
Compilers

Parsing

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

22

Next step

 Parsing: Organize tokens into “sentences”
 Do tokens conform to language syntax ?
 Good news: token types are just numbers
 Bad news: language syntax is fundamentally more complex than

lexical specification
 Good news: we can still do it in linear time in most cases

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

33

Parsing

 Parser
 Reads tokens from the scanner
 Checks organization of tokens against a grammar
 Constructs a derivation
 Derivation drives construction of IR

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

44

Study of parsing
 Discovering the derivation of a sentence

 “Diagramming a sentence” in grade school
 Formalization:

 Mathematical model of syntax – a grammar G
 Algorithm for testing membership in L(G)

 Roadmap:
 Context-free grammars
 Top-down parsers

Ad hoc, often hand-coded, recursive decent parsers
 Bottom-up parsers

Automatically generated LR parsers

55

Specifying syntax with a grammar

 Can we use regular expressions?
 For the most part, no

 Limitations of regular expressions
 Need something more powerful
 Still want formal specification (for automation)

 Context-free grammar
 Set of rules for generating sentences
 Expressed in Backus-Naur Form (BNF)

66

Context-free grammar
 Example:

 Formally: context-free grammar is
 G = (s, N, T, P)
 T : set of terminals (provided by scanner)
 N : set of non-terminals (represent structure)
 s N : start or goal symbol
 P : set of production rules of the form N → (N T)*

Production rule

1
2

 sheepnoise → sheepnoise baa
 | baa

“produces” or
“generates”

Alternative
(shorthand)

77

Language L(G)
 Language L(G)

 L(G) is all sentences generated from start symbol

 Generating sentences
 Use productions as rewrite rules
 Start with goal (or start) symbol – a non-terminal
 Choose a non-terminal and “expand” it to the right-hand

side of one of its productions
 Only terminal symbols left sentence in L(G)
 Intermediate results known as sentential forms

88

Expressions
 Language of expressions

 Numbers and identifiers
 Allow different binary operators
 Arbitrary nesting of expressions

Production rule

1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

99

Language of expressions
 What’s in this language?

 We can build the string “x - 2 * y”
 This string is in the language

Production rule

1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

Rule Sentential form

- expr

1

3
5
1
2
6
3

expr op expr

<id,x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

1010

Derivations
 Using grammars

 A sequence of rewrites is called a derivation
 Discovering a derivation for a string is parsing

 Different derivations are possible
 At each step we can choose any non-terminal
 Rightmost derivation: always choose right NT
 Leftmost derivation: always choose left NT

(Other “random” derivations – not of interest)

1111

Left vs right derivations
 Two derivations of “x – 2 * y”

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Rule Sentential form

-
1
3
6
1
2
5
3

expr
expr op expr
expr op <id,y>
expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Left-most derivation Right-most derivation

1212

Derivations and parse trees

 Two different derivations
 Both are correct
 Do we care which one we use?

 Represent derivation as a parse tree
 Leaves are terminal symbols
 Inner nodes are non-terminals
 To depict production a → b g d

 show nodes b,g,d as children of a

 Tree is used to build internal representation

1313

Example (I)

 Concrete syntax tree
 Shows all details of syntactic structure

 What’s the problem with this tree?

expr

expropexpr

expr op expr y*

x - 2

Parse tree

Rule Sentential form

-
1
3
6
1
2
5
3

expr
expr op expr
expr op <id,y>
expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Right-most derivation

1414

Abstract syntax tree
 Parse tree contains extra junk

 Eliminate intermediate nodes
 Move operators up to parent nodes
 Result: abstract syntax tree

expr

expropexpr

expr op expr y*

x - 2

y

*

x

-

2

 Problem: Evaluates as (x – 2) * y

1515

Example (II)

 Solution: evaluates as x – (2 * y)

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Left-most derivation

expr

expr op expr

expr op exprx -

2 * y

Parse tree

1616

Derivations

y

*

x

-

2

Left-most derivation Right-most derivation

y

*x

-

2

1717

Derivations and semantics
 Problem:

 Two different valid derivations
 One captures “meaning” we want

(What specifically are we trying to capture here?)
 Key idea: shape of tree implies its meaning

 Can we express precedence in grammar?
 Notice: operations deeper in tree evaluated first
 Solution: add an intermediate production

 New production isolates different levels of precedence
 Force higher precedence “deeper” in the grammar

