Yacc: A Parser Generator+

Stephen C. Johnson
Ravi Sethi

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Since the early 1970s, vace has been used to implement hundreds of languages, big and
small. Its applications range from small desk calculators. to medium-sized preprocessors for
typesetting, to large compiler front ends for complete programming languages.

A yace specification is based on a collection of grammar rules that describe the syntax of
a language: vacc tums the specification into a syntax analyzer. A pure syntax analvzer merely
checks whether or not an input string conforms to the syntax of the language.

We can go beyond pure syntax analysis by attaching code in C or C+ 1o a grammar rule:
such code is called an action. and 1s executed whenever the rule is applied during syniax
analysis. Thus, a desk calculator might use actions to evaluate an expression, and a compiler
front end might use actions to emit intermediate code.

Yace allows us to build parsers from LALR(1) grammars without necessarily learning the
underlying theory.

1. Introduction
Yace is a tool for building syntax analyzers. also known as parsers. This section introduces the basic
features of vacc. We review grammars. build a pure parser for real numbers. and then augment the parser to
evaluate numbers during parsing. The language of real numbers is a toy: realistic examples appear in Section 2.
Uppercase letters are distinct from lowercase letters in vace specifications. Thus, digit and DIGIT are
distinct names. The font of a name is chosen purely for readabilitv. so fraction. and fraction (within
diagrams) refer to the same name.

I.LI. Further Reading

Fave 1s designed to handle a single but significant part of the toral job of building 4 translator or interpreter
tor a language. The remaining parts of the job must be implemented 1n a host programming language, presumed
0 be C [9] or G+ [12].

Lev [10]. 4 1ol for building lexical analvzers. works in harmony with veee. It can be easily used 1o pro-
duce guite complicated lexical analyzers. but there remain some languages (Fortran. for example) whose lexical
analyzers must be crafied by hand.

Kermighan and Pike (8] illustrate program development using vace and fex by gradually extending an expres-
Mon evaluator into an interpreter for a language comparable to Basic. Schreiner and Friedman [11] conduct a
book-tength case study of how to create a compiler using vaee and fex.

Textbooks on compilers such as | 3] provide more information on the behavior and consiruction of parsers
than will be covered here. The algorithms underlying vuce are also discussed in a survev of LR parsing [1]. A
fedture that sets yacd apart — its ability to build tast compact LR parsers from ambiguous grammars — is based

on the theory developed in [2).
Among the earliest applications of vare are egn |7]. lunguage for typesetting mathematics, and poc., the
Portable C Compiler [3].

turmia Yaling

* Prepared by R Sethi from 6] 5. C. Johnson is proser Hy with Ardem Computer, 880 West Maude Sve. Sumnvaale. Ca

4

Research Tenth Edition

Bk limm a9y

T

i -

FTrdmsatae s e

Rasmrens e

Yacc: A Parser Generator Yace

1.2. Grammars, Reviewed
The syatax of a language imposes a hierarchical structure, called a parse tree, on strings in the language
The following is a parse tree for the string 3. 14 in a language of real numbers: N

realNumber

; / ! “‘H‘““'-.
integerPart fraction

1 N

digit digit fraction
H i |

| [] drgit

| I | |

3 : 1 4

The leaves at the bottom of a parse tree are labeled with rerminals or tokens: tokens represent themselves,
By contrast. the other nodes of a parse tree are labeled with nonterminals. Each node in the parse tree is based
on a rule. called a production, that defines a nonterminal in terms of a sequence of terminals and nonterminals.
The root of the parse tree for 3.14 is based on the following informally stated production:

A real number consists of an integer part, a point, and a fraction.
This production is written as follows in the notation accepted by vace:

realNumber : integerPart ‘.’ fraction

Together. the tokens, the nonterminals, the productions, and a distinguished nonterminal. called the start
symbol . conslitute a grammar for a language. Both tokens and nonterminals are referred to as grammar symbols.

or simply symbols.

1.3. Grammars in Yacc Specifications

The three sections of a yace specification are for optional declarations. productions. and optional user-
supplied routines. The productions are the heart of a specification; they comprise all but the first two and last
two lines of Figure 1. The sections are separated by double percent %% marks — the percent symbol is generally

used by vace as an escape character. If the user-routines section is omitted. the second %= mark can be omitted
as well.

start lines

lines : /% empty */

lines realdNumber '"\n'

rncegerPart : digit

nt yvlex() { return getchar(); |

Figure 1. A complete vace specitication for sequences of real numbers. one per Line.

LNIX Papers

5

B Blanks. =
" between /* =

= It is pos

ie kx:;?word‘ as m

zstart

Otherwise, the

A name
represent a ot
from an exam;

ttoken

Single-ch.
backslash \ s

‘\n’
!\Ir!
A\
!\t:
*\b'
t\fl

L '
For technical re

A product

realNum:

defines a nonte:
colon separates
is realNumbe:
The right
colon and the 1

Production

sides. The priw

€an be rewrnitien

integerr

In words, an in.
Part consists of
A fraction ;

Laccior

REsearch Tenth I

Yacc: A Parser Generator

Blanks. tabs, and newlines are ignored. Comments can appear wherever a name can: they are enclosed

ings in the Ia“SUﬂgc _'~' 4 el petween /*and */. as in C.
It is possible, and desirable, for the start symbol of a grammar to be declared explicitly. using the ‘start
pe y Z p y £

keyword. as in
:start lines
Otherwise. the start symbol is taken from the first productifn in the specification.

A name in the production section is presumed to represent a nonterminal unless it is explicitly declared to
represent a token. There are no token declarations in Figure 1. The following declaration of token DIGIT is

from an example later in this section.

‘present themselyes itoken DIGIT

- parse lree is baseq 3 Single-character tokens need not be declared: a literal is a character enclosed in single quotes. As in C, the
s and nonterming]s, = ; packslash \ is an escape character within literals, and the following C escapes are recognized:

LTy 1 newline

LT o return

(st single quote *

P tab

\Nb backspace

2N form feed

i, called the stgrr 1 Nyt X in octal

Ik 7 i . .
rammar. symbols, For technical reasons, the NUL character, * \0’ or 0, should never be used in productions.

A production

realNumber : integerPart ‘.’ fraction
nd optional user- >
first lg‘o and last defines a nonterminal. called its left side, in terms of a sequence of grammar symbols, called its right side. A
ThOI IS generally colon separates the two sides. and a semicolon marks the end of the production. The left side of this production
can be omitted is realNumber. lis right side consists of integerPart, the literal * .". and fraction.

The right side of a production can be empty. as in the following production with no symbols between the
colon and the terminating semicolon:

lines : ;

Productions with the same left side can be combined. and written with a vertical bar separating the night

sides. The productions

integerPart : digit

integerPart : integerPart digit
can be rewntien equivalently as
integerPart : digit
integerPart digit
[n words. an integer part is either a single digit or a (smaller) integer part followed by a digit. Thus. an nteger
part consists of o string of one or more digits.

A Traction also consists of a string of one or more digits. described by the productions

fraction : irgit
1git fraction

(S AR

1

LNIN Pupe = A
Papers Research Tenth Edition 3

Yacc: A Parser Generator yace

grammar
3 ' t
oYace
I i
| I |
I
Al
i C 1
I . i
 compiler
T

optional
output

token
stream

syntax
analvzer

lexical
analyzer

character
stream

Figure 2. Yucc handles the syniax analysis part of an application.

The nonterminals integerPart and fraction impose different hierarchical structures on strings of digits.
Note how a tree for integerPart grows down to the left. whereas a tree for fraction grows down to the

right:
integerPart fraction
e ~. - S
integerPart digir digit Sfraction
P e o ! ! . / ~
wnregerPart digit 3 7 digir fraction
! ! f !
digit 2 3 digit
| |
1 9

Semantic considerations influence the choice of hierarchical structure. and hence the choice of productions for a
nonterminal, as we shall see in Section 2.

1.4. Using Yace

When yace 1s applied to a specification, the ouiput is a file of C code. called y.tab.c (the name might
ditfer due to local hle-system conventions). Suppose that the specification in Figure | appears in a file real.y.
A program for reading a sequence of real numbers can then be compiled into a tile a.out by the following
U NIX R system commands:
cenerdtes C code into pile y.tab.c
compiles exccutuble program into file a. out

yacc real.y
cz y.tab.c -ly
The tlug —1y. which must appear after y. tab.c. refers to a tiny library, described below.

Figure 2 illustrates the use of vacc. Yacce and the C compiler are represented by dashed boxes since they are
used once, at ““compiler-construction time.”” The constructed compiler, consists of the lexical analyzer, the syn-
tax analyzer, and any user routines.

