Compilers

Parsing

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

• Parsing: Organize tokens into "sentences"

Next step

- Do tokens conform to language syntax ?
- **Good news:** token types are just numbers
- Bad news: language syntax is fundamentally more complex than lexical specification
- Good news: we can still do it in linear time in most cases

Parsing

- Parser
 - Reads tokens from the scanner
 - Checks organization of tokens against a grammar
 - Constructs a *derivation*
 - Derivation drives construction of IR

Study of parsing

- Discovering the derivation of a sentence
 - "Diagramming a sentence" in grade school
 - Formalization:
 - Mathematical model of syntax a grammar G
 - Algorithm for testing membership in L(G)
- Roadmap:
 - Context-free grammars
 - Top-down parsers
 Ad hoc, often hand-coded, recursive decent parsers
 - Bottom-up parsers
 Automatically generated LR parsers

Specifying syntax with a grammar

- Can we use regular expressions?
 - For the most part, no
- Limitations of regular expressions
 - Need something more powerful
 - Still want formal specification
- Context-free grammar
 - Set of rules for generating sentences
 - Expressed in *Backus-Naur Form* (BNF)

(for automation)

- Formally: context-free grammar is
 - **G** = (s, N, T, P)
 - **T** : set of terminals
 - **N** : set of non-terminals
 - s ∈ N : start or goal symbol
 - **P**: set of production rules of the form $N \rightarrow (N \cup T)^*$

(provided by scanner) (represent structure)

Language L(G)

Language L(G)

L(*G*) is all sentences generated from start symbol

- Generating sentences
 - Use productions as *rewrite rules*
 - Start with goal (or start) symbol a non-terminal
 - Choose a non-terminal and "expand" it to the right-hand side of one of its productions
 - Only terminal symbols left \rightarrow sentence in L(G)
 - Intermediate results known as sentential forms

Expressions

- Language of expressions
 - Numbers and identifiers
 - Allow different binary operators
 - Arbitrary nesting of expressions

#	Production rule
1	expr $ ightarrow$ expr op expr
2	number
3	identifier
4	$op \rightarrow +$
5	-
6	· · ·
7	· · · · · · · · · · · · · · · · · · ·

Language of expressions

• What's in this language?

#	Production rule
1	expr ightarrow expr op $expr$
2	number
3	identifier
4	$op \rightarrow +$
5	-
6	*
7	· /

Rule	Sentential form
-	expr
1	expr op expr
3	<id,<u>x> op expr</id,<u>
5	<id,<u>x> - expr</id,<u>
1	<id,<u>x> - expr op expr</id,<u>
2	<id,<u>x> - <num,<u>2> op expr</num,<u></id,<u>
6	<id,<u>x> - <num,<u>2> * expr</num,<u></id,<u>
3	<id,<u>x> - <num,<u>2> * <id,<u>y></id,<u></num,<u></id,<u>

We can build the string "x - 2 * y" This string is in the language

Derivations

- Using grammars
 - A sequence of rewrites is called a *derivation*
 - Discovering a derivation for a string is parsing
- Different derivations are possible
 - At each step we can choose any non-terminal
 - Rightmost derivation: always choose right NT
 - Leftmost derivation: always choose left NT (Other "random" derivations – not of interest)

Left vs right derivations

• Two derivations of "x - 2 * y"

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x=""> op expr</id,>
5	<id,x> - <mark>expr</mark></id,x>
1	<id,x> - expr op expr</id,x>
2	<id,x> - <num,2> <mark>op</mark> expr</num,2></id,x>
6	<id,x> - <num,2> * <mark>expr</mark></num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Rule	Sentential form
-	expr
1	expr op expr
3	expr op <id,y></id,y>
6	expr * <id,y></id,y>
1	expr op expr * <id,y></id,y>
2	expr op <num,2> * <id,y></id,y></num,2>
5	<mark>expr</mark> - <num,2> * <id,y></id,y></num,2>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Left-most derivation

Right-most derivation

Derivations and parse trees

- Two different derivations
 - Both are correct
 - Do we care which one we use?
- Represent derivation as a parse tree
 - Leaves are terminal symbols
 - Inner nodes are non-terminals
 - To depict production $\alpha \to \beta \gamma \delta$ show nodes β, γ, δ as children of α

Tree is used to build internal representation

Example (I)

Right-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	expr op <id,y></id,y>
6	expr * <id,y></id,y>
1	expr op expr * <id,y></id,y>
2	expr op <num,2> * <id,y></id,y></num,2>
5	expr - <num,2> * <id,y></id,y></num,2>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

- Concrete syntax tree
 - Shows all details of syntactic structure
- What's the problem with this tree?