1818

Adding precedence
 Two levels:

 Observations:
 Larger: requires more rewriting to reach terminals
 But, produces same parse tree under both left and right

derivations

Production rule

1
2
3
4
5
6
7
8

 expr → expr + term
 | expr - term
 | term
term → term * factor
 | term / factor
 | factor
factor → number
 | identifier

Level 1: lower precedence –
higher in the tree

Level 2: higher precedence –
deeper in the tree

1919

Expression example

 Now right derivation yields x – (2 * y)

Rule Sentential form

-
2
4
8
6
7
3
6
8

expr
expr - term
expr - term * factor
expr - term * <id,y>
expr - factor * <id,y>
expr - <num,2> * <id,y>
term - <num,2> * <id,y>
factor - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Right-most derivation Parse tree

expr

expr op

op

x

-

2

* y

term

fact

term

term fact

fact

2020

With precedence

expr

expropexpr

expr op expr y*

x - 2

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact y

*

x

-

2

2828

Another issue
 Original expression grammar:

 Our favorite string:x – 2 * y

Production rule

1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

2929

Another issue

 Multiple leftmost derivations
 Such a grammar is called ambiguous
 Is this a problem?

 Very hard to automate parsing

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Rule Sentential form

-
1
1
3
5
2
6
3

expr
expr op expr
expr op expr op expr
<id, x> op expr op expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

3030

Ambiguous grammars
 A grammar is ambiguous iff:

 There are multiple leftmost or multiple rightmost derivations
for a single sentential form

 Note: leftmost and rightmost derivations may differ, even in
an unambiguous grammar

 Intuitively:
 We can choose different non-terminals to expand
 But each non-terminal should lead to a unique set of

terminal symbols

 What’s a classic example?
 If-then-else ambiguity

3131

If-then-else
 Grammar:

 Problem: nested if-then-else statements
 Each one may or may not have else
 How to match each else with if

Production rule

1
2
3

 stmt → if expr then stmt

 | if expr then stmt else stmt

 | …other statements…

3232

If-then-else ambiguity
 Sentential form with two derivations:

 if expr1 then if expr2 then stmt1 else stmt2

if

expr1 then else

if

expr2 then

stmt2

stmt1

if

expr1 then

else

if

expr2 then

stmt2stmt1

if

expr1 then

else

if

expr2 then

stmt2stmt1

prod. 2

prod. 1

prod. 1

prod. 2

3333

Removing ambiguity
 Restrict the grammar

 Choose a rule: “else” matches innermost “if”
 Codify with new productions

 Intuition: when we have an “else”, all preceding nested
conditions must have an “else”

Production rule

1
2
3
4
5

 stmt → if expr then stmt

 | if expr then withelse else stmt

 | …other statements…
withelse → if expr then withelse else withelse

 | …other statements…

3434

Ambiguity
 Ambiguity can take different forms

 Grammatical ambiguity (if-then-else problem)
 Contextual ambiguity

 In C: x * y; could follow typedef int x;
 In Fortran: x = f(y); f could be function or array

 Cannot be solved directly in grammar
 Issues of type (later in course)

 Deeper question:

 How much can the parser do?

3535

Parsing
 What is parsing?

 Discovering the derivation of a string
If one exists

 Harder than generating strings
Not surprisingly

 Two major approaches
 Top-down parsing
 Bottom-up parsing

 Don’t work on all context-free grammars
 Properties of grammar determine parse-ability
 Our goal: make parsing efficient
 We may be able to transform a grammar

3636

Two approaches
 Top-down parsers LL(1), recursive descent

 Start at the root of the parse tree and grow toward leaves
 Pick a production and try to match the input
 What happens if the parser chooses the wrong one?

 Bottom-up parsers LR(1), operator precedence
 Start at the leaves and grow toward root
 Issue: might have multiple possible ways to do this
 Key idea: encode possible parse trees in an internal state

 (similar to our NFA DFA conversion)
 Bottom-up parsers handle a large class of grammars

3737

Grammars and parsers

 LL(1) parsers
 Left-to-right input
 Leftmost derivation
 1 symbol of look-ahead

 LR(1) parsers
 Left-to-right input
 Rightmost derivation
 1 symbol of look-ahead

 Also: LL(k), LR(k), SLR, LALR, …

Grammars that they
can handle are called
LL(1) grammars

Grammars that they
can handle are called
LR(1) grammars

3838

Top-down parsing
 Start with the root of the parse tree

 Root of the tree: node labeled with the start symbol

 Algorithm:
Repeat until the fringe of the parse tree matches input string
 At a node A, select one of A’s productions