Yuce confines itself to building fast parsers. All other aspects of an application. such as initialization. lexi-
cal analysis, and error reporting, must be programmed separately. Some relevant function names in the C code
are s follows:

. vyparse is the parser generated by yace. 1t returns 0 1f the entire input is parsed successtully; otherwise it

returns 1.

s vylex is culled repeatedly by yyparse: it reads input characters and returns tokens. A routine thal
groups characters into tokens is calied a fexical analyzer. The lexical analyzer ar the bottom of Figure |

50 UNIX Papers ,

yacc

simply retur

e main is the
main might

s yyerror i
‘*syntax e
described in

The library -1y ¢

int maint¢
#include
void yyer

This version of m
prints the message

In case the -_
lines at the bottom

1.5. Actions and

Actions attach
consists of one or
ing with $ signs rc
The pseudo-variab:
right side is formec

The complete
realNumker
The action is the st
8% = Szpze
It detines the atnibw
P20 symbols on the
All versions o
Using positions. th:-
r2aiNumber

The S-prefix m
tvpe. 1nt. This Jo
defined to be do:z .
the types of attribuie
the declarations se. 1.

Altributes for 1o
consisting of 1 token
When the lexical an
retlurns DIGIT with ..

' Specifically. the
vanable yylval, w
ure 3 assigns a value

2 oy
Vhen the same symboi

Research Tenth Editin

N strings of digjis
Zrows down tg (he

'::‘acn‘on
|
digit
|
9

droductions for g

the name might
a file real.y,
v the following

since they are
Iyzer, the syn-

tlization. lexi-
in the C code

. otherwise it

routine that
Figure |

'NIX Papers

Yacc: A Parser Generator

int yylex() { return getchar(); }
simply returns each individual character as a token.
e main is the start-up routine. Execution of a C program begins in a function called main. [n general,
main might read command-line arguments and options and perform initialization before calling yyparse.

¢ yyerror is called by yyparse if an error occurs during parsing, usually with the terse message
'syntax error.” Parsing terminates when an error is detected unless “error productions’” are used as
described in Section 5.

7

library —1y contains default versions of main and yyerror:

int main() { return yyparse(); }
#include <stdio.h>
void yyerror(s) char *s; { fprintf(stderr, "gs\n", s); }

This version of main simply returns the result obtained from yyparse. and this version of yyerror simply
prints the message it is called with.

In case the -1y library is not available, the specification in Figure | can be completed by adding these three
lines at the bottom.

1.5. Actions and Attributes

Actions attached to a production are executed each time the production is applied during parsing. An action
consists of one or mare C statements, enclosed in curly braces { and }. Within an action, pseudo-variables start-
ing with $ signs refer to values associated with the symbols in the production. Such values are called attributes.
The pseudo-variable for the left side is $$. In the local version of yacc, the pseudo-variable for a symbol on the
right side is formed by prefixing a § sign to either its name or its position.

The complete specification in Figure 3 includes the production and action
realNumber : integerPart fractien { 88 = SintegerPart + $fraction; } ;

The action is the single statement

4
i

= SintegerPart + Sfraction:

It defines the attribute value associated with the left side to be the sum of the attribute values associated with the
two symbols on the right side. !

All versions of vace suppon pseudo-variables like S1 and $2 formed from positions on the night side.
Using positions. this action can be rewritien equivalently as

realNumber : 1integerPart fraction { $S5 = 8§51 + §$2: } i

Fhe $-prefix notation permits one attribute per grammar symbol. By default. all auributes have the same
pe. int. This default can be changed by defining YYSTYPE. as on line 4 of Figure 3. where YYSTY>E is
defined 10 be double becuuse the specification deals with real numbers. See Section 6 for how to customize
the tvpes of atributes: that is. 10 allow different attributes to have different types. (As in Figure 3, any C code in
the declarations section must be enclosed between ={ and - 1)

Altributes for tokens are computed by the lexical analyzer. Conceptually. a lexical analyzer returns g pair.
tofsistng of d token and an associated atinbute value. Consider. for example. the token DIGIT in Frgure 3.
When the levical analyzer reads the character 1 it returns DIGIT with auribute value 1. when it reads 2 it

Specitically., the parser yYyparse expecis the lexical analyzer yylex to leave the attribute value in a aiobal
dirable yyIval, which s automatically declared by vace 10 have type YYSTYPE. The function yvlex in Fig-
ure 3 assigns a value o yylval just before it returns the loken DIGIT.

Wher the saime stinhol & appeirs several tmes on the righi side, s pscudo-varble can be written as 5141, SA82, 5xd 3

Research Tenth Edition

A
1J

Yacc: A Parser Generator

Yace
‘token DIGIT
istart lines
5
#define YYSTYPE double 2
)
lines : /* empty */
| lines realNumber ’"\n’
{ printf(":g\n", SrealNumber); }
realNumber : integerPart ‘.’ fraction

{ $5 = SintegerPart + S$fraction; }

integerPart : DIGIT
integerPart DIGIT
{ 3% = $integerPart*10 + SDIGIT; }

fraction : DIGIT
{ $5 = SDIGIT*0.1; }
DIGIT fraction
{ 35 = (SDIGIT + Sfraction)*0.1; }

=3
tinclude <ctype.h>
int yylex() {

int.c;
c = getchar():

! isdigit(e))} return c;
yylval = ¢ - '0';
return DIGIT;

1f{

Figure 3. The actions in this yace specification evaluate real numbers during parsing.

The tree 1n Figure 4 illustrates the evaluation of the real number 321.789. Swrting in the bottom-left
corner of the figure. the lexical analyzer sets the attribute value 3 at the leftmost leat for the token DIGIT. The
parent of this leat is bused on the production and action

integerPart |3 DIGIT i S5 = 812

o

This action is omitted from the specitication in Figure 3 because. by default, the parser sets $5, the atribute of
the left side. to $1. the wtiribute of the first symbol on the right side.

Working up the tree. the next node is based on
lntegerPart : integerPart DIGIT { §5 = SintegerPart~10 + SDIGIT; } o

The effect of the uctions is perhaps easier o see at the nodes for fraccion, At the only node based on

fraction : DIGIT { $$ = SDIGIT*0.1; } ;

the value of SDIGIT is Y and the value of $fraction is 0.9.

The auributes at the nodes in Figure 4 are said 1o be synthesized because they are defined solely in rers of

the attributes at the children of the node. Since yace generates bottom-up parsers., bottom-up evaluation of syn-

UNIX Pupers

Sinteve

3DIC

thesized attribu

. which are conte
=% Actions ar:
when they do i’
of a computatic

1.6. A Style fo

As in any
style that can r
through the mo-

The follow
o - Use all ca:
= the headin:
¢ Put produc-

¢ Putall pro
ductions b-

* Puta sen
line. New

* Indent pro

The examy

L

Evaluation

Both actio
parser would s
¢&n become an .

For exam;
productions tor
integer p'm. th
321.789 is 3l
however, Lhc ¢
321.789 is 0.

Arithmetic
evaluators and ©

Research Tenth |

- bottom-ieft

IGIT. The

W24l

attribute of

ased on

n terms of
m of syn-

[X Papers

Yacc: A Parser Generator

yGCC

SreaiNumber = 321.789

T

Sfraction = 0.789

-

soiGr =7 Sfraction = 0.89

vl .

SintegerPart = 3 SDIGIT = 2 SDIGIT = 8 Sfraction = 0.9

| |

sGir = 3 SDIGIT = 9

SintegerPart = 321

4

.
SimegerPart = 32 9

5\

soiGIT = |

/
b

Figure 4. Auribute values during the evaluation of 321 .789.

thesized attributes fits naturally with parsing. Actions can also be used to simulate some ““inherited attributes,"
which are context dependent.

Actions attached to productions are examined further in Section 2 their execution order becomes significant
when they do input/output, assign values to variables. call functions with side effects. or otherwise affect the state

of 4 computation,

1.6. A Style for Specifications

As in any language, choose a style that makes the code easy to read. preferably a consistent (and accepted)
style that can be read by others. The main concern in a vace specification is to make the productions visible
through the morass of action code.

The following style hints owe much to Brian Kernighan:

Use all capital letters for token names. all lower case letters for nonterminal names. This hint comes under

the heading of *“*knowing who 1o blame when things go wrong."’

* Put productions and actions on separate lines. Either can then be changed independently.

* Put all productions with the same left side together. Put the left side in oniy once. and let all following pro-
ductions begin with a vertical bar.

* Put a semicolon only after the last production with a given left side, and put the semicolon on a separate
fine. New productions can then be easily added.

* Indent production bodies by one tab stop. and action bodies by two 1ab stops.

Fhe exumples in this paper sometimes deviate from this style to conserve space.

2. Esvaluation And Translation Of Expressions

Both actions and productions must be considered when a vace specification is designed. Without actions, a
parser would silently analyze input strings. complaining only if it detects an error. With suitable actions. a parser
can become an evaluator or a translator. Typically. the desired actions influence the choice of productions.

For example. the actions for evaluating the integer and fractional parts of a real number motivate different
productions for the sequences of digits represented by integerPart and fraction in Section |. In the
mteger part, the contribution of a digit depends on the number of digits to its right: the contribution of 3 in
321,789 is 300, where the number of zeros depends on the number of digits to its nght. In the fractional part.
however. the contribution of a digit depends on the number of digits to its left; the contribution of 9 in
321,789 1s 0.009. where the number of zeros depends on the number of digits 1o s left.