Abstract syntax tree

- Parse tree contains extra junk
 - Eliminate intermediate nodes
 - Move operators up to parent nodes
 - Result: abstract syntax tree

Example (II)

Left-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x=""> op expr</id,>
5	<id,x> - expr</id,x>
1	<id,x> - expr op expr</id,x>
2	<id,x> - <num,2> op expr</num,2></id,x>
6	<id,x> - <num,2> * expr</num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Parse tree

Solution: evaluates as x - (2 * y)

Derivations

Left-most derivation

Right-most derivation

Derivations and semantics

• Problem:

- Two different valid derivations
- One captures "meaning" we want (What specifically are we trying to capture here?)
- Key idea: shape of tree implies its meaning
- Can we express precedence in grammar?
 - Notice: operations deeper in tree evaluated first
 - Solution: add an intermediate production
 - New production isolates different levels of precedence
 - Force higher precedence "deeper" in the grammar

Adding precedence

• Two levels:

Level 1: lower precedence – higher in the tree

Level 2: higher precedence – deeper in the tree

#	Production rule
1	expr \rightarrow expr + term
2	expr - term
3	term
4	term \rightarrow term * factor
5	term / factor
6	factor
7	$factor \rightarrow \texttt{number}$
8	identifier

- Observations:
 - Larger: requires more rewriting to reach terminals
 - But, produces same parse tree under both left and right derivations

Expression example

Right-most derivation

Rule	Sentential form
-	expr
2	expr - term
4	expr - term * factor
8	expr - term * <id,y></id,y>
6	expr - factor * <id,y></id,y>
7	expr - <num,2> * <id,y></id,y></num,2>
3	term - <num,2> * <id,y></id,y></num,2>
6	factor - <num,2> * <id,y></id,y></num,2>
8	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Parse tree

Now right derivation yields x - (2 * y)

With precedence

Another issue

Original expression grammar:

Our favorite string: x - 2 * y

Another issue

Rule	Sentential form	Rule	Sentential form
-	expr	-	expr
1	expr op expr	1	expr op expr
1	expr op expr op expr	3	<id, x=""> op expr</id,>
3	<id, x=""> op expr op expr</id,>	5	<id,x> - expr</id,x>
5	<id,x> - expr op expr</id,x>	1	<id,x> - <mark>expr</mark> op expr</id,x>
2	<id.x> - <num.2> op expr</num.2></id.x>	2	<id,x> - <num,2> op expr</num,2></id,x>
6	<id.x> - <num.2> * expr</num.2></id.x>	6	<id,x> - <num,2> * expr</num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>	3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

- Multiple leftmost derivations
- Such a grammar is called *ambiguous*
- Is this a problem?
 - Very hard to automate parsing

Ambiguous grammars

- A grammar is ambiguous *iff*:
 - There are multiple leftmost or multiple rightmost derivations for a single sentential form
 - Note: leftmost and rightmost derivations may differ, even in an unambiguous grammar
 - Intuitively:
 - We can choose different non-terminals to expand
 - But each non-terminal should lead to a unique set of terminal symbols
- What's a classic example?
 - If-then-else ambiguity

If-then-else

• Grammar:

#	Production rule
1	$stmt \rightarrow if expr$ then $stmt$
2	if expr then stmt else stmt
3	other statements

- **Problem**: nested if-then-else statements
 - Each one may or may not have else
 - How to match each else with if

If-then-else ambiguity

Sentential form with two derivations:
 if expr1 then if expr2 then stmt1 else stmt2

