
ues that exist, but are unknown or partially known, using constraints.
Following ideas from the incomplete information literature, we develop
a semantics for this extension of RDF, called RDFi, and study SPARQL
query evaluation in this framework.

1 Introduction

Incomplete information has been studied in-depth in relational databases [6,3]
and knowledge representation. It is also an important issue in Semantic Web
frameworks such as RDF, description logics, and OWL 2 especially given that
all these systems rely on the Open World Assumption (OWA). Making the OWA
means that we cannot capture negative information implicitly, i.e., if a formula
φ is not entailed by our knowledge base, we cannot assume its negation as in
the Closed World Assumption (CWA). In the context of the Web, incomplete
information has recently been studied in detail for XML [2]. There have also
been some recent papers in the area of Semantic Web.

[4] introduces the concept of anonymous timestamps in general temporal
RDF graphs, i.e., graphs containing quads of the form (s, p, o)[t] where t is a
timestamp (a natural number) or an anonymous timestamp x stating that the
triple (s, p, o) is valid in some unknown time point x. [5] extends the concept
of general temporal RDF graphs of [4] so that one is allowed to express tempo-
ral constraints involving anonymous timestamps using a formula φ which is a
conjunction of order constraints x1 OP x2 where OP is an arithmetic compari-
son operator. [5] calls c-temporal graphs the resulting pairs (G,φ) where G is a
general temporal RDF graph and φ is a conjunction of constraints. [5] defines a
semantics for c-temporal graphs and studies the relevant problem of entailment.

More recently, [1] examines the question of whether SPARQL is an appropri-
ate language for RDF given the OWA typically associated with the framework.
It defines a certain answer semantics for SPARQL query evaluation based on
well-known ideas from incomplete information research. According to this se-
mantics, if G is an RDF graph then evaluating a SPARQL query q over G is
defined as evaluating q over all graphs H ⊇ G that are possible extensions of G
according to the OWA, and then taking the intersection of all answers. [1] shows
? This work was supported by the European FP7 project TELEIOS (257662) and the
Greek NSRF project SWeFS (180).

that if we evaluate a monotone graph pattern (e.g., one using only the operators
AND, UNION, and FILTER) using the well-known W3C semantics, we get the
same result we would get if we used the certain answer semantics. The converse
also holds, thus monotone SPARQL graph patterns are exactly the ones that
have this nice property. However, OPTIONAL (OPT) is not a monotone oper-
ator and the two semantics do not coincide for it. [1] defines the notion of weak
monotonicity that appears to capture the intuition behind OPT and shows that
the fragment of SPARQL consisting of the well-designed graph patterns defined
originally in [16] is weakly monotone.

1.1 Contributions

In this paper we continue the line of research started by [4,5,1] and study in a
general way an important kind of incomplete information that has so far been
ignored in the context of RDF. Our contributions are the following.

First, we extend RDF with the ability to define a new kind of literals for
each datatype. These literals will be called e-literals (“e” comes from the word
“existential”) and can be used to represent values of properties that exist but are
unknown or partially known. In the proposed extension of RDF, called RDFi

(where “i” stands for “incomplete”), e-literals are allowed to appear only in the
object position of triples. RDFi allows partial information regarding property
values represented by e-literals to be expressed by a quantifier-free formula of a
first-order constraint language L. Thus, RDFi extends the concept of an RDF
graph to the concept of an RDFi database which is a pair (G,φ) where G is an
RDF graph possibly containing triples with e-literals in their object positions,
and φ is a quantifier-free formula of L. [12] motivates the need for introducing
RDFi by concentrating on the representation of incomplete spatial knowledge.

Following ideas from the incomplete information literature [6,3], we develop
a semantics for RDFi databases and SPARQL query evaluation. The semantics
defines the set of possible RDF graphs corresponding to an RDFi database and
the fundamental concept of certain answer for SPARQL query evaluation over
an RDFi database. We transfer the well-known concept of representation system
from [6] to the case of RDFi, and show that CONSTRUCT queries without
blank nodes in their templates and using only operators AND, UNION, and
FILTER or the restricted fragment of graph patterns corresponding to the well-
designed patterns of [1] can be used to define a representation system for RDFi.
On our way to show these results, we also show some interesting monotonicity
properties for CONSTRUCT queries.

We define the fundamental concept of certain answer to SPARQL queries
over RDFi databases and present an algorithm for its computation. Finally, we
present preliminary complexity results for computing certain answers by con-
sidering equality, temporal, and spatial constraint languages L and the class
of CONSTRUCT queries of our representation system. Our results show that
the data complexity of evaluating a query of this class over RDFi databases in-
creases from LOGSPACE (the upper bound for evaluating queries from this class
over RDF graphs [16]) to coNP-complete for the case of equality and temporal

constraints. This result is in line with similar complexity results for querying in-
complete information in relational databases [3,7]. The same coNP-completeness
bound is shown for the case of spatial constraints on rectangles in Q2 [7]. For
topological constraints over more general spatial regions (regular closed subsets
of Q2), the best upper bound that we can show is EXPTIME. It is an open
problem whether a better complexity bound can be achieved in this case.