S S
Arithmenc expressions are a fertile source of examples for vace because the specifications of expression
evaluators and ranslators are quite short, and the ideas carmy over 1o richer languages. This section begins with a

A
"l

Research Tenth Fdition

yacce

Yacc: A Parser Generator

specification for an expression evaluator. The evaluator benefits from yacc’s facilities for specifying the associa-
tivity and precedence of operators within expressions. The next example. a translator from infix into postfix

notation. illustrates parsing order.

2.1. Grammars for Expressions
Expressions are characterized by the operators within them: the choice of productions for expressions

depends on the associativity and precedence of operators.

An operator OP is left associative if an expression
expr, OP expr., OP expr;
is evaluated as if it were parenthesized as

(expr; .OP expr,) OP expr;

Similarly. the operator is right associacive if the expression is evaluated as if it were parenthesized as

expr, OP (expr, OP expr;)
An operator OPA has lower precedence than an operator OPB if the following equivalences hold (that is. the
expressions to the left and right of the = signs have the same values):

expr, OPA (expr. OPB expr;)

expr, OPA expr. OPB expr; =
OPA expr;

expr, OPB expr. OPA expr; = (expr,; OPB expr,)

The traditional grammar for arithmetic expressions uses three nonterminals expr. term. and factor,
where expr represents an expression and term and factor represent subexpressions. Tokens NUMBER and

VAR represent numbers and variables. The grammar is

ctoken NUMBER VAR

;xpr : expr '+' term | expr ‘-’ term | term

term f term ‘*!' facter | term '/’ factor | factor
factor ; NUMBER | VAR | ' ('’ expr ")’

In words, an expression is a sequence of terms separated by + or — signs. A term is o sequence of factors

separated by * or / signs. Thus,

d*ar*c
is 4n expression contuning two terms b=b and 4*a~c. The term 4~ax*c has three factors 4. a. and c. A fuc-
tor 1s either a number, a variable, or a parenthesized expression.

he grammar for expressions dates back to Backus™s introduction of BNF [4], a notation for writing gram-

mars.
A desk caleulator can be based on this grammar by udding actions. as in

=5s)s expr '-' term { $§ = Sexpr - Sterm; } ;

This production and action respect the left associativity of the minus operator, and correctly evaluate 7-1-2 1o +
— check 1t by drawing a parse tree.

The traditional grummar generalizes to operators at # = | precedence levels; all operators at the same level
have the sume associativity and precedence. Set up a nonterminal expr, for precedence level 1. with level |
being the lowest. In the traditional grammar, the nonterminals expr. term, and factor correspond W expr .

expr,. and expr,. respectively. If the operators at level i < n are left associative, then the productions for

expr, have the form

UNIX Papers

£ ten

L4

o i g |

3
#define ¥
%}

ttcken WL
tleft *+*
tlefr *=*
$right *°
tleft UMI
33

lines

expr

expr, :

Here, OP represen
productions have i

s¥pr., : -
Al each prece

—XpPr

[]
[]

. Associativity

Yace has spec
duced by consideri
The tokens ot

RS Y

(Ignore UMINUS 1

The associan

X1 aE
Tieft 1k
+2LlC, sT1gh '

0
"

have Jower preced
declarations.
(The Kevword
5

15 illezal in Fortra

The precedence

Research Tenth Edit,

pecifying the as50cjg i

oM infix intg post

1ons for expressin

sized as

2s hold (that s, the

m, and factor,
-€ns NUMBER and

ience of factlors

and c. A fac-

writing gram-

-2 10 4

e same |evel
with level |
1o expr;.
ductions for

NIX Papers

Yacc: A Parser Generator

${
¢define YYSTYPE double
%}
%token NUMEER
sleft "+' ‘=’ 2
gleft "*° '/’
4right ©~°
3left UMINUS
%%
lines : 1lines expr '\n’ { printf("3%g\n", S$expr):; }
| lines ‘\n’
| /* empty */
expr : expr '+' expr { §$ = $1 + $3; }
| expr ‘-’ expr [58 = 51 - 83; }
| expr '*' expr { 85 = 51 * $3; }
| expr ’/' expr { $¢ = 851 ./ $3; 1}
| expr ""' expr { $§ = pow(S$1l, §3);)
| ‘-' expr %prec UMINUS { $5 = - Sexpr; |}
| (" expr ")’ { $$ = Sexpr; }
| NUMBER
Figure 5. An expression evaluator based on precedence declarations for tokens.
expr; : expr, OP expr;,, i

Here, OP represents an operator at level /. Otherwise, if the operators at level i are right associative, then the
productions have the form

expr, : expr,.; OP expr;

At each precedence level i < n. there is an additional production of the form

ib

XPL; i eXpPrj.p 5

2.2, Associativity and Precedence Declarations

Yuce has special facilities for declaring the associativity and precedence of operators, which will be intro-
duced by considering the specification in Figure 5.

The tokens of the evaluator in Figure 5 are parentheses. NUMBER. and the operators

far Fp pwr 0 g0 rar OOMINUS
tlgnore UMINUS for the moment.)

The associativity and precedence of tokens are declared on lines beginning with one of the keywords

left. -right. or :ncnassoc. All of the tokens on a line have the same associativity and precedence; they

have lower precedence than the tokens on successive lines. These declarations will be referred 1o as precedence
declarations.

(The keyword -nonassoc describes operators that do not associate with themselves: for example.

A: oLE: By GLT: &

is illegal in Fortran because .LT. is nonassociative.)

The precedence declarations

.
N

Research Temth Edition

Yacc: A Parser Generator

finclude <stdio.h>
#include <ctype.h>
#include <math.h>

int yylex() {

int o
while ((¢ = getchar()) == * 7);:
If { (e == fur) | (isdigiti(e))) |

ungetc(c,

stdin) ;

Yace

scanf (":1£f", &ayylwval);
return NUMBER;

}

return c;

Figure 6. User routines for the evaluator in Figure 5.

left '+’ 1~

left rxr

tright =
specity that + and - are left associative and have lower precedence than the lefi-associative operators * and /,
which in turn have lower precedence than the right-associative operator *.

The operator * in the grammar represents exponentiation, as in 2~ 3, which evaluates to 8. This operator is
right associative; thus. 223 is equivalent to 2~ (2~3), 28, and 256.

The nonterminals of the grammar are lines and expr. The grammar expects a sequence of expressions,
on separate lines. A typical production for expr has the form

expr : expr '+’ expr { 88 = 351 + §3; }
Alternatively, we can write the action as
expr : expr ‘+’' expr { $5 = Sexpr#l + Sexpr#2;)

With these precedence declaranions, the expression
2 A2 A F) Sk as (R w6 = g1 % g

ts evaluated as if it were parenthesized as
((2%(273))*4 - 5*5) - 7*8

The user routines for the evaluator are in Figure 6. The lexical analyzer yylex returns a token each time it
iy called. It skips blanks. If it sees a digit or a decimal point, it returns the token NUMBER after using the C
fibrary function scanf to read a number into the global variable yylval (as mentioned in Section |, tf_u.- aitri-
bute value. it any. associated with a token must be left in yylval). Otherwisc.

the lexical analyzer returns a
single character as a token.

The parser uses precedence declarations to decide when 1o apply a production, Suppose that the input has
the form

1

Xpr * expr
and the parser has to decide whether or not to apply the multiplication production
eXpPr : expr ‘'~ expr

It the next symbol in the input is +. as in

A
=

UNIX Papers

expr * ex

the parser applies
the next symbol :
than *.

The treatmer

expression 10°-_

. having higher pre
as a binary or as :

' Yacc provide
in Figure 5 gives

expr :

~overrides the decl:
=" is used instead. T

When severa
right side to decic
example, the %pr:

expr : '
is necessary for ir
precedence from tf

It is recomme
gained. How vact

’ - 2.3. Execution O:

The executior
order is to imagine
to right, starting .
implies that ail the
tree in Figure 7 in
they would be visi

The parse tres

Research Tenth Edi.

 jace Yacc: A Parser Generator

expr * expr +
the parser applies the multiplication production because the token + has lower precedence than *. However, if
the next symbol in the input is ~, the parser defers the multiplication production because ~ has higher precedence
than *.

The treatment of the unary minus operator deserves special mention. The evaluator in Figure 5 accepts the
expression 10~~-1 in lieu of 10™! = 0.1. In other words, 10~-1 is treated like 10~ (~1), with unary minus
having higher precedence than ~. The precedence of the minus operator therefore depends on whether it is used
as a binary or as a unary operator.

Yacc provides the keyword $prec for overriding the declared precedence of a token. A 3left declaration
in Figure 5 gives — the lowest precedence, along with +. The keyword $prec in

expr : '-' expr 3%prec UMINUS
overrides the declared precedence of —. When this production is applied. the high precedence of token UMINUS
is used instead. The expression 3—10~-1 is therefore equivalent to 3— (10"~ (-1)).