Removing ambiguity

- Restrict the grammar
 - Choose a rule: "else" matches innermost "if"
 - Codify with new productions

#	Production rule
1 2	$stmt \rightarrow \underline{if} expr \underline{then} stmt$ $ if expr then withelse else stmt$
3 4 5	<pre>independence in the statements withelse → if expr then withelse else withelseother statements</pre>

 Intuition: when we have an "else", all preceding nested conditions must have an "else"

Ambiguity

- Ambiguity can take different forms
 - Grammatical ambiguity (if-then-else problem)
 - Contextual ambiguity
 - In C: x * y; could follow typedef int x;
 - In Fortran: $\mathbf{x} = \mathbf{f}(\mathbf{y})$; f could be function or array

Cannot be solved directly in grammar

- Issues of type (later in course)
- Deeper question:

How much can the parser do?

Parsing

- What is parsing?
 - Discovering the derivation of a string If one exists
 - Harder than generating strings Not surprisingly
- Two major approaches
 - Top-down parsing
 - Bottom-up parsing
- Don't work on all context-free grammars
 - Properties of grammar determine parse-ability
 - Our goal: make parsing efficient
 - We may be able to transform a grammar

Two approaches

- Top-down parsers LL(1), recursive descent
 - Start at the root of the parse tree and grow toward leaves
 - Pick a production and try to match the input
 - What happens if the parser chooses the wrong one?
- Bottom-up parsers LR(1), operator precedence
 - Start at the leaves and grow toward root
 - Issue: might have multiple possible ways to do this
 - Key idea: encode possible parse trees in an internal state (similar to our NFA → DFA conversion)
 - Bottom-up parsers handle a large class of grammars

Grammars and parsers

- LL(1) parsers
 - Left-to-right input
 - Leftmost derivation
 - **1** symbol of look-ahead
- LR(1) parsers
 - Left-to-right input
 - Rightmost derivation
 - **1** symbol of look-ahead

Grammars that they can handle are called LL(1) grammars

Grammars that they can handle are called LR(1) grammars

Also: LL(k), LR(k), SLR, LALR, …

Top-down parsing

- Start with the root of the parse tree
 - Root of the tree: node labeled with the start symbol

• Algorithm:

Repeat until the fringe of the parse tree matches input string

- At a node A, select one of A's productions Add a child node for each symbol on rhs
- Find the next node to be expanded

(a non-terminal)

• Done when:

Leaves of parse tree match input string (success)

Example

Expression grammar

(with precedence)

#	Production rule
1	$expr \rightarrow expr + term$
2	expr - term
3	term
4	term \rightarrow term * factor
5	term / factor
6	factor
7	$factor \rightarrow \texttt{number}$
8	identifier

• Input string x - 2 * y

• What should we do now?

Backtracking

Rule	Sentential form	Input string
-	expr	1 x - 2 * y
1	expr + term	↑x - 2 * y
3	term + term	↑ x - 2 * y
6	factor + term	↑ x - 2 * y
8	<id> + term</id>	x ↑ - 2 * y
?	<id,x> + term</id,x>	x ↑ - 2 * y

Undo all these productions

- If we can't match next terminal:
 - Rollback productions
 - Choose a different production for expr
 - Continue

Retrying

Rule	Sentential form	Input string
-	expr	↑x - 2 * y
2	expr - term	↑x - 2 * y
3	term - term	↑x - 2 * y
6	factor - term	↑x - 2 * y
8	<id> - term</id>	x ↑ - 2 * y
-	<id,x> - term</id,x>	x – ↑ 2 * y
3	<id,x> - factor</id,x>	x - ↑ 2 * y
7	<id,x> - <num></num></id,x>	x - 2 ↑ * y

• Problem:

- More input to read
- Another cause of backtracking

Successful parse

Rule	Sentential form	Input string
-	expr	↑x - 2 * y
2	expr - term	↑x - 2 * y
3	term - term	↑x - 2 * y
6	factor - term	↑x - 2 * y
8	<id> - term</id>	x ↑ - 2 * y
-	<id,x> - term</id,x>	x - ↑ 2 * y
4	<id,x> - term * fact</id,x>	x - ↑ 2 * y
6	<id,x> - fact * fact</id,x>	x - ↑ 2 * y
7	<id,x> - <num> * fact</num></id,x>	x - 2 ↑ * y
-	<id,x> - <num,2> * fact</num,2></id,x>	x - 2 * ↑ y
8	<id,x> - <num,2> * <id></id></num,2></id,x>	x - 2 * y ↑

Other possible parses

Rule	Sentential form	Input string
-	expr	↑ x - 2 * y
2	expr - term	↑ x - 2 * y
2	expr - term - term	↑ x - 2 * y
2	expr - term - term - term	↑ x - 2 * y
2	expr - term - term - term - term	↑ x - 2 * y

• **Problem**: termination

- Wrong choice leads to infinite expansion (More importantly: without consuming any input!)
- May not be as obvious as this
- Our grammar is *left recursive*

Left recursion

• Formally,

A grammar is *left recursive* if \exists a non-terminal A such that $A \rightarrow^* A \alpha$ (for some set of symbols α)

What does \rightarrow^* mean? A \rightarrow B \underline{x} B \rightarrow A \underline{y}

• Bad news:

Top-down parsers cannot handle left recursion

• Good news:

We can systematically eliminate left recursion

Notation

- Non-terminals
 - Capital letter: A, B, C
- Terminals
 - Lowercase, underline: <u>x</u>, y, <u>z</u>
- Some mix of terminals and non-terminals
 - Greek letters: α, β, γ
 - Example:

Eliminating left recursion

• Fix this grammar:

#	Production rule
1	foo \rightarrow foo α
2	<i>β</i>

Language is β followed by zero or more α

Rewrite as

Back to expressions

• Two cases of left recursion:

#	Production rule
1	expr \rightarrow expr + term
2	expr - term
3	term

#	Production rule	
4	term \rightarrow term * factor	
5	term / factor	
6	factor	

• How do we fix these?

#	Production rule		
1	expr \rightarrow term expr2		
2	expr2 → + term <mark>expr2</mark>		
3	- term <mark>expr2</mark>		
4	ε		

#	Production rule	
4	term \rightarrow factor term2	
5	term2 \rightarrow * factor term2	
6	/ factor term2	
	<i>E</i>	

Eliminating left recursion

Resulting grammar

- All right recursive
- Retain original language <u>and</u> associativity
- Not as intuitive to read
- Top-down parser
 - Will always terminate
 - May still backtrack

There's a lovely algorithm to do this automatically, which we will skip

Top-down parsers

- Problem: Left-recursion
- Solution: Technique to remove it
- What about backtracking? *Current algorithm is brute force*
- *Problem*: how to choose the right production?
 - Idea: use the next input token (duh)
 - How? Look at our right-recursive grammar...

Right-recursive grammar

BUT, this can be tricky...

Lookahead

- Goal: avoid backtracking
 - Look at future input symbols
 - Use extra context to make right choice
- How much lookahead is needed?
 - In general, an arbitrary amount is needed for the full class of context-free grammars
 - Use fancy-dancy algorithm
- CYK algorithm, O(n³)

- Fortunately,
 - Many CFGs can be parsed with limited lookahead
 - Covers most programming languages not C++ or Perl

• Goal:

Given productions A $\to \alpha \mid \beta$, the parser should be able to choose between α and β

Trying to match A

How can the next input token help us decide?

Solution: FIRST sets

Informally:

FIRST(α) is the set of tokens that could appear as the first symbol in a string derived from α

(almost a solution)

• **Def:** \underline{x} in FIRST(α) iff $\alpha \rightarrow^* \underline{x} \gamma$

- Building FIRST sets
 We'll look at this algorithm later
- The LL(1) property
 - Given $A \rightarrow \alpha$ and $A \rightarrow \beta$, we would like: $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
 - we will also write $F_{IRST}(A \rightarrow \alpha)$, defined as $F_{IRST}(\alpha)$
 - Parser can make right choice by with one lookahead token
 - ..almost..
 - What are we not handling?