 Add a child node for each symbol on rhs
 Find the next node to be expanded (a non-terminal)

 Done when:
 Leaves of parse tree match input string (success)

3939

Example
 Expression grammar (with precedence)

 Input string x – 2 * y

Production rule

1
2
3
4
5
6
7
8

 expr → expr + term
 | expr - term
 | term
term → term * factor
 | term / factor
 | factor
factor → number
 | identifier

4040

Example

 Problem:
 Can’t match next terminal
 We guessed wrong at step 2
 What should we do now?

Rule Sentential form Input string

- expr
expr

expr

x

+

term

fact

term
1 expr + term x - 2 * y
3 term + term x – 2 * y
6 factor + term x – 2 * y
8 <id> + term x – 2 * y
 - <id,x> + term x – 2 * y

 x - 2 * y

Current position in
the input stream

4141

Backtracking

 If we can’t match next terminal:
 Rollback productions
 Choose a different production for expr
 Continue

Rule Sentential form Input string

- expr

1 expr + term x - 2 * y
3 term + term x – 2 * y
6 factor + term x – 2 * y
8 <id> + term x – 2 * y
? <id,x> + term x – 2 * y

 x - 2 * y

Undo all these
productions

4242

Retrying

 Problem:
 More input to read
 Another cause of backtracking

Rule Sentential form Input string

- expr

expr

expr

x

-

term

fact

term
2 expr - term x - 2 * y
3 term - term x – 2 * y
6 factor - term x – 2 * y
8 <id> - term x – 2 * y
 - <id,x> - term x – 2 * y

 x - 2 * y

 3 <id,x> - factor x – 2 * y
 7 <id,x> - <num> x – 2 * y

fact

2

4343

Successful parse
Rule Sentential form Input string

- expr
expr

expr

x

-

term

fact

term

2 expr - term x - 2 * y
3 term - term x – 2 * y
6 factor - term x – 2 * y
8 <id> - term x – 2 * y
 - <id,x> - term x – 2 * y

 x - 2 * y

 4 <id,x> - term * fact x – 2 * y
 6 <id,x> - fact * fact x – 2 * y

2

 7 <id,x> - <num> * fact x – 2 * y
fact

 - <id,x> - <num,2> * fact x – 2 * y
 8 <id,x> - <num,2> * <id> x – 2 * y

term * fact

y

4444

Other possible parses

 Problem: termination
 Wrong choice leads to infinite expansion

 (More importantly: without consuming any input!)
 May not be as obvious as this
 Our grammar is left recursive

Rule Sentential form Input string

- expr

2 expr - term x - 2 * y
2 expr - term - term x – 2 * y
2 expr - term - term - term x – 2 * y
2 expr - term - term - term - term x – 2 * y

 x - 2 * y

4545

Left recursion
 Formally,

 A grammar is left recursive if a non-terminal A such that
 A →* A a (for some set of symbols a)

 Bad news:
Top-down parsers cannot handle left recursion

 Good news:
We can systematically eliminate left recursion

What does →* mean?

A → B x
B → A y

4646

Notation
 Non-terminals

 Capital letter: A, B, C

 Terminals
 Lowercase, underline: x, y, z

 Some mix of terminals and non-terminals
 Greek letters: a, b, g
 Example:

Production rule

1
1

 A → B + x
 A → B a

a = + x

4747

Eliminating left recursion
 Fix this grammar:

 Rewrite as

Production rule

1
2

 foo → foo a
 | b

Production rule

1
2
3

 foo → b bar
 bar → a bar
 | e

New non-terminal

Language is b followed by
zero or more a

This production gives you
one b

These two productions
give you zero or more a

4848

Back to expressions
 Two cases of left recursion:

 How do we fix these?