When several tokens appear in a production, the parser normally uses the precedence of the last token on the
right side to decide whether to apply a production. The $prec keyword overrides this normal behavior. For
e example, the $prec in

expr : ‘(' TYPENAME ')’ expr tprec TYPENAME
is necessary for the production to take the precedence of token TYPENAME: otherwise the production takes its

precedence from the closing parenthesis.

It is recommended that precedence declarations be used in a ‘‘cookbook’" fashion, until some experience is
eained. How yacc uses precedence declarations is examined further in Section 4.

Ta

rators * and /,

Chis operator is +
¢ 2.3. Execution Order for Actions
Ol expressions, . : e . . . ; :

P The execution order of actions is significant because actions can have side etfects. One way to visualize the
order is to imagine a traversal of a parse tree in which the children of each node are visited depth-first from left
to right. starting at the root. Suppose a node has two children ¢ and d. with ¢ to the lett of d. Depth-first
implies that all the nodes in the subtree for ¢ are visited before any nodes are visited 1 the subtree for d. The
‘ree in Figure 7 includes actions as pseudo-symbols. attached by dashed lines. Actions are executed in the order
they would be visited in a depth-first left-to-right traversal.

The parse tree in Figure 7 ts based on the following specification 01 an inhix-te-posttix translator:

— T
: \ L
 each time it evpr + oy {prnt +}
using the C / he // N
' 1, the atrni- Niv [prnt v/ st} v R
A
/€T relums d M =2 A -
v . L _'\prrm)
PR .
e input has el .
NV LD SAG M
A =3 \
NARY Lprmt s}
Wiy o= S

Figure 7. Actions are executed in a depth-first lefi-to-right order.

NIX Papers Research Tenth Edition

Yyace

Yacc: A Parser Generator

stoken NUM
sleft '+
ileft !

A2

expr '+’ expr {! printf (™ F2) =)

expr
| expr ’'*' expr { printf(*")s }
r r {I’ expr r) r
| NUM { printf(" 3d", $NUM); }

r

The translation is emitted incrementally during parsing. so the execution order of the print statements is critical.
The translation of 2+3*5 is

23 5 * +

2.4. Actions Embedded Within Rules
Yace permits an action to be written in the middle of a production as well as at the end: actions in the mid-

dle are called embedded actions.
Embedded actions are useful for keeping track of context information. For example. consider the typeset

text £ ,"", specified by the egn input
E sub 1

The smaller point size of I, relative to that of E, is dictated by the context: specifically, by the preceding key-
word sub. The eyn grammar uses embedded actions to maintain the current point size in variable ps. The

embedded action ps —=del in

{ ps —= del; } { ps += del; }

box : box SUB Dbox

reduces the point size before a subscript is processed: the other action ps +=del restores the point size. Nonter
minal box represents an egn construct, and token SUB represents the input characters sub.

Each embedded action is implemented by manufacturing a fresh nonterminal, called a marker nonterminal.
Yace actually treats this eqn example as if it had been written:
_ACT SUB box
[ps += del; }

box : box

b0
K
[}
1

/* empty */
{ ps -= del; |}

The fresh marker nonterminal _ACT marks the position ol the embedded uction ps -=del.
ihe wo

Within an embedded action. $5 refers to the attnibute value of its marker nonterminal. Thus.
oceurrences of $5 in
S$=1;) © {x=3%52; 3§ = §c: } ;

i

a - b |
refer to different nonterminals, shown explicitly in

ACT ¢ { = 852; 5% = 3¢; }

a : b W
empty */ { 5 = 1; } ;

AT . e

In words. the eltfect of
$$ = Sci } o;

a:b {58 =1;1}1 e [x = 852;
is to make 1 the attribute value of the implicit marker nonterminal in position 2, assign 1 to variable x. and make

Sc the attribute value of the left side a.
Note that ¢ is at position 3, so the above production can be rewritten using $3 instead of Sc:

UNIX Papers

.
¥
b
e
%]
-" -
=

Research Teniy £

3. How The P
The algorn
parser itself is
e shift to the
s reduce by
Some familiarii:
conflicts. which

Yace place-
with the -v (for
ing conflicts the:

The runnin.

W

itoken [

VoY
i

real

intp

frac
The abbreviated
The use of token
3.1. Shift-Reduc

A bortom-u;
sequence of tree
number 21.83.

DDPD,
Let us redraw the
redrawn sequence

DDPODD

. The uncovereq
Indeed unambiguoy

Dbeppp

d _Thcsc snapshoi
uction by ity jery +,

: Called lookahead <

yace Yacc: A Parser Generator

I
[
0
Ed

I
R
N
<
<

[
i
L9

a:b { ss

3. How The Parser Works
The algorithm used to go from a grammar to a parser is complex and will not be discussed here, but the
parser itself is relatively simple. Its two main actiog are
e shift to the next input symbol and
e reduce by applying a production.
Ments is critica), . f Some familiarity with such actions is helpful in deciphering messages about **shift/reduce"* and “‘reduce/reduce’’
conflicts, which wam of potential ambiguities in the grammar that could lead the parser astray.

Yacc places a human-readable description of the generated parser into a file Y .output, when it is invoked
with the —v (for verbose) option. This section deals with the parsing background behind y . output files: pars-
ing conflicts themselves are considered in Section 4.

ions in the mid. ; The running example in this section is the following grammar for real numbers:
token D P
ider the lypeset oz %5
real : intp P frac ;
intp : D | intp D g
frac : D | D frac ;

preceding key-

able ps. The The abbreviated names intp for integer part, frac for fraction, and D for digit, conserve space in diagrams.

The use of token P for a decimal point 7 .’ avoids confusion with other uses of dots within y .output files.

_ 3.1. Shift-Reduce Parsing

size. Nonter. ¥ 28 A bortom-up parser works from the leaves (bottom) of a parse tree towards the root. The following
: sequence of tree snapshots illustrates a bottom-up parse of the token stream DDPDD. corresponding to the real
number 21.89. For the moment, the digit represented by a token D appears below the token. The trees are

nonterminal,

real
: 74 Y

mnip inip mp frac mip | frac

= = / = / = /| [\ = | I
i i nip Sfrae intp| iﬁ'd: mipt | |frac
opePpDoD DDPDD DDPDD DL‘PDD DDPDD DD;”I.JD
N R TR = S e LY = LT el 2000 K o TR

Let us redraw these trees to line up their uncovered portions: that is. the roots of the completed subtrees. The
i redrawn sequence is

15, the o

DDPOD = ijmpbDPDD = mip B DD = imp P Dfrac = up Pfrac = real
: /] ‘| | A 1N /N
D intp | intp D intp| frae intp | frae
)] | o il 21N
DD DD DD DD intp| | frac
!

[
DOPDD

The uncovered portions sutfice. as long as the grammar is unambiguous. The real-number grammar s
indeed unambiguous. so the preceding sequence of partial trees is characterized by the snapshots

DODEDD = [wpbDPDD = iupp DD = gup PDfrac = ity P ofrae = real
and make - o) : : : .
- These snapshots correspond 10 a sequence of reduce actions; a reduce action replaces the right side of a pro-
£, duction by its left side. A s4i7 action advances the parser to the next unexamined input token: such roken- are
called fookahead svmbols.

< Papers g, i Research Tenth Edition

yace

Yacc: A Parser Generator

iD D P DD Send

shift shift

‘? 1] J'D P DD Send ntp P D l.f} Send
reduce _ y | shift

intp YD P DD Send mip P DD } Send
shift reduce o

intp D bpp DN Send mip P D frac b Send

reduce reduce

inip tPD D Send ntp P frac x‘,’\'cm."
shift | reduce

| |
intp P YD D Send | real ¥ Send

Figure 8. Shift-reduce parsing of DDPDD.

The key problem of shift-reduce parsing is that of deciding when to shift and when to reduce; vace gen-
erates tables for this purpose that are explained later in this section. Meanwhile, an example of a shift-reduce
parse appears in Figure 8. The input token stream is again DDPDD. and a special token Send marks its end. In
the figure, a pointer appears before the current lookahead symbol. The first action. a shift, advances the pointer

past the leftimost D:

| |
"ODPDD Send shift DYDPDD Send

The second action reduces the token D immediately to the left of the pointer (right sides to be reduced are under-
lined for clarity). The reduction replaces the right side D by its left side intp:
inip "D P DD Send

D'DPDD Send reduce

ntp:

After the next D is shifted, the right side intp D is reduced 1o the left side 1

I NP DD Send reduce bp VP DD Send

Successive shift actions now advance the lookahead pointer all the way to the endmarker, Finally, a sequence of
reduce actions completes the parse,

It is no accident that a right side to be reduced always appears immediately to the left of the puinter in Fig-
ure 8. This observation is the basis for 4 stack-implementation of shift-reduce parsing. Informally. the sy mbaols
to the lett of the pointer are held on a stack. so a right side 1o be reduced appears at the 1wp of the stack.

3.2, Parser States
Instead of grammar symbols. 4 vacc-generated purser works with states, which encode some parsing context
The context summarizes prior parsing actions. For example, states tell a

together with a grammar symbol,
al point reduces to intp, but that a digit to the right

parser for real numbers that a digit to the left of a decim
reduces o frac.