- What about ε productions?
 - Complicates the definition of LL(1)
 - Consider $A \rightarrow \alpha$ and $A \rightarrow \beta$ and α may be empty
 - In this case there is no symbol to identify α

- Example:
 - What is FIRST(#4)?
 - = { ε }

#Production rule1
$$S \rightarrow A \underline{z}$$
2 $A \rightarrow \underline{x}$ 3 $| \underline{y}$ 4 $| \varepsilon$

• What would tells us we are matching production 4?

- If A was empty
 - What will the next symbol be?
 - Must be one of the symbols that immediately follows an A

Solution

- Build a **FOLLOW** set for each symbol that could produce ϵ
- Extra condition for LL:

FIRST($A \rightarrow \beta$) must be disjoint from FIRST($A \rightarrow \alpha$) and FOLLOW(A)

FOLLOW sets

- Example:
 - FIRST(#2) = { <u>x</u> }
 - FIRST(#3) = { <u>y</u> }
 - FIRST(#4) = { ε }

- What can follow A?
 - Look at the context of all uses of A
 - Follow(A) = { <u>z</u> }
 - Now we can uniquely identify each production: If we are trying to match an A and the next token is <u>z</u>, then we matched production 4

FIRST and FOLLOW more carefully

- Notice:
 - FIRST and FOLLOW are sets
 - FIRST may contain ϵ in addition to other symbols

• Question:

- What is FIRST(#2)?
- = FIRST(B) = { <u>x</u>, y, ε }?
- and FIRST(C)

• Question:

When would we care
about FOLLOW(A)?
Answer: if FIRST(C) contains ε

LL(1) property

• Key idea:

- Build parse tree top-down
- Use look-ahead token to pick next production
- Each production must be uniquely identified by the terminal symbols that may appear at the start of strings derived from it.
- **Def**: FIRST+(A $\rightarrow \alpha$) as
 - FIRST(α) U FOLLOW(A), if $\varepsilon \in$ FIRST(α)
 - FIRST(α), otherwise
- **Def**: a grammar is **LL(1)** iff

 $\begin{array}{l} \mathsf{A} \rightarrow \alpha \text{ and } \mathsf{A} \rightarrow \beta \text{ and} \\ \mathsf{FIRST+}(\mathsf{A} \rightarrow \alpha) \, \cap \, \mathsf{FIRST+}(\mathsf{A} \rightarrow \beta) = \varnothing \end{array}$

Parsing LL(1) grammar

- Given an LL(1) grammar
 - Code: simple, fast routine to recognize each production
 - Given $A \rightarrow \beta_1 \mid \beta_2 \mid \beta_3$, with

 $\mathsf{FIRST}^+(\beta_i) \cap \mathsf{FIRST}^+(\beta_j) = \emptyset$ for all i != j

```
/* find rule for A * /
if (current token \in FIRST+(\beta_1))
select A \rightarrow \beta_1
else if (current token \in FIRST+(\beta_2))
select A \rightarrow \beta_2
else if (current token \in FIRST+(\beta_3))
select A \rightarrow \beta_3
else
report an error and return false
```


Is "CD"? Consider all possible strings derivable from "CD" What is the set of tokens that can appear at start?

$$\left.\begin{array}{l}t_{5} \in \mathsf{FIRST}(\mathsf{C} \; \mathsf{D})\\t_{5} \in \mathsf{FIRST}(\mathsf{F})\\t_{5} \in \mathsf{FOLLOW}(\mathsf{B})\end{array}\right\} \text{disjoint?}$$

FIRST and FOLLOW sets

The right-hand side of a production

FIRST(α)

For some $\alpha \in (T \cup NT)^*$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ

and $\varepsilon \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \varepsilon$

Follow(A)

For some $A \in NT$, define FOLLOW(A) as the set of symbols that can occur immediately after A in a valid sentence. FOLLOW(G) = {EOF}, where G is the start symbol

Computing FIRST sets

• Idea:

Use FIRST sets of the right side of production

$$\mathbf{A} \rightarrow \mathbf{B}_1 \quad \mathbf{B}_2 \quad \mathbf{B}_3 \dots$$

• Cases:

FIRST(A→B) = FIRST(B₁)

- What does FIRST(B₁) mean?
- Union of FIRST($B_1 \rightarrow \gamma$) for all γ
- What if ε in FIRST(B₁)? \Rightarrow FIRST(A \rightarrow B) \cup = FIRST(B₂)
- What if ε in FIRST(B_i) for all i?
 - ⇒ FIRST(A→B) \cup = { ϵ }

Why ∪ **= ?**

repeat as needed

leave {*ɛ*} for later

• For one production: $p = A \rightarrow \beta$

```
if (\beta is a terminal <u>t</u>)
            FIRST(p) = \{t\}
else if (\beta == \epsilon)
                                                                      Why do we need
            FIRST(p) = {\varepsilon}
                                                                      to remove ε from
else
                                                                           FIRST(B<sub>i</sub>)?
            Given \beta = B_1 B_2 B_3 \dots B_k
            εInAll = true
            for (i \leftarrow 1 to k)
                        FIRST(p) += FIRST(B<sub>i</sub>) - {\epsilon}
                        if (\varepsilon not in FIRST(B<sub>i</sub>))
                                    εInAll = false
                                    break
            if (\varepsilonInAII) FIRST(p) += {\varepsilon}
```


- For one production:
 - Given $\mathbf{A} \rightarrow \mathbf{B}_1 \ \mathbf{B}_2 \ \mathbf{B}_3 \ \mathbf{B}_4 \ \mathbf{B}_5$
 - Compute FIRST($\mathbf{A} \rightarrow \mathbf{B}$) using FIRST(\mathbf{B})
 - How do we get FIRST(B)?
- What kind of algorithm does this suggest?
 - Recursive?
 - Like a depth-first search of the productions
- Problem:
 - What about recursion in the grammar?
 - $A \rightarrow x B y$ and $B \rightarrow z A w$

Solution

- Start with FIRST(B) empty
- Compute FIRST(A) using empty FIRST(B)
- Now go back and compute FIRST(B)
 - What if it's no longer empty?
 - Then we recompute FIRST(A)
 - What if new FIRST(A) is different from old FIRST(A)?
 - Then we recompute FIRST(B) again...
- When do we stop?
 - When no more changes occur we reach *convergence*
 - FIRST(A) and FIRST(B) both satisfy equations
- This is another *fixpoint* algorithm

• Using fixpoints:

forall p FIRST(p) = {}
while (FIRST sets are changing)
 pick a random p
 compute FIRST(p)

- Can we be smarter?
 - Yes, visit in special order
 - Reverse post-order depth first search Visit all children (all right-hand sides) before visiting the lefthand side, whenever possible

Example

#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	- term expr2
5	<i>E</i>
6	term \rightarrow factor term2
7	term2 $ ightarrow$ * factor term2
8	/ factor term2
9	ε
10	$factor \rightarrow number$
11	identifier

Computing FOLLOW sets

• Idea:

Push FOLLOW sets down, use FIRST where needed

$\textbf{A} ~\rightarrow~ \textbf{B}_1 ~~ \textbf{B}_2 ~~ \textbf{B}_3 ~~ \textbf{B}_4 ~~ \dots ~ \textbf{B}_k$

- Cases:
 - What is FOLLOW(B₁)?
 - FOLLOW(B_1) = FIRST(B_2)
 - In general: FOLLOW(B_i) = FIRST(B_{i+1})
 - What about FOLLOW(B_k)?
 - FOLLOW(B_k) = FOLLOW(A)
 - What if $\varepsilon \in FIRST(B_k)$?

 \Rightarrow FOLLOW(B_{k-1}) \cup = FOLLOW(A) extends to k-2, etc.

