
Compilers

Instruction selection

Y i S d ki U AthYannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Back endBack end
Essential tasks:

Register allocation
Low-level IR assumes unlimited registersg
Map to actual resources of machines
Goal: maximize use of registers

Instruction selection
Map low-level IR to actual machine instructions
N t il 1 1 iNot necessarily 1-1 mapping
CISC architectures, addressing modes

2

Instruction SelectionInstruction Selection
Low-level IR different from machine ISA

Why?
Allow different back ends
Ab t ti t k ti i ti iAbstraction – to make optimization easier

Differences between IR and ISA
IR: simple, uniform set of operations
ISA: many specialized instructions

Often a single instruction does work of several
operations in the IR

3

operations in the IR

Instruction SelectionInstruction Selection
Easy solutiony

Map each IR operation to a single instruction
May need to include memory operationsy y p

+

mov y, r1
mov z, r2

x = y + z;
,

add r2, r1
mov r1, x

Problem: inefficient use of ISA

4

Instruction SelectionInstruction Selection
Instruction sets

ISA ft h t d th thiISA often has many ways to do the same thing
Idiom:

A single instruction that represents a common pattern orA single instruction that represents a common pattern or
sequence of operations

Consider a machine with the following instructions:
add r2, r1 r1 ← r1 + r2
muli c, r1 r1 ← r1 * c

Sometimes
(r2)

load r2, r1 r1 ← *r2
store r2, r1 *r1 ← r2
movem r2, r1 *r1 ← *r2

5

movex r3, r2, r1 *r1 ← *(r2 + r3)

ExampleExample
Generate code for:

a[i+1] = b[j] LIR

Simplifying assumptions
All variables are globals

t1 = j*4
t2 = b+t1
t3 = *t2All variables are globals

(No stack offset computation)
All variables are in registers

t3 = *t2
t4 = i+1
t5 = t4*4All variables are in registers

(Ignore load/store of variables)
t6 = a+t5
*t6 = t3

6

Possible TranslationPossible Translation

IR Assembly

Address of b[j]:

Load value b[j]:

t1 = j*4
t2 = b+t1
t3 = *t2

muli 4, rj
add rj, rb
load rb, r1[j]

Address of a[i+1]: t4 = i+1
t5 = t4*4
t6 = a+t5

,
addi 1, ri
muli 4, ri
add ri ra

Store into a[i+1]:
t6 = a+t5
*t6 = t3

add ri, ra
store r1, ra

7

Another TranslationAnother Translation

IR A bl

Address of b[j]:

IR

t1 = j*4

Assembly

muli 4, rj

(no load)
Address of a[i+1]:

t2 = b+t1
t3 = *t2
t4 = i+1

add rj, rb

addi 1, riAddress of a[i+1]:

Store into a[i+1]:

t4 i+1
t5 = t4*4
t6 = a+t5
*t6 t3

addi 1, ri
muli 4, ri
add ri, ra

bStore into a[i+1]: *t6 = t3 movem rb, ra

Direct memory-to-

8

Direct memory to
memory operation

Yet Another TranslationYet Another Translation

IR A bl

Index of b[j]:

IR

t1 = j*4

Assembly

muli 4, rj

(no load)
Address of a[i+1]:

t2 = b+t1
t3 = *t2
t4 = i+1 addi 1, riAddress of a[i+1]:

Store into a[i+1]:

t4 i+1
t5 = t4*4
t6 = a+t5
*t6 t3

addi 1, ri
muli 4, ri
add ri, ra

j bStore into a[i+1]: *t6 = t3 movex rj,rb,ra

Compute the address of b[j] in
the memory move operation

9

the memory move operation

movex rj, rb, ra *ra ← *(rj + rb)

Different translationsDifferent translations
Why is last translation preferable?y

Fewer instructions
Instructions have different costs

S t i f h i t tiSpace cost: size of each instruction
Time cost: number of cycles to complete

E lExample add r2, r1 cost = 1 cycle
muli c, r1 cost = 10 cycles
load r2, r1 cost = 3 cyclesIdi load r2, r1 cost 3 cycles
store r2, r1 cost = 3 cycles
movem r2, r1 cost = 4 cycles

3 2 1 cost = 5 cycles

Idioms are
cheaper than

constituent parts

10

movex r3, r2, r1 cost = 5 cycles

Wacky x86 idiomsWacky x86 idioms
What does this do?

xor %eax, %eax

Why not use this?