A state consists of a collection ol items. where an item is & production with a dot inserted in the right side
— some versions of vace use an underscore in place of the dot. One of the states of the real-number parser is
ntp.P frac
intp.D

real
Lntp

The dot tells us that an intp has just been seen. and that the parser expects 1o se¢ 4 P or g D.

UNIX Papers .

36)

i, . s s o

I Saceeps

|
|
|
|

D

i.'
[

i

Figure 9. States an!
ransitions during rec:

In this state, ik
to obrain the item

real : in:

Since, frac o
Although they are n
closure. of this state
side):

i
(\1]

na
(W) ;
L}

oy oy
oy
o

Since both productic:
continue adding prod

With this closur:

'y

O o

Laec
~ac

The parser states
appears in Figure 9.
due 1o nonterminals, .

For technical re:

dc_ﬂ‘fth the old startin.
et of the ojg starting

Th

' closure of state O

Research Tenth Edition

> Send
‘end
end
nd

nd

—_—

reduce; vacc gen-
* of a shift-reduce
marks its end. |y
rances the pointer

e

duced are under-

a ~equence of

sointer in Fig-
‘. the symbois
tack.

rSing context
states tell a
1o the right

1e right side

parser i

JIX Pupers

L a———

; 'yac(-‘ Yacc: A Parser Generator

0
: Send

real
Saccept : s real $end)----- '-e-a----~->{ Saccepr : real o Sendl——— > accept
= 5

inip | real : imip « P frac D e
L">‘7inl[7: intp « D _—_—*L intp - imtp D « l

4 6
P .
D real : intp P o frac‘} ----- [Cq(. _____ real : inp P frac ‘1
7
¥ 3 D T D Friie 8
[inip D - j frac: D .fm(,r“---'“--"{ frac: D frac «]

(o)

Figure 9. States and transitions for the real-number grammar. The solid arrows are for shifts, and the dashed arrows are for
transitions during reductions.

In this state, the parser shifts on lookahead P. The shift is recorded by (conceptually) moving the dot past P
to obtain the item

real : 1intp P.frac

Since. frac now appears to the right of the dot. the parser expects the incoming symbols to match a frac.
Although they are not shown. the productions for frac are implicitly carried with the item. The full version. or
closure. of this state is obtained by adding the productions for frac (with a dot at the beginning of the right
side):

real : intp P.frac
frac : .D
frac : .D frac

Since both productions for frac begin with the token D. no more productions are added; otherwise, we would
continue adding productions until all nonterminals to the right of the dot were considered.

With this closure. on lookahead D. the parser shifts to a state containing the items

frac : D.
frac : D.frac

The parser states and their transitions constitute an automaton. The sutomaton for the real-number grammar
sppears in Figure 9. The solid arrows are for shift transitions. due to tokens. The dashed arrows, for transitions
tue to nonterminals. are used duning reductions.

For technical reasons. vuce augments a grammar by adding a new staning nonterminal Saccept, which
derives the old starting nonterminal and an endmarker $end. The starting state O has an item with a dot to the
icft of the old starting symbol, as in

Saccept : .real Send

Fhe closure of state 0 contains the ilems

Research Tenth Editon 361

Yace

Yacc: A Parser Generator

Saccept .real Send
real : .intp P frac
intp i aiD

intp : .intp D

Since the only token to the right of a dot is D, the very first token must be Jg
Some of the states of the real-number parser in Figure 9 are (informally)
The starting state. The item $accept: .real Send tells us that the entire input, upto the endmarker,

0.
must match real.

2. Within the integer part. An intp has been seen. The lookahead token must either be a D (another digit in
the integer part) or a P (the decimal point).

7. Within the fraction part. Shift as long as the lookahead token is a D. Otherwise, reduce the last D to

frac.
State 2 is displayed as follows in the y.output file for the real-number grammar:

state 2
real : 1intp.P frac

intp : intp.D

D shift 5
P shift 4
error

After the two items is a summary of the actions in this state. With lookahead D. the parser shifts to state 5. and

with lookahead P it shifts to state 4. The default action (represented by **."*) is to report an error.

3.3. Parsing Actions
The parser holds states on a stack, with the current state on top. The starting state of the automaton in Fig-

ure 9 is state 0. With lookahead D, the automaton shifts to state 3 (in the bottom-left corner of the figure) by
pushing 3 onto the stack and removing the lookahead D from the input. For ease of comparison with Figure 8.
the symbol D appears below the state in the following diagram:
S i
(0] DDPDD Send
shift
—_ 1
03 DPDD Send

Th input symbol.

e top of the state stack has its own pointer, separate from the lookahead pointer to the next
The only ttem in state 3 s

intp & D
Whenever the dot in an item is at the end of the production. one of the possible actions is a reduction by that
production. Since this state has no other actions, the parser chooses to reduce,

A reduce action has two phases: (a) pop the states corresponding to the right side, and (b) push a state
corresponding 1o the left side. The following diagram illustrates the reduction of the leading D in DDPDD [0

intp:

UNIX Papers

pop

goto

The parser h.
is as follows:

I. Based on its
If it needs on:

2. Using the cun

a) A shift =
token.

b) A reduce
stack a
uncovere:
o r(see

¢) The accer
when the !

d) An error -
That is, th.
that would

4. ‘Ambiguity and (

A S}Hﬂfﬂ’d!u e
| :
larly, a reducerreciyc.

Conflicts definite
Parse ree. Conflicts
~ace is capable of o
middle of 3 productior

Yace produces 4
called disambieuatin 19

L Ina shift/reduce .

7
= Inared uce/reduce

Although the effe
conflicts, experience su

- 'T'he rest of this s¢
[he ntended effecr. a4ny
¢ ¥.output file cred

Rcsea:ch Tenth Edition

upto the endmarke,
A D (another digit in

>duce the las; Do

| 3
iﬂs to state 5, and
TOT.

utomaton in Fje-
of the figure) by
n with Figure 8,

L svmbol.

luction by that
|

) push a stute =
in DDEDD 10

NIX Papers

Yacc: A Parser Generator

i
DPDD Send

t
[0]3]

o

Pop the states corresponding to the right side D.
pop
P
mip DPDD Send Prepare to push a state for the left side inp.

goto

i
DPDD Send

{
[9]2]

intp

State 0 goes to 2 under inip.

The parser has only four actions available to it, called shift. reduce. accept, and error. A move of the parser
is as follows:

1. Based on its current state. the parser decides whether it needs a lookahead token to choose the next action.
If it needs one, and does not already have one, it calls yylex to obtain the next token.

2. Using the current state p, and the lookahead token 1 if needed, the parser chooses an action.

a) A shift action to state g is done by pushing state ¢ onto the state stack and clearing the lookahead
token.

b) A reduce action by a production is done in two phases. In the first phase, the parser pops from the
stack a number of states equal to the number of symbols on the right side. Let g be the state
uncovered after the states are popped, and let the nonterminal on the left side of the production take q
to r (see the dashed arrows in Figure 9). In the second phase, the parser pushes state r onto the stack.

¢) The accepr action occurs after the entire input has been seen and matched. This action occurs only
when the lookahead token is the endmarker Send.

d) An error action occurs when the parser can no longer continue parsing according to the productions.
That is. the input tokens seen so far and the current lookahead cannot possibly be followed by anything
that would result in a legal input. See Section 5 for error recovery.

4. Ambiguity and Conflicts

A shiftireduce conflict occurs if the parser cannot decide between a shift action and a reduce action, Simi-
larly, a reduceireduce conflicr oceurs if the parser cannot decide between two legal reductions.

Conflicts definitely occur when a grammar is ambiguous: that is. if some input string has more than one
parse tree. Conflicts can also occur when a grammar, although consistent, requires a more complex parser than
vace is capable of constructing. Finally, conflicts are sometimes introduced when an action is embedded into the
middle of a production.

Yace produces a parser even when conflicts oceur. Rules used to choose between wo compeling actions are
called disambiguating rufes. The default disambiguating rules are:

I In a shifyreduce conflict, the default is to shifi.
2. In a reduce/reduce conflict. the default is to reduce by the earlier production in the specification,

Although the effect of disambiguating rules can often be achieved by rewniing the grammar 1o avoid
conflicts, experience suggests that this rewriting 15 somewhat unnatural and produces slower parsers.