Production rule

1
2
3

 expr → expr + term
 | expr - term
 | term

Production rule

4
5
6

term → term * factor
 | term / factor
 | factor

Production rule

1
2
3
4

expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e

Production rule

4
5
6

term → factor term2
term2 → * factor term2
 | / factor term2
 | e

4949

Eliminating left recursion
 Resulting grammar

 All right recursive
 Retain original language and

associativity
 Not as intuitive to read

 Top-down parser
 Will always terminate
 May still backtrack

Production rule

1
2
3
4
5
6
7
8
9

10

expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

There’s a lovely algorithm to do this
automatically, which we will skip

5050

Top-down parsers
 Problem: Left-recursion
 Solution: Technique to remove it

 What about backtracking?
 Current algorithm is brute force

 Problem: how to choose the right production?
 Idea: use the next input token (duh)
 How? Look at our right-recursive grammar…

5151

Right-recursive grammar

 We can choose the right
production by looking at the next
input symbol
 This is called lookahead
 BUT, this can be tricky…

Production rule

1
2
3
4
5
6
7
8
9

10

expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

Two productions
with no choice at all

All other productions are
uniquely identified by a
terminal symbol at the
start of RHS

5252

Lookahead
 Goal: avoid backtracking

 Look at future input symbols
 Use extra context to make right choice

 How much lookahead is needed?
 In general, an arbitrary amount is needed for the full class

of context-free grammars
 Use fancy-dancy algorithm CYK algorithm, O(n3)

 Fortunately,
 Many CFGs can be parsed with limited lookahead
 Covers most programming languages not C++ or Perl

5353

Top-down parsing
 Goal:

 Given productions A → a | b , the parser should be able to
choose between a and b

 Trying to match A
 How can the next input token help us decide?

 Solution: FIRST sets (almost a solution)
 Informally:

 FIRST(a) is the set of tokens that could appear as the first
symbol in a string derived from a

 Def: x in FIRST(a) iff a →* x g

5454

Top-down parsing
 Building FIRST sets

We’ll look at this algorithm later

 The LL(1) property
 Given A → a and A → b, we would like:

 FIRST(a) FIRST(b) =
 we will also write FIRST(A → a), defined as FIRST(a)

 Parser can make right choice by with one lookahead token
 ..almost..
 What are we not handling?

5555

Top-down parsing
 What about e productions?

 Complicates the definition of LL(1)
 Consider A → a and A → b and a may be empty
 In this case there is no symbol to identify a

 Example:
 What is FIRST(#4)?
 = { }
 What would tells us we are matching production 4?

Production rule

1
2
3
4

S → A z
A → x B
 | y C
 |

5656

Top-down parsing

 If A was empty
 What will the next symbol be?
 Must be one of the symbols that immediately follows an A

 Solution
 Build a FOLLOW set for each symbol that could produce e
 Extra condition for LL:

 FIRST(A→b) must be disjoint from FIRST(A→a) and FOLLOW(A)

Production rule

1
2
3
4

S → A z
A → x B
 | y C
 |

5757

FOLLOW sets
 Example:

 FIRST(#2) = { x }
 FIRST(#3) = { y }
 FIRST(#4) = { }

 What can follow A?
 Look at the context of all uses of A
 FOLLOW(A) = { z }
 Now we can uniquely identify each production:

If we are trying to match an A and the next token is z, then we
matched production 4

Production rule

1
2
3
4

S → A z
A → x B
 | y C
 |

5858

FIRST and FOLLOW

more carefully
 Notice:

 FIRST and FOLLOW are sets
 FIRST may contain in addition to other symbols

 Question:
 What is FIRST(#2)?
 = FIRST(B) = { x, y, }?
 and FIRST(C)

 Question:
 When would we care

about FOLLOW(A)?
 Answer: if FIRST(C) contains

Production rule

1
2
3
4
5
6
7

S → A z
A → B C
 | D
B → x
 | y
 |
C → . . .

5959

LL(1) property
 Key idea:

 Build parse tree top-down
 Use look-ahead token to pick next production
 Each production must be uniquely identified by the terminal

symbols that may appear at the start of strings derived from
it.

 Def: FIRST+(A → a) as
 FIRST(a) U FOLLOW(A), if e FIRST(a)
 FIRST(a), otherwise

 Def: a grammar is LL(1) iff
 A → a and A → b and

 FIRST+(A → a) FIRST+(A → b) =

6060

Parsing LL(1) grammar
 Given an LL(1) grammar

 Code: simple, fast routine to recognize each production
 Given A 1 | 2 | 3, with

 FIRST+(i) FIRST+ (j) = for all i != j

/* find rule for A */
if (current token FIRST+(1))
 select A 1

else if (current token FIRST+(2))
 select A 2

else if (current token FIRST+(3))
 select A 3
else
 report an error and return false

6161

Top-down parsing
 Build parse tree top down

t1 t2 t3 t4 t5 t6 t7 t8 t9
… token stream

Production rule

1
2
3
4
5

G → A a B z
A → b g d

B → C D
 | F
 | e

A a B z

G

b g d

A B

?

t5 FOLLOW(B)

t5 FIRST(C D)

t5 FIRST(F)

e

Consider all possible
strings derivable from “CD”
What is the set of tokens
that can appear at start?