The paper is organized as follows. Section 2 presents the properties that we
expect constraint languages to have so that they can be used in RDFi, and de-
fines some useful constraint languages. Section 3 introduces RDFi, while Sections
4 and 5 define its semantics and the evaluation of SPARQL queries over RDFi

databases. Section 6 presents fragments of SPARQL that can be used to define a
representation system for RDFi. Section 7 gives an algorithm for computing the
certain answer for SPARQL queries over RDFi databases and presents complex-
ity results. Sections 8 and 9 discuss related and future work. Proofs of results
and some technical details are omitted due to space; they may be found in the
full version of the paper [11].

2 Constraint Languages

We consider many-sorted first-order languages, structures, and theories. Every
language L is interpreted over a fixed structure, called the intended structure,
which is denoted by ML. If ML is a structure then Th(ML) denotes the theory
of ML. For every language L, we distinguish a class of quantifier free formulae
called L-constraints. The atomic formulae of L are included in the class of L-
constraints. There are also two distinguished L-constraints true and false with
obvious semantics. Every first-order language L we consider has a distinguished
equality predicate, denoted by EQ, with the standard semantics. The class of
L-constraints is assumed to: a) contain all formulae t1 EQ t2 where t1, t2 are
terms of L, and b) be weakly closed under negation, i.e., the negation of every
L-constraint is equivalent to a disjunction of L-constraints.

The full version of the paper [11] defines formally various constraint languages
that allow us to explore the scope of modeling possibilities that RDFi offers,
especially in temporal and spatial domains. These languages are ECL, diPCL,
dePCL, PCL, TCL and RCL and are only briefly defined here. ECL is the first
order language of equality constraints of the form x EQ y and x EQ c (where x, y
are variables and c is a constant) interpreted over an infinite domain [3]. ECL
allows RDFi to represent “marked nulls” as in relational databases [6]. Languages
diPCL, dePCL are the first order languages of temporal difference constraints
of the form x − y ≤ c interpreted over the integers (diPCL) or the rationals
(dePCL), and allow RDFi to represent incomplete temporal information as in
[4,5]. PCL, TCL and RCL are spatial constraint languages and are defined below.

Language PCL (Polygon Constraint Language) allows us to represent topo-
logical properties of non-empty, regular closed subsets of Q2 that are poly-
gons. PCL is a first-order language with the following 6 binary predicate
symbols corresponding to the topological relations of RCC-8 calculus [17]:

DC,EC,PO,EQ,TPP, and NTPP. The constant symbols of PCL represent poly-
gons in Q2. We write these constants as conjunctions of linear constraints in
quotes (half-space representation of the convex polygon). The terms and atomic
formulae of PCL are defined as follows. Constants and variables are terms. An
atomic formula of PCL (PCL-constraint) is a formula of the form t1 R t2 where
t1, t2 are terms and R is one of the above predicates. The intended structure for
PCL, denoted by MPCL, has the set of non-empty, regular closed subsets of Q2

as its domain.MPCL interprets each constant symbol by the corresponding poly-
gon in Q2 and each of the predicate symbols by the corresponding topological
relation of RCC-8 [17].

Language TCL (Topological Constraint Language) is defined like PCL,
but now terms can only be variables. Language RCL (Rectangle Constraint
Language) is a first-order constraint language that represents information about
rectangles in Q2 using rational constants and order or difference constraints
(x − y ≤ c) on the vertices of rectangles. RCL has essentially the same expres-
sive power with dePCL, but it’s been carefully crafted for rectangles.

3 The RDFi Framework

As in theoretical treatments of RDF [16], we assume the existence of pairwise-
disjoint, countably infinite sets I, B, and L that contain IRIs, blank nodes, and
literals respectively. We also assume the existence of a datatype map M and
distinguish a set of datatypes A from M for which e-literals are allowed. Finally,
we assume the existence of a many-sorted first order constraint language L with
the properties discussed in Section 2. L is related to the datatype map M in the
following way: a) The set of sorts of L is the set of datatypes A of M . b) The set
of constants of L is the union of the lexical spaces of the datatypes in A. c) ML
interprets every constant c of L with sort d by its corresponding value given by
the lexical-to-value mapping of the datatype d in A.

The set of constants of L (equivalently: the set of literals of the datatypes
in A) are denoted by C. We also assume the existence of a countably infinite
set of e-literals for each datatype in A and use U to denote the union of these
sets. By convention, the identifiers of e-literals start with an underscore. C and
U are assumed to be disjoint from each other and from I, B, and L. The set of
RDFi terms, denoted by T , can now be defined as the union I ∪B ∪L∪C ∪U .
In the rest of our examples we will assume that L is PCL, so C is the set of all
polygons in Q2 written as linear constraints.

We now define the basic concepts of RDFi.

Definition 1. An e-triple is an element of the set (I ∪ B) × I × T . If (s, p, o)
is an e-triple, s will be called the subject, p the predicate, and o the object of
the triple. A conditional triple is a pair (t, θ) where t is an e-triple and θ is
a conjunction of L-constraints. If (t, θ) is a conditional triple, θ will be called
the condition of the triple. A global constraint is a Boolean combination of L-
constraints. A conditional graph is a set of conditional triples. An RDFi database
D is a pair D = (G,φ) where G is a conditional graph and φ a global constraint.