The rest of this section considers two situations. one in which the default disambiguating rules do not have
the intended etfect, and one in which they do. It is recommended that shift/reduce conflicts be investigated using
the y.output file created by running yace with the =v option,

Research Tenth Edition 363

Yacc: A Parser Generator yace

4.1. To Shift or To Reduce
Yacc reponts 2 shift/reduce conflicts when it is applied to

itoken NUM
expr : expr ‘\n’ { printf("\n"); }
| expr -’ expr { printf(" -"); }
| NUM { printf (" 3g", $SNUM); }

The hope here is to translate an infix expression, terminated by a newline, into postfix notation. Thus, we
want
2-1-1A\n
to be translated into
21-1-\n
The answer would be 0 if the expression were evaluated by subtracting | from 2, and then subtracting | from the
result. Unfortunately, the output of the parser (with a suitable user-routines section) is
211 \n -~ - ’
What happened? The problem can be traced to the preference for shift in a shify/reduce conflict. which makes -
right associative, and gives \n higher precedence than ~.
A slightly edited version of the y.output file for this grammar appears in Figure 10. Untortunately. both
productions and states are numbered, leaving room for confusion. The action
. reduce 2
refers to production 2, whereas the action
\n shift 3

refers to state 3.
The two shift/reduce conflicts are in state 5. In this state. by default, the parser shifts the lookaheuad ~ym-
bols \n and - instead of using the item

expr : expr - expr. (2)

to reduce by production (2). This reduction can occur only when the right side is on top of the stack, so. when
the conflict occurs, the stack must contain states corresponding to

lexpr,| - | exprs]

(The subscripts merely distinguish between the two occurrences of expr.)

The other items in state 3 tell us more about the choices taced by the parser. With lookahead \n the parsef
shifts, by the default disambiguating rule. Thus, it treats expr, on top of the stack as if it were in the e

expr : expr,.\n
instead of the item
expr : expr, - eXpry. (2)
Similarly. with lookahead —. the parser treats expr, as if it were the first subexpression in

expr eXpr, .- exXpr

Putting these observations together, the input 2—1-1\n results in the stack evenwally containing

expr - expr - expr \n

364 UNIX Papers

state .
Sa:
ex:
exz
Sex
\n

5

state 2

exp:

- A sequence of re
The addition of

’

tnonassoc
tleft 4

eliminates the confii

state 5
2Xpr
expr
expr :

Here, the reduction
and its higher precede

4.2, Precedence Decl:
Precedence declar.

As mentioned 1n
keywords specity the
Precedence: wkens n -
not be, but can be. dedd

3
This explanation assumes

. .

'8t side expryn. Arthi P

eXpr - expr - ex

The parser Needs more mput t

RCScarch Tenth Edition

tation. Thus, we

cting 1 from the

which makes -

ortunately, both -

>okahead sym-

ack. so. when

\n. the parser
the em

NIX Puapers

Yacc: A Parser Generator

o

state O state 3

$accept : .expr S$end expr : expr \n. (1)
NUM shift 2 . reduce 1 2
error
% state 4
® expr goto 1

exXpr : expr -.expr
NUM shift 2

. error

expr goto 5

state 1
S$accept : expr.$end
expr : expr.\n
eXpr : expr.- expr

Send accept 5: conflict (shift \n, reduce 2)
. . 5: conflict (shift -, reduce 2)
\n shift 3 tate 5
- shift 4 state
error expr : expr.\n
exXpr : expr.- expr
state 2 expr : expr - expr. (2)
o S 31 \n shift 3
reduce 3 - shift 4
reduce 2

Figure 10. A slightly edited y.output file.

- hi
A sequence of reductions now occurs; the corresponding actions print a newline and two minus signs.”

The addition of the precedence declarations

*nonassoc ‘\n’
~left "=t

climinates the conflicts in state 5, resulting in the new state

state 5
expr : expr.\n
exXpr : exXpr.- expr
eXpr : expr - expr. (2)
reduce 2

Here. the reduction takes precedence over the potential shifts. thereby implementing the lett associativity of -
and its higher precedence over \n.

4.2. Precedence Declarations
Precedence declarations give rise to disambiguating rules for resolving parsing contlicts.

A~ menuoned in Section 2. a precedence declaration starts with =left. right. or :ncnasscc. These
hevwords specify the associativity of the tokens in a declaration. All the tokens in a declaration have the same
rrecedence: tokens in successive declarations have higher precedence. A token in a precedence declaration need
not be. but can be. declared by stoken as well.

This explananion assumes that the newline is the Tast character of the input. If 1 is not. the parser will want tor more input after reducing the
neht side exprin. At this point. the stack contains

expr - 2xpr - expr

The parser needs more input before 1t can choose whether o shift on aewlime, shift on minus, or reduce on any other joken.

Research Tenth Edition 365

Yace: A Parser Generator yace

The disambiguating rules are as follows.

I Although declared only for tokens and literals, precedence information is attached to each production a5
well, The prcc:‘de;ge and associativity of a production is that of the last token or literal on its right side.

The *prec constn@ion overrides this default.

2. If there is a shift/reduce conflict, and both the lookahead symbol (to be shifted) and the production (10 be
reduced) have precedence declarations, then the conflict is resolved in favor of the action (shift or reduce)
with the higher precedence. If the precedences are the same. then the associativity is used; left associative
implies reduce. right associative implies shift. and nonassociative implies error.

In the absence of precedence information, the default disambiguating rules given earlier in this section are
used. More precisely, suppose that there is no precedence information for either the lookahead symbol or
production to be reduced by. A shift/reduce conflict is resolved by shifting. A reduce/reduce conflict js
resolved by reducing by the production that appears earlier in the specification. Conflicts resolved by these

o

default rules are reported.

Conflicts resolved by precedence are not counted in the shift/reduce and reducefreduce conflicts reported by vace,
Thus, mistakes in precedence declarations can mask errors in the design of the productions.

4.3. Shift a Dangling Else
As an example of the power of the default disambiguating rules consider a fragment from a programming
language involving an if-then-else construction:

(" expr *)’ stmt
‘(" expr ')’ stmt ELSE stmt

stmt

g

oo

Here. IF and ELSE are tokens. stmt is a nonterminal for statements, and expr is a nonterminal for expres-

stons. Call the first production the simple-if production and the second the else-if production.
These two productions are ambiguous. since
IF (expr,) IF (expr,) stmt, ELSE stmt,

can be structured 1n two ways

IF (expr,) {

ELSE stmt, }

[he second interpretation, with an ELSE matching the nearesr preceding unmatched IF, is the one tahen by most
programming languages. It is the mterpretation obtained when shift/reduce conflicrs are resolved i favor of shift
actions.

The y.output file for a grammar contuning the simple-if and if-else productions contains a shift/reduce
contlict. illustrated by

9, red’'n 1) on ELSE

(1)

This contlict occurs when the lookahead symbol is ELSE and the parser stack contains the right side ot the
simple-if production

[F (expr) stmt

66 UNIX Papers

yacec

The parser chooses
IF (&

to be successfully r
lookahead ELSE) w

stmt £
which cannot be par
A shift on lon

contents

n

v IF [@
and lookahead ELSE
IF (=
A reduction by the i1
IF (e;

which can be reducec

5. Error Handling

Error handling i
found, it may be nece
alter symbol-table =n:

It is seldom acce
parsing continues. B
card tokens from the

Yace provides a
reserved for error har
planned. When an er
It then behaves as 1t
then reset to the toker

In order to preye:
i three tokens hase

CITOr state. no messiy
For example, a pr

J_mt : o

would, in effect, meu.
CITOr was seen. More
Satement, and start pr
't May make a false
no error,

Actions can be us
Symbol (able space, el

S -

Productions with
are productions such as

St
-t erro

Research Tenth Edition

Yace

ch production 5
On its right sige,

production (to be
(shift or reduce)
I; left associative

| this section are
ead symbol or 4
>duce conflict jg
esolved by these

“ported by yacc.

a programming

nal for ex pres-

aken by most
favor of shift

shityreduce

side of the

NIX Pupers

yace Yacc: A Parser Generator

The parser chooses to shift the ELSE rather than reduce by the simple-if production. This choice allows

IF (expr) stmt ELSE stmt
to be successfully reduced by the if-else production. Note that a premature application of the simple-if rule (with
lookahead ELSE) would lead to the stack contents
stmt ELSE stmt
which cannot be parsed further.
A shift on lookahead ELSE also matches an ELSE with the nearest preceding unmatched IF. With stack
contents
IF (expr) IF (expr) stmt
and lookahead ELSE. the parser shifts, so the stack eventually holds

IF (expr) IF (expr) stmt ELSE stmt

A reduction by the if-else production now yields

IF (expr) stmt

which can be reduced by the simple-if production.

5. Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones. When an error is
found, it may be necessary to undo the effect of actions — for example, to reclaim parse-tree storage, to delete or
alter symbol-table entries — and. typically, set flags to avoid generation of further output.

It is seldom acceptable to stop all processing when an error is found: further syntax errors might be found if
parsing continues. But. how do we get the parser “‘restarted”" after an error is detected. One approach is to dis-
card tokens from the input until parsing can be continued.

Yacce provides a simple. but reasonably general. feature for discarding tokens. The token name error is
reserved for error handling. On the right side of a production. error suggests a place where error recovery is
planned. When an error occurs. the parser pops its stack until it enters a stale where the token error is legal.
It then behaves as if error were the current lookahead. and pertorms the action encountered. The lookahead is
then reset {0 the token that caused the error. if no error productions are specitied. parsing halts when an error is
detected.

In order to prevent a cascade of error messages. the parser. atter detecting an error. remains in the error state
untit three tokens have been successfully read and shifted. It an error is detected when the parser is already in
error state. no message is given, and the input token is quietly deleted.