Is “CD”?
disjoint?

C D

6262

FIRST and FOLLOW sets

FIRST(a)
 For some a (T NT)*, define FIRST(a) as the set of

tokens that appear as the first symbol in some string that
derives from a

That is, x FIRST(a) iff a * x , for some
 and FIRST(a) iff a *

FOLLOW(A)
 For some A NT, define FOLLOW(A) as the set of symbols

that can occur immediately after A in a valid sentence.
FOLLOW(G) = {EOF}, where G is the start symbol

The right-hand side of
a production

6363

Computing FIRST sets
 Idea:

 Use FIRST sets of the right side of production

 Cases:
 FIRST(A→B) = FIRST(B1)

 What does FIRST(B1) mean?
 Union of FIRST(B1→g) for all g

 What if e in FIRST(B1)?

 FIRST(A→B) = FIRST(B2) repeat as needed
 What if in FIRST(Bi) for all i?
 FIRST(A→B) = {e} leave {} for later

A → B1 B2 B3 …

Why = ?

6464

Algorithm
 For one production: p = A → b

if (b is a terminal t)
FIRST(p) = {t}

else if (b ==)
FIRST(p) = {}

else
Given b = B1 B2 B3 … Bk

InAll = true
for (i 1 to k)

FIRST(p) += FIRST(Bi) - {}
if (not in FIRST(Bi))

InAll = false
break

if (InAll) FIRST(p) += {}

Why do we need
to remove from

FIRST(Bi)?

6565

Algorithm
 For one production:

 Given A → B1 B2 B3 B4 B5
 Compute FIRST(A→B) using FIRST(B)
 How do we get FIRST(B)?

 What kind of algorithm does this suggest?
 Recursive?
 Like a depth-first search of the productions

 Problem:
 What about recursion in the grammar?
 A → x B y and B → z A w

6666

Algorithm
 Solution

 Start with FIRST(B) empty
 Compute FIRST(A) using empty FIRST(B)
 Now go back and compute FIRST(B)

 What if it’s no longer empty?
 Then we recompute FIRST(A)
 What if new FIRST(A) is different from old FIRST(A)?
 Then we recompute FIRST(B) again…

 When do we stop?
 When no more changes occur – we reach convergence
 FIRST(A) and FIRST(B) both satisfy equations

 This is another fixpoint algorithm

6767

Algorithm
 Using fixpoints:

 Can we be smarter?
 Yes, visit in special order
 Reverse post-order depth first search

 Visit all children (all right-hand sides) before visiting the left-
hand side, whenever possible

forall p FIRST(p) = {}

while (FIRST sets are changing)
pick a random p
compute FIRST(p)

6868

Example
Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

FIRST(3) = { + }
FIRST(4) = { - }
FIRST(5) = { e }

FIRST(7) = { * }
FIRST(8) = { / }
FIRST(9) = { e }

FIRST(1) = ?

FIRST(1) = FIRST(2)
 = FIRST(6)
 = FIRST(10) FIRST(11)
 = { number, identifier }

6969

Computing FOLLOW sets
 Idea:

 Push FOLLOW sets down, use FIRST where needed

 Cases:
 What is FOLLOW(B1)?

 FOLLOW(B1) = FIRST(B2)

 In general: FOLLOW(Bi) = FIRST(Bi+1)

 What about FOLLOW(Bk)?
 FOLLOW(Bk) = FOLLOW(A)

 What if e FIRST(Bk)?

 FOLLOW(Bk-1) = FOLLOW(A) extends to k-2, etc.

A → B1 B2 B3 B4 … Bk

7070

Example

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

FOLLOW(goal) = { EOF }

FOLLOW(expr) = FOLLOW(goal) = { EOF }

FOLLOW(expr2) = FOLLOW(expr) = { EOF }

FOLLOW(term) = ?