Example 1. The following pair is an RDFi database.
({((hotspot1, type, Hotspot), true), ((fire1, type, Fire), true),
((hotspot1, correspondsTo, fire1), true), ((fire1, occuredIn, _R1), true) },

_R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19")

The example comes from a real application [12] and it is about hotspots captured
by satellite images. The database mentions a hotspot which is located in a region
that is inside but does not intersect with the boundary of rectangle defined by
the points (6, 8) and (23, 19). E-literal _R1 is used to represent the region the
exact coordinates of which are unknown. The possible values for the e-literal are
further constrained by the global constraint.

4 Semantics of RDFi

The semantics of RDFi are inspired by [6]. An RDFi database D = (G,φ) corre-
sponds to a set of possible RDF graphs each one representing a possible state of
the real world. This set of possible graphs captures completely the semantics of
an RDFi database. The global constraint φ determines the number of possible
RDF graphs corresponding to D; there is one RDF graph for each solution of φ
obtained by considering the e-literals of φ as variables and solving constraint φ.

Example 2. Let D = (G,φ) be the RDFi database given in Example 1. The same
knowledge can be represented by an (infinite) set of possible RDF graphs, one
for each rectangle inside P . One such graph is the following:
G1 = {(hotspot1,type,Hotspot), (fire1,type,Fire), (hotspot1,correspondsTo,fire1),

(fire1,occuredIn,"x ≥ 11 ∧ x ≤ 15 ∧ y ≥ 13 ∧ y ≤ 15")}

In order to be able to go from RDFi databases to the equivalent set of possible
RDF graphs, the notion of valuation is needed. Informally, a valuation maps an
e-literal to a specific constant from C. We denote by v(t) the application of
valuation v to an e-triple t. v(t) is obtained from t by replacing any e-literal _l
appearing in t by v(_l) and leaving all other terms the same. If θ is a formula
of L (e.g., the condition of a conditional triple or the global constraint of a
database) then v(θ) denotes the application of v to formula θ. The expression
v(θ) is obtained from θ by replacing all e-literals _l of θ by v(_l).

Next, we give the definition of applying a valuation to a conditional graph.

Definition 2. Let G be a conditional graph and v a valuation. Then v(G) de-
notes the RDF graph {v(t) | (t, θ) ∈ G and ML |= v(θ)}.

The set of valuations that satisfy the global constraint of an RDFi database
determines the set of possible RDF graphs that correspond to it. This set of
graphs is denoted using the function Rep as it is traditional in incomplete rela-
tional databases.

Definition 3. Let D = (G,φ) be an RDFi database. The set of RDF graphs
corresponding to D is the following:

Rep(D) = {H | there exists a valuation v such that ML |= v(φ) and H ⊇ v(G)}

In incomplete relational databases [6], Rep is a semantic function: it is used
to map a table (a syntactic construct) to a set of relational instances (i.e., a set of
possible words, a semantic construct). According to the well-known distinction
between model theoretic and proof theoretic approaches to relational databases,
Rep and the approaches based on it [6,3] belong to the model theoretic camp.
However, the use of function Rep in the above definition is different. Rep takes
an RDFi database (a syntactic construct) and maps it to a set of possible RDF
graphs (a syntactic construct again). This set of possible graphs can then be
mapped to a set of possible worlds using the well-known RDF model theory.
This is a deliberate choice in our work since we want to explore which well-known
tools from incomplete relational databases carry over to the RDF framework.

Notice that the definition of Rep above uses the containment relation in-
stead of equality. The reason for this is to capture the OWA that the RDF
model makes. By using the containment relation, Rep(D) includes all graphs H
containing at least the triples of v(G). In this respect, we follow the approach
of [1, Section 3], where the question of whether SPARQL is a good language for
RDF is examined in the light of the fact that RDF adopts the OWA. To account
for this, an RDF graph G is seen to correspond to a set of possible RDF graphs
H such that G ⊆ H (in the sense of the OWA: all triples in G also hold in H).
The above definition takes this concept of [1] to its rightful destination: the full
treatment of incomplete information in RDF. As we have already noted in the
introduction, the kinds of incomplete information we study here for RDF have
not been studied in [1]; only the issue of OWA has been explored there.

Notation 1 Let G be a set of RDF graphs and q a SPARQL query. The expres-
sion

⋂
G will denote the set

⋂
G∈G G. The expression JqKG , which extends the

notation of [16] to the case of sets of RDF graphs, will denote the element-wise
evaluation of q over G, that is, JqKG = {JqKG | G ∈ G}.

Given the semantics of an RDFi database as a set of possible RDF graphs,
the next definition of certain answer extends the corresponding definition of
Section 3.1 of [1] by applying it to a more general incomplete information setting.

Definition 4. Let q be a query and G a set of RDF graphs. The certain answer
to q over G is the set

⋂
JqKG .

Example 3. Let us consider the following query over the database of Example 1:
“Find all fires that have occurred in a region which is a non-tangential proper
part of the rectangle defined by the points (2, 4) and (28, 22)”. The certain answer
to this query is the set of mappings {{?F→ fire1}}.

5 Evaluating SPARQL on RDFi Databases

Let us now discuss how to evaluate SPARQL queries on RDFi databases. Due to
the presence of e-literals, query evaluation now becomes more complicated and is

similar to query evaluation for conditional tables [6,3]. We use set semantics for
query evaluation by extending the SPARQL query evaluation approach of [16].

