
Distance Geometry-Matrix Completion

Distance Geometry-Matrix Completion

Christos Konaxis

Algs in Struct BioInfo 2010



Distance Geometry-Matrix Completion

Outline

Outline

Tertiary structure

Distance Geometry

Incomplete data



Distance Geometry-Matrix Completion

Tertiary structure

Measure diffrence of matched sets

Def. Root Mean Square Deviation

RMSD =

√√√√ 1

n

n∑
i=1

|xi − yi |2,

where xi , yi ∈ R3 are (Cα) atom coordinates in SAME coordinate frame.

X = [x1, . . . , xn],Y = [y1, . . . , yn], then

RMSD(X ,Y ) =
1√
n
|X − Y |F , where |M|2F =

∑
i,j

M2
ij = tr(MTM),

is the Frobenious metric, and tr(A) =
∑

i Aii is the trace of matrix

A = [Aij ].
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Tertiary structure

Optimal alignment of matched sets

Translate to common origin by subtracting centroid

xc =
1

n

∑
i

xi .

Rotate to optimal alignment by rotation matrix Q : QT = I .
Also should have detQ = 1.
Exists deterministic linear algebra algorithm [Kabsch].

Overall cost= O(n3), but least-squares approximation in O(n).
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Optimal rotation
Assume common centroid:

RMSD(X ,Y ) = minQ |Y − XQ|F , QTQ = I3.

|Y − XQ|F = tr(Y TY ) + tr(XTX )− 2tr(QTXTY ),

so must maximize tr(QTXTY ).

Consider SVD:

XTY = UΣV T , UTU = V TV = I , Σ = diag[si ] : s1 ≥ · · · ≥ s3.

Then tr(QTXTY ) = tr(QTUΣV T ) = tr(V TQTUΣ) ≤ tr(Σ),

because T = V TQTU orthonormal ⇒ |Tij | ≤ 1. Hence maximum at

T = I ⇔ Q = UV T .

If detT = −1 then just negate T33.
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Introduction

I Nuclear Magnetic Resonance (NMR) and Nuclear Overhauser Effect
(NOE) spectroscopy provide approximate inter-atomic distances for
molecular structures as large as 5.000 atoms.

I The distances measured by NMR and NOESY experiments (usually
a small subset of all possible pairs) must be converted into a 3D
structure consistent with the measurements.

I In general the distances are imprecisely measured: for each distance
dij we have lij ≤ dij ≤ uij .
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Distance Geometry

I The Distance Geometry Method is based on the foundational work
of Cayley (1841) and Menger (1928) who showed how convexity
and other basic geometric properties could be defined in terms of
distances between pairs of points.

I The problem can be reduced to the completion of a partial matrix
M satisfying certain prorperties.
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Distance matrices

I Definition (and structure): A distance matrix D is square,
Dii = 0, Dij = Dji ≥ 0.

I Definition. A distance matrix D is euclidean and embeddable in Rk

iff

∃ points pi ∈ Rk : Dij =
1

2
dist(pi − pj)

2.

Embeddable matrices in R3 correspond to 3D conformations.
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Embedding matrices in Rk

I Thm [Schoenberg’35,Blumenthal’53] Take border (Cayley-Menger)
matrix

B =


0 1 · · · 1
1
...
1

D

 .
Then, D embeds in Rk iff rank(B) ≤ k + 2.

I Cor. A distance matrix D expresses a 3D conformation iff
rank(B) = 5



Distance Geometry-Matrix Completion

Distance Geometry

Cyclohexane’s distance matrix

p1 p2 p3 p4 p5 p6

p1
p2
p3
p4
p5
p6



0 1 1 1 1 1 1
1 0 u c x14 c u
1 u 0 u c x25 c
1 c u 0 u c x36
1 x14 c u 0 u c
1 c x25 c u 0 u
1 u c x36 c u 0


Known: u ' 1.526 (adjacent), φ ' 110.4o ⇒ c ' 2.285 (triangle).

Rank condition (= 5) equivalent to the vanishing of all 6× 6 minors.
This yields a 3× 3 system of quadratic polynomials in the x14, x25, x36.

If all c , u same, then 2 isolated conformations, one 1-dim set.

If the c , u perturbed, then ≤ 16 solutions ∈ R [Emiris-Mourrain].
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Points from distances

I Given distance matrix D, compute coordinate matrix X .

D =



0 |v1|2 |v2|2 . . . |vn|2

|v1|2 0 |v1 − v2|2 . . . |v1 − vn|2

|v2|2 |v2 − v1|2 0 . . . |v2 − vn|2

.

.

.

.

.

.

.

.

.
. . .

.

.

.

|vn|2 |vn − v1|2 |vn − v2|2 . . . 0



I Find Gram matrix G =


v1v1 v1v2 . . . v1vn
v2v1 v2v2 . . . v2vn

.

.

.

.

.

.
. . .

.

.