FOLLOW(term) += FIRST(expr2)

 += { +, -, e }

 += { +, -, FOLLOW(expr)}

 += { +, -, EOF }

7171

Example

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

FOLLOW(term2) += FOLLOW(term)

FOLLOW(factor) = ?

FOLLOW(factor) += FIRST(term2)

 += { *, / , }

 += { *, / , FOLLOW(term)}

 += { *, / , +, -, EOF }

7272

Computing FOLLOW Sets

FOLLOW(G) {EOF }
for each A NT, FOLLOW(A) Ø

while (FOLLOW sets are still changing)
 for each p P, of the form A … B1B2…Bk

 FOLLOW(Bk) FOLLOW(Bk) FOLLOW(A)

 TRAILER FOLLOW(A)
 for i k down to 2
 if FIRST(Bi) then

 TRAILER TRAILER (FIRST(Bi) – { })

 else
 TRAILER FIRST(Bi)

 FOLLOW(Bi-1) FOLLOW(Bi-1) TRAILER

7373

LL(1) property
 Def: a grammar is LL(1) iff

 A → a and A → b and
 FIRST+(A → a) FIRST+(A → b) =

 Problem
 What if my grammar is not LL(1)?
 May be able to fix it, with transformations

 Example:

Production rule

1
2
3

A → a b1

 | a b2

 | a b3

Production rule

1
2
3
4

A → a Z
Z → b1

 | b2

 | b3

7474

Left factoring
 Graphically

Production rule

1
2
3

A → a b1

 | a b2

 | a b3

Production rule

1
2
3

A → a Z
Z → b1

 | b2

 | b3

A

a1

a3

a2

aZ

1

3

2A

7575

Expression example

After left factoring:

 In this form, it has LL(1) property

Production rule

1
2
3

factor → identifier
 | identifier [expr]

 | identifier (expr)

First+(1) = {identifier}

First+(2) = {identifier}

First+(3) = {identifier}

Production rule

1
2
3
4

factor → identifier post

post → [expr]
 | (expr)
 | e

First+(1) = {identifier}

First+(2) = { [}

First+(3) = { (}

First+(4) = ?

= Follow(post)
= {operators}

7676

Left factoring
 Graphically

factor

identifier

[

(

]

)

identifier

identifier

expr

expr

No basis for choice

factor [

(

]

)

identifier expr

expr

e

Next word determines choice

7777

Left factoring
 Question

Using left factoring and left recursion elimination, can we turn an
arbitrary CFG to a form where it meets the LL(1) condition?

 Answer
Given a CFG that does not meet LL(1) condition, it is undecidable

whether or not an LL(1) grammar exists

 Example
 {an 0 bn | n 1} {an 1 b2n | n 1} has no LL(1) grammar

aaa0bbb
aaa1bbbbbb

7878

Limits of LL(1)

 No LL(1) grammar for this language:

{an 0 bn | n 1} {an 1 b2n | n 1} has no LL(1) grammar

Production rule

1
2
3
4
5
6

G → a A b
 | a B bb
A → a A b
 | 0
B → a B bb
 | 1

Problem: need an unbounded
number of a characters before you
can determine whether you are in
the A group or the B group

7979

Predictive parsing

 Predictive parsing
 The parser can “predict” the correct expansion
 Using lookahead and FIRST and FOLLOW sets

 Two kinds of predictive parsers
 Recursive descent

 Often hand-written
 Table-driven

 Generate tables from First and Follow sets

8080

Recursive descent
 This produces a parser with six

mutually recursive routines:
 Goal
 Expr
 Expr2
 Term
 Term2
 Factor

 Each recognizes one NT or T
 The term descent refers to the

direction in which the parse tree is
built.

Production rule

1
2
3
4
5
6
7
8
9

10
11
12

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier
 | (expr)

8181

Example code
 Goal symbol:

 Top-level expression

main()
 /* Match goal --> expr */
 tok = nextToken();
 if (expr() && tok == EOF)
 then proceed to next step;
 else return false;

expr()
 /* Match expr --> term expr2 */
 if (term() && expr2());
 return true;
 else return false;

8282

Example code
 Match expr2

expr2()
 /* Match expr2 --> + term expr2 */
 /* Match expr2 --> - term expr2 */

 if (tok == ‘+’ or tok == ‘-’)
 tok = nextToken();
 if (term())
 then if (expr2())
 return true;
 else return false;

 /* Match expr2 --> empty */
 return true;

Check FIRST and
FOLLOW sets to

distinguish

8383

Example code
factor()
 /* Match factor --> (expr) */
 if (tok == ‘(‘)
 tok = nextToken();
 if (expr() && tok == ‘)’)
 return true;
 else
 syntax error: expecting)
 return false

 /* Match factor --> num */
 if (tok is a num)
 return true

 /* Match factor --> id */
 if (tok is an id)
 return true;

8484

Top-down parsing
 So far:

 Gives us a yes or no answer
 Is that all we want?
 We want to build the parse tree
 How?