We assume the existence of the following disjoint sets of variables: (i) the set
of normal query variables Vn that range over IRIs, blank nodes, or RDF literals,
and (ii) the set of special query variables Vs that range over literals from the set
C or e-literals from the set U . We use V to denote the set of all variables Vn∪Vs.
Set V is assumed to be disjoint from the set of terms T we defined in Section 3.

We now define the concepts of e-mapping and conditional mapping that are
extensions of the standard mappings of [16]. An e-mapping ν is a partial function
ν : V → T such that ν(x) ∈ I ∪ B ∪ L if x ∈ Vn and ν(x) ∈ C ∪ U if x ∈ Vs.
A conditional mapping µ is a pair (ν, θ) where ν is an e-mapping and θ is a
conjunction of L-constraints. The notions of domain and restriction of an e-
mapping as well as the notion of compatibility of two e-mappings are defined
as for mappings in the obvious way [16]. The domain of a conditional mapping
µ = (ν, θ), denoted by dom(µ), is the domain of ν, i.e., the subset of V where
the partial function ν is defined. Let µ = (ν, θ) be a conditional mapping with
domain S and W ⊆ S. The restriction of the mapping µ to W , denoted by µ|W ,
is the mapping (ν|W , θ) where ν|W is the restriction of mapping ν to W .

A triple pattern is an element of the set (I∪V)×(I∪V)×(I∪L∪C∪U∪V). We
do not allow blank nodes to appear in a triple pattern as in standard SPARQL
since such blank nodes can equivalently be substituted by new query variables.
If p is a triple pattern, var(p) denotes the variables appearing in p. A conditional
mapping can be applied to a triple pattern. If µ = (ν, θ) is a conditional mapping
and p a triple pattern such that var(p) ⊆ dom(µ), then µ(p) is the triple obtained
from p by replacing each variable x ∈ var(p) by ν(x).

We now introduce the notion of compatible conditional mappings by gener-
alizing the relevant notions of [16]. Two conditional mappings µ1 = (ν1, θ1) and
µ2 = (ν2, θ2) are compatible if the e-mappings ν1 and ν2 are compatible, i.e.,
for all x ∈ dom(µ1) ∩ dom(µ2), we have ν1(x) = ν2(x). To take into account
e-literals, we also need to define another notion of compatibility of two condi-
tional mappings. Two conditional mappings µ1 = (ν1, θ1) and µ2 = (ν2, θ2) are
possibly compatible if for all x ∈ dom(µ1) ∩ dom(µ2), we have ν1(x) = ν2(x) or
at least one of ν1(x), ν2(x) where x ∈ Vs is an e-literal from U . If two conditional
mappings are possibly compatible, then we can define their join as follows.

Definition 5. Let µ1 = (ν1, θ1) and µ2 = (ν2, θ2) be possibly compatible condi-
tional mappings. The join µ1 1 µ2 is a new conditional mapping (ν3, θ3) where:

i. ν3(x) = ν1(x) = ν2(x) for each x ∈ dom(µ1) ∩ dom(µ2) s.t. ν1(x) = ν2(x).
ii. ν3(x) = ν1(x) for each x ∈ dom(µ1) ∩ dom(µ2) s.t. ν1(x) is an e-literal and

ν2(x) is a literal from C.
iii. ν3(x) = ν2(x) for each x ∈ dom(µ1) ∩ dom(µ2) s.t. ν2(x) is an e-literal and

ν1(x) is a literal from C.
iv. ν3(x) = ν1(x) for x ∈ dom(µ1) ∩ dom(µ2) s.t. both ν1(x) and ν2(x) are

e-literals.
v. ν3(x) = ν1(x) for x ∈ dom(µ1) \ dom(µ2).
vi. ν3(x) = ν2(x) for x ∈ dom(µ2) \ dom(µ1).

vii. θ3 is θ1 ∧ θ2 ∧ ξ1 ∧ ξ2 ∧ ξ3 where:
- ξ1 is

∧
i_vi EQ _ti where the _vi’s and _ti’s are all the pairs of e-

literals ν1(x), ν2(x) from Case (iv). If there are no such pairs, ξ1 is true.
- ξ2 is

∧
i_wi EQ li where the _wi’s and li’s are all the pairs of e-literals

ν1(x) and literals ν2(x) from the set C from Case (ii). If there are no
such pairs, ξ2 is true.

- ξ3 is
∧
i_wi EQ li where the _wi’s and li’s are all the pairs of e-literals

ν2(x) and literals ν1(x) from the set C from Case (iii). If there are no
such pairs, ξ3 is true.

The predicate EQ used in the above definition is the equality predicate of L.
For two sets of conditional mappings Ω1 and Ω2, the operations of join, union,

and left-outer join can be defined similarly to [16] and can be found in the full
version of the paper [11]. Given the previous operations on sets of mappings,
graph pattern evaluation in RDFi can now be defined exactly as in standard
SPARQL for RDF graphs [16] except for the case of evaluating a triple pattern
and a FILTER graph pattern which are defined next. The other cases (AND,
UNION, and OPT graph patterns) may be found in the full version of the paper
[11].