Example

#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	<pre>- term expr2</pre>
5	<i>E</i>
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	/ factor term2
9	<i>E</i>
10	<i>factor</i> \rightarrow <u>number</u>
11	identifier

FOLLOW(goal) = { EOF } FOLLOW(expr) = FOLLOW(goal) = { EOF } FOLLOW(expr2) = FOLLOW(expr) = { EOF } FOLLOW(term) = ? FOLLOW(term) += FIRST(expr2) += { +, -, ε } += { +, -, FOLLOW(expr)} += { +, -, EOF }

Example

#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	<pre>- term expr2</pre>
5	<i>E</i>
6	term → factor term2
7	term2 → * factor term2
8	/ factor term2
9	<i>E</i>
10	<i>factor</i> \rightarrow <u>number</u>
11	identifier

FOLLOW(*term*2) += FOLLOW(*term*) FOLLOW(*factor*) = ? FOLLOW(*factor*) += FIRST(*term*2) += { *, /, ε } += { *, /, FOLLOW(*term*)} += { *, /, +, -, EOF }

Computing FOLLOW Sets

$FOLLOW(G) \leftarrow \{EOF\}$
while (FOLLOW sets are still changing)
for each $p \in P$, of the form $A \rightarrow \dots B_1 B_2 \dots B_k$
$\textbf{FOLLOW(B}_k) \leftarrow \textbf{FOLLOW(B}_k) \cup \textbf{FOLLOW(A)}$
TRAILER ← FOLLOW(A)
for i ← k down to 2
if $\epsilon \in FIRST(B_i)$ then
TRAILER \leftarrow TRAILER \cup (FIRST(B _i) – { ϵ })
else
TRAILER ← FIRST(B _i)
$FOLLOW(B_{i,1}) \leftarrow FOLLOW(B_{i,1}) \cup TRAILER$

LL(1) property

- **Def**: a grammar is LL(1) iff
 - $\begin{array}{l} \mathsf{A} \to \alpha \text{ and } \mathsf{A} \to \beta \text{ and} \\ \mathsf{FIRST+}(\mathsf{A} \to \alpha) \, \cap \, \mathsf{FIRST+}(\mathsf{A} \to \beta) = \oslash \end{array}$

Problem

- What if my grammar is not LL(1)?
- May be able to fix it, with transformations
- Example:

#	Produ	ıcti	on rule
1	$A \rightarrow$	$\underline{\alpha}$	β_{1}
2		α	β_2
3		α	$oldsymbol{eta}_3$

Left factoring

Graphically

#	Production rule	
1	$A \rightarrow \alpha \beta_1$	
2	$ \alpha \beta_2$	
3	$ \alpha \beta_3$	

#	Production rule
1	$A \rightarrow \alpha Z$
2	$\boldsymbol{Z} \rightarrow \boldsymbol{\beta}_1$
3	$ \beta_2$
	$ $ $ $ β_3

 β_3

Expression example

#	Production rule
1	$factor \rightarrow identifier$
2	identifier [expr]
3	identifier (expr)

<pre>First+(1) = {identifier}</pre>
First+(2) = {identifier}
First+(3) = {identifier}

After left factoring:

#	Production rule
1	factor \rightarrow identifier post
2	$post \rightarrow [expr]$
3	(expr)
4	3

= Follow(*post*) = {operators}

In this form, it has LL(1) property

Left factoring

Left factoring

Question

Using left factoring and left recursion elimination, can we turn an arbitrary CFG to a form where it meets the LL(1) condition?

• Answer

Given a CFG that does not meet LL(1) condition, it is *undecidable* whether or not an LL(1) grammar exists

• Example

 $\{a^n 0 b^n \mid n \ge 1\} \cup \{a^n 1 b^{2n} \mid n \ge 1\}$ has no *LL(1)* grammar

aaa0bbb aaa1bbbbbb

Limits of LL(1)

• No LL(1) grammar for this language:

 $\{a^n 0 b^n \mid n \ge 1\} \cup \{a^n 1 b^{2n} \mid n \ge 1\}$ has no *LL(1)* grammar

<u>Problem</u>: need an unbounded number of <u>a</u> characters before you can determine whether you are in the A group or the B group