For example. a production

stmt @ error

would. i ertect. mean that on a syntax error the parser would attempt o Skip over the statement in which the
error was seen. More precisely. the parser will scan ahead. looking tor three tokens that might legally follow a
statement. and start processing at the first of these: 1f the beginnings of statements are not sutticiently distinctive,
it may make a false start in the middle of a statement. and end up reporting a second error where there is in fact
NO error.

Actions can be used with these special error rules. These actions might attiempt 1o reinitialize tables. reclaim
symbol table space. ete.

Productions with just error on the right side are very general. but difficult to control. Somewhat casier

are productions such as

stmt error ;

Rescarch Tentihv Ediion e 367

yace

Yacc: A Parser Generator

Here. upon error, the parser altempts to skip over the statement, but will do so by skipping to the next semicolon,
All tokens after the error and before the next semicolon cannot be shifted, and are discarded. When the semi-
colon is seen, this right side will be reduced. and any *‘cleanup’ action associated with it performed.

Another form of error production arises in interactive applications, where it may be desirable to permit 3
line to be reentered after an error. A possible error production might be

N

input : error '\n
[printf("Reenter last line: "); }
input
{ $5 = Sinput; }

One potential difficulty with this approach is that the parser must correctly process three input tokens before i
admits that it has correctly resynchronized after the error. If the reentered line contains an error in the first two
tokens, the parser deletes the offending tokens. and gives no message: this is clearly unacceptable. For this rea-
son, there is a mechanism that can be used to force the parser to believe that an error has been fully recovered
from. The statement

yverrok;

in an action resets the parser to us normal mode. The last example is better written

input :

last line: "); }

As mentioned above. the token seen immediately afier the error symbol is the input token at which the
error was discovered. Sometimes, this is inappropriate; for example. an error recovery action might take upon
itself the job of finding the correct place 1o resume input. In this case. the previous lookahead token must be
cleared. The statement

yyvclearin;

m an action has this effect. For example, suppose the acuon after error is to call some sophisticated resynchroni-
zation routine. supplied by the user, that attempts to advance the input to the beginming of the next valid state-
ment. After this routine 1s culled. the next token retumed by yylex is presumably the first token in a legal
statement; the old. illegal token must be discarded. and the error state reset. This cun be done by a rule like

tmt : error

(V)]

resynch():

These mechanisms are admiitedly crude. but do allow for a simple, fairly effective recovery of the parsee
from many errors: moreover, the user can get control o deal with the error actions reguired by other portions ol

the program.

6. The Yacce Environment

From a specification, vacce creates a tile of C programs, called v. tab.c on most sysiems.

6.1. Program Organization

Consider a specification file ot the torm

e R

Resca’n:h Tenth Edition

yace
5 {
(rs
#define
3}
{:f{"
s »
\J’H [}
{u_‘:.

From this specific

¥ AT
tdefine v
'\'J'ro'i'-\t
(user
{par
Yyyparse ()

Actions are incorpi

As mentioned
plied:

int yylex|
a lexical

int main(

}

void yyerrc
print an er

1

!

The function m:
an error is detected .

A user-supplied
cally do more than
number on which
number at the nme

The external var
verbose description «
environment, it may

6.2. Lexical Tie-Ins

The lexical anuis
An attribute value as
Eenerator /ey [10]} can

The parser and 1
them 10 take place.
Mechanism of C is ue
declamtions secrion

Ytoken IF EL.

] ; .
tads 1o the following

Yace

the next semicolop,
d. When the semj-
‘ormed.

sirable to permij; a

Ut tokens before
"or in the first two
ible. For this rea-
2n fully recovereq

.en at which the
might take upon
1 token must be

ed resynchroni-
1ext valid state-
oken an o lecal
drule hike

- of the parser

ier portions of

UNIX Papers

Yacc: A Parser Generator

(user supplied code within declarations)
#define YYSTYPE (desired type)
i}

(dedm'an'mm?sec'rimr)

{productions)

(user-routines section)
From this specification. yacc creates a file ¥ .tab.c, organized as follows:

(user supplied code within declarations)
#define YYSTYPE (desired type)
(token and other declarations)
(user-routines section)
{parser tables)
yyparse() { --- }

Acrions are incorporated into yyparse.

As mentioned in Section 1, yyparse. the code for the parser, expects the following functions 1o be sup-
plied:

int yylex() {
a lexical analvzer; returns a token

}
int main(--+) {
yyparse();: --:
void yyerror(s) char *s; |
print an error message pointed to by s

The function main decides when it wants to call yyparse. which returns 0 if the parser accepts. and 1 if
an error s detected and no error recovery is possible.

A user-supplied function yyerror is called with a string containing an error message. Applications ypi-
cully do more than simply print the message: for example, the message might be accompanied by the input line
number on which the error was detected. The external integer variable yychar contains the lookahead token
number al the time an error is detected: this may be of some interest in giving better diagnostics.

The external variable yydebug is normally set to 0. It it is set to a nonzero value. the parser will output a
verbose description of its actions, including the tokens read and the parser actions. Depending on the operating
environment. it may be possible to set this variable by using a debugging system.

6.2, Lexical Tie-Ins

The lexical analyzer yylex must returmn an integer. the token number. representing the lookahead token.
\itatiribute value associated with the tohen must be placed in the global variable yvlval,
senerdtor fev [10] can be used together with vuce.

The lexical-analyzer

The parser and the lexical analyzer must agree on the token numbers in order for communication between
them to take place. Token numbers may be chosen by yace. or chosen by the user. In either case. the #define
mechanism of C is used o allow the lexical analyzer 1o refer 1o these numbers sy mbolically. For example. the
declarations section

token IF ELSE

feads to the following detinitions in the tile y-tab.c:

Research Tenth Edition 369

Yacc: A Parser Generator yace

define IF

define ELSE 258

If yylex is inciuded in the user-routines section, it is within the scope of these definitions, so IF and
ELSE can be used as the names of token numbers in yylex.

A file y.tab.h containing the definition of token numbers can be created by running vace with the -4
option.

The approach of treating token names as defined constants leads to clear, easily modified lexical analyzers:
the only pitfall is the need to avoid using any token names that are reserved or significant in C or the parser. For
example, the use of the token names if and while will almost certainly cause severe difficulties when the lexi
cal analyzer is compiled. The token name error is reserved for error handling; see Section 5.

Yace chooses token numbers if the user does not. The default token number for a literal character is the
numerical value of the character in the local character set. Other names are assigned token numbers startine at
257.

To assign a number to a token (including a literal), the first appearance of the token name or literal in the
declarations section can be immediately followed by a nonnegative integer. This integer is taken to be the token
number of the name or literal. Names and literals not defined by this mechanism retain their default definition,
It is important that all token numbers be distinct.

- For historical reasons, the endmarker must have token number 0 or negative. This token number cannot be
redefined by the user; thus, all lexical analyzers must be prepared to return 0 or negative as a token number upon
reaching the end of their input.

6.3. Communicating Context to the Lexical Analyzer

Some lexical decisions depend on context. For example, the lexical analyzer might want to delete blanks
normaily. but not within quoted strings. Or names might be entered into a symbol table in declarations, but not
in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical analyzer, and set
by actions. For example. suppose a program consists of zero or more declarations, followed by zero or more
statements. Consider:

. int dflag:;
other declarations
prog
decls : /* empty */ { dElag = 1; }
decls declaration
Stmt s : { dflag = 0; }

ther productions

The flag dflag is now | when reading declarations and 0 when reading statements, except for the jirst
taken in the first statement. This token must be seen by the parser before it can tell that the declarations have
ended and the productions have begun. In many cases, this single token exception does not affect the levical
scan.

This Kind of “*backdoor™” approach can be elaborated to a noxious degree. Nevertheless. it represcits a4 wiay
of doing some things that are difficult, if not impossible. (o do otherwise.

Some programming lunguages permit the user 1o use words like i £, which are normally reserved., as label or
variable numes, provided that such use does not contlict with the legal use of these names in the programning

370 UNIX Pupers

e i

) o e

N R g

"

o

By &

iy

yace

language. This is
analyzer telling it

at i, using flags hit
bidden for use as v

6.4. Support for A
By default, th
ported by defining ¥

{
#define YY

3}
YYSTYPE isnot ar
not already been det

Clearly, YYSTY
The %union m
where vace needs he
Unions are decl:

Tunion |

(=)

int
ouble

har =

L -

2]

A union type with th
Yyval. With the -~
referred to as Y¥sTY:

The type of each

indicates a union mo
the union member .
larly to associate un o
type <dva.:

There remain a

the value returned b
N0 easy wuy of know
Member name, bew e
Number An example

where the union memt
TeCommend 11, but the -

"} ¥ P
The facihiimes in i

UM oon these mechaniag

Rtscarch Tenth Edinon

e AN ‘-';,'_,

Yace __ yacc Yacc: A Parser Generator

language. This is extremely hard to do in the framework of yacc: it is difficult to pass information to the lexical
analyzer telling it “*this instance of i £ is a keyword, and that instance is a variable’’. The user can make a stab
at it, using flags like dflag, above, but it is difficult. It is better that the keywords be reserved: that is. be for-

ons, so IF . % . s
and bidden for use as variable names. There are powerful stylistic reasons for preferring this, anyway.