Definition 6. Let D = (G,φ) be an RDFi database. Evaluating a triple pattern
P = (s, p, o) over database D is denoted by JP KD and is defined as follows:
If o is a literal from the set C then

JP KD = {µ = (ν, θ) | dom(µ) = var(P) and (µ(P), θ) ∈ G} ∪
{µ = (ν, (_l EQ o) ∧ θ) | dom(µ) = var(P), ((ν(s), ν(p),_l), θ) ∈ G, _l ∈ U}

else
JP KD = {µ = (ν, θ) | dom(µ) = var(P), (µ(P), θ) ∈ G}

In the above definition the “else” part is to accommodate the case in which
evaluation can be done as in standard SPARQL. The “if” part accommodates
the case in which the triple pattern involves a literal o from the set C. Here,
there are two alternatives: the graph contains a conditional triple matching with
every component of the triple pattern (i.e., a triple which has o in the object
position) or it contains a conditional triple with an e-literal _l from U in the
object position. We catch a possible match for the second case by adding in the
condition of the mapping the constraint that restricts the value of e-literal _l to
be equal to the literal o of the triple pattern (i.e., the constraint _l EQ o).

It has been noted in [16] that the OPT operator of SPARQL can be used to
express difference in SPARQL. For data models that make the OWA, such an
operator is unnatural since negative information cannot be expressed. However,
we deliberately include operator OPT (see [11]) because if it is combined with
operators AND and FILTER under certain syntactic restrictions (well-designed
graph patterns), the resulting graph patterns cannot express a difference operator
anymore [1].

Definition 7. Given an RDFi database D = (G,φ), a graph pattern P and a
conjunction of L-constraints R, we have:

JP FILTER RKD = {µ′ = (ν, θ′) | µ = (ν, θ) ∈ JP KD and θ′ is θ ∧ ν(R) }

In the above definition, ν(R) denotes the application of e-mapping ν to condi-
tion R, i.e., the conjunction of L-constraints obtained from R when each variable
x of R which also belongs to dom(ν) is substituted by ν(x). The extension of
FILTER to the case that R is a Boolean combination of L-constraints or contains
built-in conditions of standard SPARQL [16] is easy to define and is omitted.

We now define the SELECT and CONSTRUCT query forms of SPARQL.
A SELECT query q is a pair (W,P) where W is a set of variables from the set
V and P is a graph pattern. The answer to q over an RDFi database D = (G,φ)
(in symbols JqKD) is the set of conditional mappings {µ|W | µ ∈ JP KD}.

A template is a finite subset of set (T∪V)×(I∪V)×(T∪V). A CONSTRUCT
query is a pair (E,P) where E is a template and P a graph pattern. We denote
by var(E) the set of variables appearing in the elements of E and by µ(E) the
application of conditional mapping µ to template E. µ(E) is obtained from E by
replacing in E every variable x of var(E)∩ dom(µ) by µ(x). Next we define the
concept of answer to a CONSTRUCT query. The definition extends the one of
[15] to the case of RDFi.

Definition 8. Let q = (E,P) be a CONSTRUCT query, D = (G,φ) an RDFi

database and F = {fµ | µ ∈ JP KD} a fixed set of renaming functions. The answer
to q over D (in symbols JqKD) is the RDFi database D′ = (G′, φ) where

G′ =
⋃

µ=(ν,θ)∈JP KD

{(t, θ) | t ∈ (µ(fµ(E)) ∩ ((I ∪B)× I × T))}.

Example 4. Let us consider the following query over the database of Example 1:
“Find all fires that have occurred in a region which is a non-tangential proper
part of rectangle defined by the points (10, 12) and (21, 17)”. This query can be
expressed using the CONSTRUCT query form as follows:

({(?F, type,Fire)}, (?F, type,Fire) AND (?F, occuredIn, ?R)
FILTER (?R NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17"))

The answer to the above query is is the following RDFi database:

({ ((fire1, type, Fire), _R1 NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17") },
_R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19")

6 Representation Systems for RDFi

Let us now recall the semantics of RDFi as given by Rep. Rep(D) is the set of
possible RDF graphs corresponding to an RDFi database D. Clearly, if we were
to evaluate a query q over D, we could use the semantics of RDFi and evaluate q
over any RDF graph of Rep(D) as JqKRep(D) = {JqKG | G ∈ Rep(D)}. However,

this is not the best answer we wish to have in terms of representation; we queried
an RDFi database and got an answer which is a set of RDF graphs. Any well-
defined query language should have the closure property, i.e., the output (answer)
should be of the same type as the input. Ideally, we would like to have an RDFi

database as the output. Thus, we are interested in finding an RDFi database JqKD
representing the answer JqKRep(D). This requirement is translated to formula:

Rep(JqKD) = JqKRep(D) (1)

Formula (1) allows us to compute the answer to any query over an RDFi

database in a consistent way with respect to the semantics of RDFi without
applying the query on all possible RDF graphs. JqKD can be computed using the
algebra of Section 5 above. But can the algebra of Section 5 compute always
such a database JqKD representing JqKRep(D)? In other words, can we prove (1)
for all SPARQL queries considered in Section 5? The answer is no in general.

Example 5. Consider the RDFi database D = (G,φ), where G =
{((s, p, o), true)} and φ = true, i.e., D contains the single triple (s, p, o) where
s, p, o ∈ I. Consider now a CONSTRUCT query q over D that selects all
triples having s as the subject. The algebraic version of query q would be
({(s, ?p, ?o)}, (s, ?p, ?o)) and evaluated as JqKD using Definition 8. Then, the
triple (s, p, o) and nothing else is in the resulting database JqKD. However, equa-
tion (1) is not satisfied, since for instance (c, d, e) occurs in some g ∈ Rep(JqKD)
according to the definition of Rep, whereas (c, d, e) /∈ g for all g ∈ JqKRep(D).