.
vnv1 vnv2 . . . vnvn


I Elements of G computed using: 2vivj = |vi |2 + |vj |2 − |vi − vj |2, or

1. Subtract the first row of D from each row.
2. Subtract the first column from each column.
3. Delete the first row and column. Result: −2G .
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Points from distances

I Given G , find n × 3 matrix X s.t. G = XTX using eigenvectors
matrix V (s.t. V TV = I ), and eigenvalues diagonal matrix E .

I Then, GV = EV . Since G is symmetric and comes from a 3D
distance matrix, it has 3 non-zero real eigenvalues with real
eigenvectors.

I Construct a diagonal matrix
√
E whose entries on the diagonal are

the square roots of the entries of E.

I Then, G = V
√
E
√
EV T = XTX , where X :=

√
EV T .
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Positive (semi)definite matrices

Def. An n × n real matrix M is positive (semi)definite if

xTMx > 0 (xTMx ≥ 0) ∀ x 6= 0.

Denoted M � 0, M � 0.

Examples:
[

1 1
−1 1

]  3 −1 −2
−2 2 0
1 0 1


Lem. [Sylvester].
M � 0⇔ detMi > 0, ∀ i × i upper-left minor Mi , i = 1, . . . , n.

Cor. M � 0⇒ detM > 0.

If M � 0 (M � 0), then all its eigenvalues are positive (non-negative).
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Embeding via rank

Thm. {pi} embed in R3 (and not R2) iff D � 0 & rkD = 3.

[⇒]
∀y ∈ Rn, yTPPT y = (yTP)(yTP)T ≥ 0: positive semidefinite.
rk(AB) = min{rkA,rkB} ⇒ rkD =rkP.
embed ⇒ ∃pa, pb, pc linearly independent ⇒ rkP = 3.

[⇐]
Singular Value Decomposition (SVD): symmetric real D = USUT ,
where UTU = UUT = I , S =diag[s1, . . . , sn], si = |eigenvalue|2 ≥ 0.

rkD = 3⇒ S = [s1, s2, s3, 0, · · · ],
√
S = [

√
si ], D = U

√
S ·
√
SUT .

P := U
√
S is n × 3: defines n points pi ∈ R3.
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Bound smoothing

I For any three points i , j , k in R3 the triangle inequality holds:

|dik − djk | ≤ dij ≤ dik + djk .

I Meausered distances:

lij ≤ dij ≤ uij

lik ≤ dik ≤ uik

ljk ≤ djk ≤ ujk

I Improved upper bound: ūij = min{uij , uik + ujk}

I Improved lower bound: l̄ij = max{lij , lik − ujk , ljk − uik}
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I The tightened upper bounds can be computed independently of the
lower.

I The tightened upper bounds further improve the tightened lower
bounds: ūik ≤ uik , ūjk ≤ ujk , l̄ij = max{lij , lik − ujk , ljk − uik}, so
l̄ij = max{lij , lik − ūjk , ljk − ūik}

I If l̄ij > ūij (e.g. when an upper bound is too low) we have a triangle
inequality violation.
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Matrix completion problems

I Problem: Given a partial matrix M, can M be completed to a
positive semidefinite matrix (PSD), positive definite matrix (PD),
Euclidean distance matrix (EDM)?

I EDM is reduced to PSD:
If D = (dij), dii = 0, is a symmetric n × n matrix, define
(n − 1)× (n − 1) symmetric matrix X = (xij), where

xij :=
1

2
(din + djn − dij), ∀i , j = 1, . . . , n − 1.

D is a distance matrix iff X is positive semidefinite.
Moreover vi ∈ Rk iff rank(X ) ≤ k .
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I It is not known if PSD is in NP.

I PSD can be solved with an arbitrary precision in polynomial time
(interior point, elipsoid method).

I We will examine polynomial instances of PSD.

I If a matrix contains a fully determined line or column then its

completion problem reduces to the completion of a smaller matrix.
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I Assumptions: M = Hermitian (M∗ = M),
all diagonal entries of M are specified (for positive semidefinite
matrices), moreover they are equal to zero (for distance matrices).

I If mij is specified, then mji = m∗
ij is also specified.

I For every n × n matrix M we define the graph (pattern of M)

G = ([1, n],E ) with vertices [1, . . . , n]. There is an edge ij between

vertices i , j if entry mij is specified.
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Partial PSD matrices

I Def. A matrix M is partial positive semidefinite (partial-PSD) if
every principal specified submatrix of M is positive semidefinite.

I Lem. If the incomplete matrix M has a PSD (PD, distance matrix)
completion, then M is partial-PSD (partial-PD, partial-distance
matrix).

I Hence we have necessary (but not sufficient) conditions for the
existance of a completion of M.
Counter-example: Partial-PSD but 6 ∃ PSD-completion:

1 1 ? 0
1 1 ?

1 1
1


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Chordal graphs

I A chord of a circuit C of a graph G is an edge of G which is not in
C but which joins two vertices of C . A graph is chordal if every
circuit of length ≥ 4 has at least one chord.

I Th. Every partial positive semidefinite matrix M with pattern G has
a positive semidefinite completion iff G is chordal.

I Constructive proof; can be turned into a polynomial time algorithm.

I Th. PSD can be solved in polynomial time if the matrix has a

chordal pattern. (bit model).
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