‘e with the —g . 6.4. Support for Arbitrary Attribute Types
e ot By def{!.lth_. the values returned by actions and the lexical analyzer are integers. Other types can be sup-
elaiadiy : ported by defining YYSTYPE in the declarations section, as in
the parser. Fo, <!
- when the ley;. 5
: #define YYSTYPE double
5}

“haracter is the
bers starting ay 72 YYSTYPE is not a normal variable, because the parser contains the following lines to define it to be int if it has
not already been defined by the user:

r literal in the #ifndef YYSTYPE

0 o -
0 be the token #define YYSTYPE int
ault definition, $endif

ber cannot be Clearly. YYSTYPE can be defined to be any type. including a union tvpe.

number upon & The $union mechanism of yacc attempts to make the underlying union transparent, in all but a few places
' where yacc needs help in determining which field of the union is intended.

Unions are declared in the declarations section. an example being
funion {

int ival;

double dval;

char * sval;

delete blanks
tions, but not

yzer, and set }

€ro or more
A union type with these members is created for the yace value stack. and for the global variables yylval and

yyval. With the -d option. yacc copies the union type into the y.tab.h file. The type of the union can be
referred 1o as YYSTYPE.

The type of each attribute must now correspond 10 one of the union members. The construction
<name>

indicates a union member name. If the construction follows ~token. lefr. right, or s*nonassoc. then
the union member name is associated with the tokens in that declaration. Another keyword ~type is used simi-
| lurly to assoctate union member names with nonterminals. Thus. we might use

type <dval> expr term

There remain a couple of cases where these mechanisms are insufficient. I there is an action within a rule.
the value returned by this action has no a priori type. Similarly. reference to left context values leaves vace with
no easy way of knowing the type. In this case. a type can be imposed on the reference by inserting a union
member name. between < and >, immediately after the first $ and immediately before the svmbol name or
number. An example of this usage is

v the first i
tons have i rule : aaa { $<intwval>sS = 3;
he lexical ' bbb fun{ $<intval>2, S<other>0); }

i
NS & way where the unton member names intval and other are inseried within references. This syntax has hule w

: recommend 11, but the situation arises rarely, :
S label or The facilities in this subsection are not triggered unul they are used: in particular. the use of “type will i
Famming turn on these mechanisms. - When they are used. there is ¢ fuirly strict level of checking. For example. use of Sn f

371

X Pupers - Research Tenth Edition

yace

Yacc: A Parser Generator

or $$ to refer to something with no defined type is diagnosed. If these facilities are not triggered. the vace value
stack is used to hold ints, as was true historically.

7. Acknowledgements

The original acknowledgements. from [6]. are as follows. *‘Yacc owes much to a most stimulating collec-
tion of users, who have goaded me beyond my inclination, and frequently beyond my ability, in their endless
search for ‘one more feature’. Their irritating unwillingness to learn how to do things my way has usually led to
my doing things their way: most of the time. they have been right. B. W. Kernighan, P. J. Plauger. S. I. Feld-
man. C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the current version of vacc. C.
B. Haley contributed to the error recovery algorithm. D. M. Ritchie. B. W. Kemighan, and M. O. Harris helped

translate this document into English. Al Aho also deserves special credit for bringing the mountain to

Mohammed, and other favors.”
This version of vacc has benefited from thoughtful comments by B. W. Kemighan, M. F. Fernandez. and M.

Tasman.

8. References
1. Aho. A.V. and Johnson, S.C. LR parsing. ACM Computing Surveys 6, 2 (1974), 99-124.

Aho, A.V., Johnson, S.C.. and Ullman, J.D. Deterministic parsing of ambiguous grammars. CACM /8. 8
(1975), 441-452.

3. Aho, A.V., Sethi, R.,
Reading, Mass, 1986.
Backus, J.W. The syntax and semantics of the proposed international algebraic language of the Zurich
ACM-GAMM Conference. In International Conference on Information Processing, June 1959, Unesco,

Paris, 1960, pp. 125-132.
. Johnson, 5.C. A Portable Compiler: Theory and Practice. In Proc. 5th ACM Svmp. on Principles of Pro-

9

and Ullman. 1.D. Compilers: Principles. Technigues. and Tools. Addison-Wesley,

n

oramming Languages, January 1978.
Johnson. S.C. Yet Another Compiler Compiler. In Unix Programmer’s Manual. Vol. 2. M.D. Mcliroy and
B.W. Kemnighan. Eds. AT&T Bell Laboratories. Murray Hill. NJ 07974, 1979.

. Kernighan, B.W. and Cherry, L.L. A system for typesetting mathematics. CACM /8. 3 (1975). 151-157.

~.4

3. Kernighan, B.W. and Pike. R. The UNIX Programming Environment. Prentice-Hall. 1934,

Y

fas

Kemighan, B.W. and Ritchie. D.M. The C Programming Language. Prentice Hall. Englewood Clitfs, NJ.

iv88. 2nd Edition.

Lesk. MLE. and Schmidt, M. Lex — A Lexical Analyzer Generator. In Unix Provrammer's Manual, Tennth
Editton, AT&T Bell Laboratories, 1989.

Schreiner, A.T. and Friedman. H.G. Jr. Inroduction to Compiler Construction with {NI1X. Prentice-Hall.
Englewood Chifts, N.J. 1985.

Stroustrup. B. The C++ Programming Language. Addison-Wesley. 1936.

10.

Appendix A. Yacc Input Syntax

This appendix has a description of the vucc input syntax, as a yace specification. Context dependencies.
ete.. are not considered. Ironically, the yucc input specification language is most naturally specified as an LR(2)
grammar; the sticky part comes when an identifier is seen in a rule, immediately following an action. [f this
identitier is tollowed by a colon, it is the start of the next rule: otherwise it is a continuation of the current rule.
which just happens to have an action embedded in it. As implemented. the lexical analyzer looks ahead atter
seeing an identifier, and decide whether the next token (skipping blanks, newlines, comments. etc.) is a colon.
It so. it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are

also returned as IDENTIFIERs, but never as part of C_IDENTIFIERs.

UNIX Papers

3token
3token
3token

3token Lt

3token Mz~
3token LC
3token RC’

¥start s

o
ol

spec

tail

defs

def

rword

nlist

nmno

Research Tenth Editic

Yace

he yace value

lating collec-
their endless
isually led to
r, S. L. Feld-
of vace. C,
larris helped
mountain to

idez. and M.

"ACM 18, 8
son-Wesley,

the Zurich
9, Unesco,

les of Pro-
{cllroy and

51-157.

|

‘Cliffs. NJ.
|
wai. Tenth

intice-HulI.
|
\

endencies.

|

;n. It this
rrent rule.
ead atter
s & colon.
rings) are

|
i
i X Papers

yace

/* grammar for the input to yacc */

/* basic entities */
itoken IDENTIFIER /* includes identifiers and literals */
stoken C_IDENTIFIER/* identifier (but not literal) fyllowed by colon */
2token NUMBER /* [0-9]1+ */

/* reserved words: Stype => TYPE, %left => LEFT, etc. */
3token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

$token MARK /* the %% mark =*/
stoken LCURL /* the %{ mark */
stoken RCURL /* the 3} mark */ 4

/* ascii character literals stand for themselves */

istart spec

o
oW

spec : defs MARK rules tail

~

tail : MARK { In this action, eat up the rest of the file }
| /* empty: the second MARK 'is optional */

defs : /* empty */
| defs def
def 7 START IDENTIFIER
I UNION { Copy union definition to output '}
i LCURL { Copy C code 1o oupur file } RCURL
i ndefs rword tag nlist

rword TOKEN
j LEFT
| RIGHT
] NONASSOC
I TYPE
tag . /* empty: wunion tag 1s optional */
! ‘<’ IDENTIFIER ™>°
alisk : nmno
| nlist nmno
| nlist °,° nmno
nmno : IDENTIFIER /* NOTE: literal illegal with =*type

| IDENTIFIER NUMBER /* NOTE: illegal with *type */

Research Tenth Edition

Yacc: A Parser Generator

(9]

ETR

*/

(98]

Yacc: A Parser Generator

rules

rule

rbody

act :

prec

/i—

rules section ,;

C_IDENTIFIER rbody

rules rule

C_IDENTIFIER rbody
"|* rbody prec

/* empty */
rbody IDENTIFIER
rbody act

{ Copy action, translate

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER

prec ;

Yyace

prec

prec

el)T}

act

UNIX Papers z&-

-

-

Sk

me

YR e Al
e e /. 4

che

tion

aule
anal

L. Introduct:

Lex is
cal processinc
a high-level,
acter siring n
8eneral purpo
txpressions.
by the user in
The lex writte
an input strea
Strings marchi

Iween strin,
User are execy
fegular expres
each expressio:
Written by /o,
i Cuted,

; The use
X €xpression mat

Rcsﬂlrch Tenth