The above counterexample to (1) exploits only the fact that RDF makes
the OWA. In other words, the counterexample would hold for any approach
to incomplete information in RDF which respects the OWA. Thus, unless the
CWA is adopted, which we do not want to do since we are in the realm of
RDF, condition (1) has to be relaxed1. In the rest of this section we follow the
literature of incomplete information [6,3] and show how (1) can be weakened. The
key concept for achieving this is that of certain answer. Given a fixed fragment
of SPARQL Q, two RDFi databases cannot be distinguished by Q if they give
the same certain answer to every query in Q. The next definition formalizes this
fact using the concept of Q-equivalence.

Definition 9. Let Q be a fragment of SPARQL, and G, H two sets of RDF
graphs. G, H are called Q-equivalent (denoted by G ≡Q H) if they give the same
certain answer to every query in the language, i.e.,

⋂
JqKG =

⋂
JqKH for all q ∈ Q.

Next we define the notion of representation system which gives a formal
characterization of the correctness of computing the answer to a query directly
on an RDFi database instead of using the set of possible graphs given by Rep.
The definition of representation system corresponds to the notion of weak query
system defined for incomplete relational databases [3].

1 If the CWA is adopted, we can prove (1) using similar techniques to the ones that
enable us to prove Theorem 1 below.

Definition 10. Let D be the set of all RDFi databases, G the set of all RDF
graphs, Rep : D → G a function determining the set of possible RDF graphs
corresponding to an RDFi database, and Q a fragment of SPARQL. The triple
〈D, Rep,Q〉 is a representation system if for all D ∈ D and all q ∈ Q, there exists
an RDFi database JqKD ∈ D s.t. condition Rep(JqKD) ≡Q JqKRep(D) is satisfied.

The next step towards the development of a representation system for RDFi

and SPARQL is to introduce various fragments of SPARQL that we will consider
and define the notions of monotonicity and coinitiality as it is done in [6] for
the relational case. As in Section 5, our only addition to standard SPARQL is
the extension of FILTERs with another kind of conditions that are constraints
of L. We also consider the fragment of SPARQL graph patterns known as well-
designed. Well-designed graph patterns form a practical fragment of SPARQL
graph patterns that include the OPT operator. It has been showed in [16,1] that
they have nice properties, such as lower combined complexity of query evaluation
than in the general case, a normal form useful for optimization, and they are
also weakly monotone. [11] contains formal definitions and relevant background
results for well-designed graph patterns.

Notation 2 We denote by QCF (resp. QSF) the set of all CONSTRUCT (resp.
SELECT) queries consisting of triple patterns, and graph pattern expressions
from class F . We also denote by QCWD (resp. QSWD) the set of all CONSTRUCT
(resp. SELECT) queries consisting of well-designed graph patterns. Last, we de-
note by QC′

F all CONSTRUCT queries without blank nodes in their templates.

The following definition introduces the concept of monotone fragments of
SPARQL applied to RDF graphs.

Definition 11. A fragment Q of SPARQL is monotone if for every q ∈ Q and
RDF graphs G and H such that G ⊆ H, it is JqKG ⊆ JqKH .

Proposition 1. The following results hold with respect to the monotonicity of
SPARQL: a) Language QSAUF is monotone. b) The presence of OPT or CON-
STRUCT makes a fragment of SPARQL not monotone. c) Language QC′

AUF is
monotone. d) Language QC′

WD is monotone.

Parts a)−c) of the above proposition are trivial extensions of relevant results
in [1]. However, part d) is an interesting result showing that the weak monotonic-
ity property of well-designed graph patterns suffices to get a monotone fragment
of SPARQL containing the OPT operator, i.e., the class of CONSTRUCT
queries without blank nodes in their templates. This is a result that cannot
be established for the case of SELECT queries and with this respect CON-
STRUCT queries deserve closer attention. Monotonicity is a sufficient property
for establishing our results about representation systems. Thus, in the following,
we focus on the monotone query languages QC′

AUF and QC′

WD.

Definition 12. Let G and H be sets of RDF graphs. We say that G and H are
coinitial, denoted by G ≈ H, if for any G ∈ G there exists H ∈ H such that
H ⊆ G, and for any H ∈ H there exists G ∈ G such that G ⊆ H.

A direct consequence of the definition of coinitial sets is that they have the
same greatest lower-bound elements with respect to the subset relation.

Proposition 2. Let Q be a monotone fragment of SPARQL and G and H sets
of RDF graphs. If G ≈ H then, for any q ∈ Q, it holds that JqKG ≈ JqKH.

Lemma 1. Let G and H be sets of RDF graphs. If G and H are coinitial then
G ≡QC′

AUF
H.

We will now present our main theorem which characterizes the evaluation of
monotone QC′

AUF and QC′

WD queries.

Theorem 1. 〈D, Rep,QC′

AUF 〉 and 〈D, Rep,QC
′

WD〉 are representation systems.