Predictive parsing

• Predictive parsing

- The parser can "predict" the correct expansion
- Using lookahead and FIRST and FOLLOW sets
- Two kinds of predictive parsers
 - Recursive descent
 Often hand-written
 - Table-driven

Generate tables from First and Follow sets

Recursive descent

#	Production rule
1	goal \rightarrow expr
2	expr $ ightarrow$ term expr2
3	expr2 \rightarrow + term expr2
4	- term expr2
5	ε
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	/ factor term2
9	ε
10	<i>factor</i> \rightarrow number
11	identifier
12	(expr)

- This produces a parser with six <u>mutually recursive</u> routines:
 - Goal
 - Expr
 - Expr2
 - Term
 - Term2
 - Factor
- Each recognizes one *NT* or *T*
- The term <u>descent</u> refers to the direction in which the parse tree is built.

Example code

• Goal symbol:

```
main()
   /* Match goal --> expr */
   tok = nextToken();
   if (expr() && tok == EOF)
     then proceed to next step;
     else return false;
```

Top-level expression

```
expr()
    /* Match expr -> term expr2 */
    if (term() && expr2());
        return true;
    else return false;
```


Example code

Match expr2

Example code

```
factor()
  /* Match factor --> ( expr ) */
  if (tok == `(`)
    tok = nextToken();
    if (expr() && tok == ')')
      return true;
    else
      syntax error: expecting )
      return false
  /* Match factor --> num */
  if (tok is a num)
    return true
  /* Match factor --> id */
  if (tok is an id)
    return true;
```


Top-down parsing

• So far:

- Gives us a yes or no answer
- Is that all we want?
- We want to build the parse tree
- How?
- Add actions to matching routines
 - Create a node for each production
 - How do we assemble the tree?

Building a parse tree

- Notice:
 - Recursive calls match the shape of the tree

- Idea: use a stack
 - Each routine:
 - Pops off the children it needs
 - Creates its own node
 - Pushes that node back on the stack

Building a parse tree

With stack operations

Generating (automatically) a top-down parser

#	Production rule
1	goal → expr
2	expr $ ightarrow$ term expr2
3	expr2 \rightarrow + term expr2
4	- term expr2
5	ε
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	/ factor term2
9	<i>E</i>
10	$factor \rightarrow \texttt{number}$
11	identifier

- Two pieces:
 - Select the right RHS
 - Satisfy each part
- First piece:
 - FIRST+() for each rule
 - Mapping: $NT \times \Sigma \rightarrow rule#$ Look familiar? Automata?

Generating (automatically) a top-down parser

#	Production rule
1	goal \rightarrow expr
2	expr $ ightarrow$ term expr2
3	expr2 \rightarrow + term expr2
4	- term expr2
5	ε
6	term \rightarrow factor term2
7	term2 $ ightarrow$ * factor term2
8	/ factor term2
9	ε
10	$\mathit{factor} ightarrow rac{\mathrm{number}}{\mathrm{number}}$
11	identifier

Second piece

- Keep track of progress
- Like a depth-first search
- Use a stack

ldea:

- Push Goal on stack
- Pop stack:
 - Match terminal symbol, <u>or</u>
 - Apply NT mapping, push RHS on stack

This will be clearer once we see the algorithm

Table-driven approach

- Encode mapping in a table
 - Row for each non-terminal
 - Column for each terminal symbol Table[NT, symbol] = rule# if symbol ∈ FIRST+(NT -> rhs(#))

	+,-	*, /	id, num
expr2	term expr2	error	error
term2	ε	factor term2	error
factor	error	error	(do nothing)

Code


```
push the start symbol, G, onto Stack
top \leftarrow top of Stack
loop forever
  if top = EOF and token = EOF then break & report success
  if top is a terminal then
     if top matches token then
       pop Stack
                                             // recognized top
       token ← next_token()
  else
                                             // top is a non-terminal
     if TABLE[top,token] is A \rightarrow B_1 B_2 \dots B_k then
       pop Stack
                                             // get rid of A
       push Bk, Bk-1, ..., B1
                                            // in that order
  top \leftarrow top of Stack
```

Missing else's for error conditions