$0 %

Answer:

mov $0, %eax

Answer:
Immediate operands are encoded in the
instruction, making it bigger and therefore more

tl t f t h d t
11

costly to fetch and execute

More wacky x86 idiomsMore wacky x86 idioms
What does this do?

xor %ebx, %eax eax = b ⊕ a
xor %eax, %ebx
xor %ebx, %eax eax = a ⊕ (b ⊕ a) = ?

ebx = (b ⊕ a) ⊕ b = ?

Swap the values of %eax and %ebx
Why do it this way?
No need for extra register!

12

Minimizing costMinimizing cost
Goal:

Find instructions with low overall cost

Difficulty
IR

Difficulty
How to find these patterns?
Machine idioms may subsume IR

t1 = j*4
t2 = b+t1
t3 = *t2ac e d o s ay subsu e

operations that are not adjacent

Idea: back to tree representation

t3 = *t2
t4 = i+1
t5 = t4*4

Idea: back to tree representation
Convert computation into a tree
Match parts of the tree

t6 = a+t5
*t6 = t3

15

p
movem rb, ra

Tree RepresentationTree Representation
Build a tree: a[i+1] = b[j]

IR

+

store

load

IR

t1 = j*4
t2 = b+t1+

a ×

load

+

t2 = b+t1
t3 = *t2
t4 = i+1

+

1i

4 b ×

j 4

t5 = t4*4
t6 = a+t5
*t6 = t3

Goal: find parts of the tree that correspond to
machine instructions

j t6 t3

16

machine instructions

TilesTiles
Idea: a tile is contiguous piece of the

IRtree that correponds to a machine
instruction

IR

t1 = j*4

+

store

load

t2 = b+t1
t3 = *t2
t4 = i+1

movem rb, ra

+

a ×

load

+

t4 i+1
t5 = t4*4
t6 = a+t5
*t6 t3+

1i

4 b ×

j 4

*t6 = t3

17

TilingTiling
Tiling: cover the tree with tilesg

store
Assembly

+ load
muli 4, rj
add rj, rb
addi 1 ria ×

+ 4

+

b ×

addi 1, ri
muli 4, ri
add ri, ra

1i j 4
movem rb, ra

18

Generating codeGenerating code
Given a tiling of a treeg

A tiling implements a tree if:
It covers all nodes in the tree
The overlap between tiles is exactly one nodeThe overlap between tiles is exactly one node

Post-order tree walkPost order tree walk
Emit machine instructions for each tile
Tie boundaries together with registers

+

Note: order of children matters b ×

j 4

19

TilingTiling
What’s hard about this?

Define system of tiles in the compiler
Finding a tiling that implements the treeg g p

(Covers all nodes in the tree)
Finding a “good” tiling Interesting result (Dias and

Different approaches
Ramsey): in general,

undecidable

Ad-hoc pattern matching
Automated tools + mov t1, t3

add t2, t3

20

t1 t2
,

TilingTiling
load rb, r1

movex rj rb ra

storestore

store r1, ra
movex rj, rb, ra

+

sto e

load+

sto e

load

a ×

+ 4

+

b ×

a ×

+ 4

+

b ×

1i j 41i j 4

21

AlgorithmsAlgorithms
Goal: find a tiling with the fewest tilesg

Ad-hoc top-down algorithm
Start at top of the treeStart at top of the tree
Find largest tile matches top node
Tile remaining subtrees recursively

Tile(n) {
if ((op(n) == PLUS) &&

(left(n).isConst()))
{{
Code c = Tile(right(n));
c.append(ADDI left(n) right(n))

}

22

}
}

Ad-hoc algorithmAd-hoc algorithm
Problem: what does tile size mean?

Not necessarily the best fastest code
(Example: multiply vs add)

How to include cost?