Since SELECT queries in SPARQL take as input an RDF graph but return
a set of mappings (i.e., we do not have closure), it is not clear how to include
them in the developed concept of a representation system.

7 Certain Answer Computation

This section studies how the certain answer to a SPARQL query q over an RDFi

database D can be computed, i.e., how to compute
⋂

JqKRep(D). Having Theo-
rem 1, it is easy to compute the certain answer to a query in the fragment of
SPARQL QC′

AUF or QC′

WD. Since 〈D, Rep,QC
′

AUF 〉 and 〈D, Rep,QC
′

WD〉 are rep-
resentation systems, we can apply Definition 9 for the identity query to get⋂

JqKRep(D) =
⋂
Rep(JqKD) for all q and D. Thus, we can equivalently com-

pute
⋂
Rep(JqKD) where JqKD can be computed using the algebraic operations

of Section 5. Before presenting the algorithm for certain answer computation,
we introduce some auxiliary constructs.

Definition 13. Let D = (G,φ) be an RDFi database. The EQ-completed form
of D is the RDFi database DEQ = (GEQ, φ) where GEQ is the same as G except
that all e-literals _l ∈ U appearing in G have been replaced in GEQ by the
constant c ∈ C such that φ |= _l EQ c (if such a constant exists).

In other words, in the EQ-completed form of an RDFi database D, all e-
literals that are entailed by the global constraint to be equal to a constant from
C are substituted by that constant in all the triples in which they appear.

Definition 14. Let D = (G,φ) be an RDFi database. The normalized form of
D is the RDFi database D∗ = (G∗, φ) where G∗ is the set

{(t, θ) | (t, θi) ∈ G for all i = 1 . . . n, and θ is
∨
i

θi}.

The normalized form of an RDFi database D is one that consists of the same
global constraint and a graph in which conditional triples with the same triple
part have been joined into a single conditional triple with a condition which is
the disjunction of the conditions of the original triples. These new conditional
triples do not follow Definition 1 which assumes conditions to be conjunctions
of L-constraints. We will allow this deviation from Definition 1 in this section.

Lemma 2. Let D = (G,φ) be an RDFi database. Then,
⋂
Rep(D) =⋂

Rep((DEQ)∗).

Based on Lemma 2, the following algorithm computes the certain answer.

Theorem 2. Let D = (G,φ) be an RDFi database and q a query from QC′

AUF

or QC′

WD. The certain answer of q over D can be computed as follows: i) compute
JqKD according to Section 5 and letDq = (Gq, φ) be the resulting RDFi database,
ii) compute the RDFi database (Hq, φ) = ((Dq)

EQ)∗, and iii) return the set of
RDF triples {(s, p, o) | ((s, p, o), θ) ∈ Hq such that φ |= θ and o /∈ U}.

Let us now study the data complexity of computing the certain answer to a
CONSTRUCT query over an RDFi database when L is one of the constraint
languages of Section 2. We first define the corresponding decision problem.

Definition 15. Let q be a CONSTRUCT query. The certainty problem for
query q, RDF graph H, and RDFi database D, is to decide whether H ⊆⋂

JqKRep(D). We denote this problem by CERTC(q,H,D).

The next theorem shows how one can transform the certainty problem to the
problem of deciding whether ψ ∈ Th(ML) for an appropriate sentence ψ of L.

Theorem 3. Let D = (G,φ) be an RDFi database, q a query from QC′

AUF or
QC′

WD, and H an RDF graph. Then, CERTC(q,H,D) is equivalent to deciding
whether formula

∧
t∈H(∀_l)(φ(_l) ⊃ Θ(t, q,D,_l)) is true in ML where:

- _l is the vector of all e-literals in the database D.
- Θ(t, q,D,_l) is a disjunction θ1 ∨ · · · ∨ θk that is constructed as follows. Let

JqKD = (G′, φ). Θ(t, q,D,_l) has a disjunct θi for each conditional triple
(t′i, θ

′
i) ∈ G′ such that t and t′i have the same subject and predicate. θi is:

- θ′i if t and t′i have the same object as well.
- θ′i ∧ (_l EQ o) if the object of t is o ∈ C and the object of t′i is _l ∈ U .
If t does not agree in the subject and predicate position with some t′i, then
Θ(t, q,D,_l) is taken to be false.

7.1 Data Complexity Results

In the full version of the paper, we show that the data complexity of the certainty
problem, CERTC(q,H,D), for q in theQC′

AUF fragment of SPARQL andD in the
set of RDFi databases with constraints from ECL, diPCL, dePCL, and RCL is
coNP-complete. This follows from known results of [3] for ECL and [7] for diPCL,
dePCL, RCL. Thus, we have the expected increase in data complexity given that
the complexity of evaluating AND, UNION, and FILTER graph patterns over
RDF graphs is LOGSPACE [16].

Theorem 3 gives us immediately some easy upper bounds on the data com-
plexity of the certainty problem in the case of RDFi with L equal to TCL or
PCL. The satisfiability problem for conjunctions of TCL-constraints is known
to be in PTIME [18]. Thus, the entailment problems arising in Theorem 3 can
be trivially solved in EXPTIME. Therefore, the certainty problem is also in

EXPTIME. To the best of our knowledge, no better bounds are known in the
literature of TCL that we could have used to achieve a tighter bound for the cer-
tainty problem as we have done with the languages of the previous paragraph. [9]
shows that conjunctions of atomic RCC-5 constraints involving constants that
are polygons in V -representation can be decided in PTIME. Therefore, by re-
stricting PCL so that only RCC-5 constraints are allowed and constants are given
in V -representation, the certainty problem in this case is also in EXPTIME.