 Add actions to matching routines
 Create a node for each production
 How do we assemble the tree?

8585

Building a parse tree
 Notice:

 Recursive calls match the shape of the tree

 Idea: use a stack
 Each routine:

 Pops off the children it needs
 Creates its own node
 Pushes that node back on the stack

main
 expr
 term
 factor
 expr2
 term

8686

Building a parse tree
 With stack operations

expr()
 /* Match expr --> term expr2 */
 if (term() && expr2())
 expr2_node = pop();
 term_node = pop();
 expr_node = new exprNode(term_node,
 expr2_node)
 push(expr_node);
 return true;
 else return false;

8787

Generating (automatically)
a top-down parser

 Two pieces:
 Select the right RHS
 Satisfy each part

 First piece:
 FIRST+() for each rule
 Mapping:

 NT → rule#

 Look familiar? Automata?

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

8888

Generating (automatically)
a top-down parser

 Second piece
 Keep track of progress
 Like a depth-first search
 Use a stack

 Idea:
 Push Goal on stack
 Pop stack:

 Match terminal symbol, or
 Apply NT mapping, push RHS

on stack

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

This will be clearer once we see the algorithm

8989

Table-driven approach
 Encode mapping in a table

 Row for each non-terminal
 Column for each terminal symbol

 Table[NT, symbol] = rule#

 if symbol FIRST+(NT -> rhs(#))

+,- *, / id, num

expr2 term expr2 error error

term2 e factor term2 error

factor error error (do nothing)

9090

Code

 Missing else’s for error conditions

push the start symbol, G, onto Stack
top top of Stack
loop forever
 if top = EOF and token = EOF then break & report success
 if top is a terminal then
 if top matches token then
 pop Stack // recognized top
 token next_token()
 else // top is a non-terminal
 if TABLE[top,token] is A B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 // in that order
 top top of Stack

	Compilers
	Next step
	Parsing
	Study of parsing
	Specifying syntax with a grammar
	Context-free grammar
	Language L(G)
	Expressions
	Language of expressions
	Derivations
	Left vs right derivations
	Derivations and parse trees
	Example (I)
	Abstract syntax tree
	Example (II)
	Derivations (2)
	Derivations and semantics
	Adding precedence
	Expression example
	With precedence
	Another issue
	Another issue (2)
	Ambiguous grammars
	If-then-else
	If-then-else ambiguity
	Removing ambiguity
	Ambiguity
	Parsing (2)
	Two approaches
	Grammars and parsers
	Top-down parsing
	Example
	Example (2)
	Backtracking
	Retrying
	Successful parse
	Other possible parses
	Left recursion
	Notation
	Eliminating left recursion
	Back to expressions
	Eliminating left recursion (2)
	Top-down parsers
	Right-recursive grammar
	Lookahead
	Top-down parsing (2)
	Top-down parsing (3)
	Top-down parsing (4)
	Top-down parsing (5)
	FOLLOW sets
	FIRST and FOLLOW more carefully
	LL(1) property
	Parsing LL(1) grammar
	Top-down parsing (6)
	FIRST and FOLLOW sets
	Computing FIRST sets
	Algorithm
	Algorithm (2)
	Algorithm (3)
	Algorithm (4)
	Example (3)
	Computing FOLLOW sets
	Example (4)
	Example (5)
	Computing FOLLOW Sets
	LL(1) property (2)
	Left factoring
	Expression example (2)
	Left factoring (2)
	Left factoring (3)
	Limits of LL(1)
	Predictive parsing
	Recursive descent
	Example code
	Example code (2)
	Example code (3)
	Top-down parsing (7)
	Building a parse tree
	Building a parse tree (2)
	Generating (automatically) a top-down parser
	Generating (automatically) a top-down parser
	Table-driven approach
	Code