Idea:
Total cost of a tiling is sum of costs of each tile

Goal: find a minimum cost tiling

23

g

Dynamic programmingDynamic programming
Including cost:g

Idea
For problems with optimal substructure
Compute optimal solutions to sub-problems
Combine into an optimal overall solution

How does this help?How does this help?
Use memoization:

Save previously computed solutions to sub-problemsp y p p
Sub-problems recur many times
Can work top-down or bottom-up

25

Recursive algorithmRecursive algorithm
Memoization

For each subtree, record best tiling in a table
(Note: need a quick way to find out if we’ve seen a subtree
before – some systems use DAGs instead of trees)y)

At each node
First check table for optimal tiling for this nodeFirst check table for optimal tiling for this node
If none, try all possible tiles, remember lowest cost
Record lowest cost tile in table
Greedy, top-down algorithm

We can emit code from table

26

PseudocodePseudocode

Tile(n) {Tile(n) {
if (best(n)) return best(n)
// -- Check all tiles
if ((op(n) == STORE) &&store

(op(right(n)) == LOAD) &&
(op(child(right(n)) == PLUS)) {
Code c = Tile(left(n))
c.add(Tile(left(child(right(n)))

+ load

c.add(Tile(left(child(right(n)))
c.add(Tile(right(child(right(n)))
c.append(MOVEX . . .)
if (cost(c) < cost(best(n))
b t()

a ×

+ 4

+

b ×
best(n) = c

}
// . . . and all other tiles . . .
return best(n)

1i j 4

27

()
}

Ad-hoc algorithmAd-hoc algorithm
Problem?

Hard-codes the tiles in the code generator

Alternative:
Define tiles in a separate specificationDefine tiles in a separate specification
Use a generic tree pattern matching algorithm to
compute tilingp g
Tools: code generator generators
Probably overkill for RISC

28

y

Code generator generatorsCode generator generators
Tree description languagep g g

Represent IR tree as text

Specification
IR tree patterns
C d i iCode generation actions

GeneratorGenerator
Takes the specification
Produces a code generator

29

Produces a code generator

Tree notationTree notation
Use prefix notation to avoid confusionp

store(+(a,×(+(i,1),4)),load(+(b, ×(j, 4))))

store

+

a ×

load

+ +(b, ×(j, 4))

load(+(b, ×(j, 4)))

×(+(i,1),4)

+(a,×(+(i,1),4))

+

1i

4 b ×

j 4

×(j, 4)+(i,1)

30

1i j 4

Rewrite rulesRewrite rules
Rule

Pattern to match and replacement
Cost
C d ti t l tCode generation template
May include actions – e.g., generate register name

Pattern, replacement Cost Template

+(reg1,reg2) → reg2 1 add r1, r2

store(reg1, load(reg2)) → done 5 movem r2, r1

31

Rewrite rulesRewrite rules
Example rules:

Pattern, replacement Cost Template

1 +(reg1,reg2) → reg2 1 add r1, r21 2 2

2 ×(reg1,reg2) → reg2 10 mul r1, r2

3 +(num,reg1) → reg2 1 addi num, r1

4 ×(num,reg1) → reg2 10 muli num, r1

5 store(reg1, load(reg2)) → done 5 movem r2, r1

32

ExampleExample

store
Assembly

+ load
muli 4, rj
add rj, rb
addi 1 ria ×

+ 4

+

b ×

addi 1, ri
muli 4, ri
add ri, ra

1i j 4
movem rb, ra

33

Rewriting processRewriting process

store(+(ra,×(+(ri,1),4)),load(+(rb, ×(rj, 4))))
4

muli 4, rj
1

store(+(ra,×(+(ri,1),4)),load(+(rb, rj)))
1

add rj, rbstore(+(ra,×(+(ri,1),4)),load(rb))
3

addi 1, ristore(+(ra,×(ri,4)),load(rb))
44

muli 4, ristore(+(ra,ri),load(rb))
1

add ri, rastore(ra,load(rb))
5

movem rb, radone

34

ImplementationImplementation
What does this remind you of?y

Similar to parsingp g
Implement as an automaton
Use cost to choose from competing productionsp g p

Provides linear time optimal code generationp g
BURS (bottom-up rewrite system)
burg, Twig, BEG

35

SummarySummary

Ad-hoc pattern
matchers

Probably reasonable
for RISC machines

Encode matching as
automaton

Fast, optimal code
generation – requiresautomaton generation requires
separate tool

Use parsers Can lead to highlyUse parsers Can lead to highly
ambiguous grammars

37

Modern processorsModern processors
Execution time not sum of tile times

Instruction order matters
Pi li i t f diff t i t ti lPipelining: parts of different instructions overlap
Bad ordering stalls the pipeline – e.g., too many operations
of one type
Superscalar: some operations executed in parallel

Cost is an approximationCost is an approximation

Instruction scheduling helps

38

g p