8 Related Work

Related work for incomplete information in relational databases, XML, and RDF
has been discussed in the introduction, so we do not repeat the details here. The
study of incomplete information in RDF undertaken in this paper goes beyond [1]
where only the issue of OWA for RDF is investigated. Other cases of incomplete
information in RDF (e.g., blank nodes according to the W3C RDF semantics
which is different than the SPARQL semantics as we pointed out in Section 5)
can also be investigated using an approach similar to ours. Comparing our work
with [4,5], we point out that these papers study complementary issues in the
sense that they concentrate on temporal information of a specific kind only
(validity time for a tuple). From a technical point of view, the approach of [5]
is similar to ours since it is based on constraints, but, whereas we concentrate
on query answering for RDFi, [5] concentrates more on semantic issues such as
temporal graph entailment. RDFi can be used to represent incomplete temporal
information that can be modeled as the object of a triple using any of the
temporal constraint languages mentioned in Section 2. In this way RDFi can
represent user-defined time (e.g., the time an event occured) which has not been
studied in [4,5].

It is interesting to compare the expressive power that RDFi gives us to other
recent works that use Semantic Web data models and languages for geospa-
tial applications. When equipped with a constraint language like TCL, PCL, or
RCL, RDFi goes beyond the proposals of the geospatial extensions of SPARQL,
stSPARQL [8] and GeoSPARQL [13] that cannot query incomplete geospatial
information. While GeoSPARQL provides a vocabulary for asserting topologi-
cal relations the complexity of query evaluation over RDF graphs in this case
remains an open problem. Incomplete geospatial information as it is studied in
this paper can also be expressed in spatial description logics [14,10]. For effi-
ciency reasons, spatial DL reasoners such as RacerPro2 and PelletSpatial [20]
have opted for separating spatial relations from standard DL axioms as we have
done by separating graphs and constraints. Since RDF graphs can be seen as DL
ABoxes with atomic concepts only, all the results of this paper can be transferred
to the relevant subsets of spatial DLs and their reasoners so they are applica-
ble to this important Semantic Web area as well. It is an open problem how to
extend our results to DLs with non-trivial TBoxes.
2 http://www.racer-systems.com/

http://www.racer-systems.com/

9 Future Work

In the future we will: 1) explore other fragments of SPARQL that can be used to
define a representation system for RDFi, 2) study in more depth the complexity
of certain answer computation for the various constraint languages L we consid-
ered or the one used in [5] and identify tractable classes, 3) study the complexity
of evaluating various fragments of SPARQL over RDFi databases as in [16,19].

References

1. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: PODS. pp.
305–316 (2011)

2. Barceló, P., Libkin, L., Poggi, A., Sirangelo, C.: XML with incomplete information.
JACM 58(1), 4 (2010)

3. Grahne, G.: The Problem of Incomplete Information in Relational Databases.
LNCS, Springer Verlag (1991)

4. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing Time into RDF. IEEE
TKDE 19(2) (2007)

5. Hurtado, C.A., Vaisman, A.A.: Reasoning with Temporal Constraints in RDF. In:
PPSWR. Springer (2006)

6. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. JACM
31(4), 761–791 (1984)

7. Koubarakis, M.: Complexity results for first-order theories of temporal constraints.
In: KR. pp. 379–390 (1994)

8. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospa-
tial DBMS. In: ISWC’12. pp. 295–311 (2012)

9. Liu, W., Wang, S., Li, S., Liu, D.: Solving qualitative constraints involving land-
marks. In: CP (2011)

10. Lutz, C., Miličić, M.: A tableau algorithm for description logics with concrete
domains and general tboxes. J. Autom. Reason. 38, 227–259 (April 2007)

11. Nikolaou, C., Koubarakis, M.: Incomplete information in RDF. CoRR
abs/1209.3756 (2012)

12. Nikolaou, C., Koubarakis, M.: Querying Linked Geospatial Data with Incomplete
Information. In: 5th International Terra Cognita Workshop. Boston, USA (2012)

13. Open Geospatial Consortium: GeoSPARQL - A geographic query language for
RDF data. OGC (2010)

14. Özcep, Ö., Möller, R.: Computationally feasible query answering over spatio-
thematic ontologies. In: GEOProcessing (2012)

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics of SPARQL. Tech. rep., Univ. de
Chile (2006), http://ing.utalca.cl/~jperez/papers/sparql_semantics.pdf

16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
TODS 34(3), 1–45 (2009)

17. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: KR (1992)

18. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. AIJ 108(1-2), 69–123 (1999)

19. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: ICDT. pp. 4–33 (2010)

20. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning
and Query Engine. In: OWLED (2009)

http://ing.utalca.cl/~jperez/papers/sparql_semantics.pdf

	Incomplete Information in RDF
	Introduction
	Contributions

	Constraint Languages
	The RDFi Framework
	Semantics of RDFi
	Evaluating SPARQL on RDFi Databases
	Representation Systems for RDFi
	Certain Answer Computation
	Data Complexity Results

	Related Work
	Future Work

