Compilers

Bottom-up Parsing

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Bottom-Up Parsing

e More general than top-down parsing
And just as efficient
Builds on ideas in top-down parsing
Preferred method in many instances

e Specific algorithm: LR parsing
L means that tokens are read left to right

R means that it constructs a rightmost derivation

Donald Knuth (1965)
"On the Translation of Languages from Left to Right"

%

The ldea

e An LR parser reduces a string to the start
symbol by inverting productions:

str & input string of terminals

repeat
Identify (3 in str such that A — 3 is a production
(i.,e.,str=a P v)

Replace 3 by A In str
(i.e., str becomes o A v)

until str=G

A simple example

e LR parsers:
Can handle left-recursion
Don’t need left factoring

e Consider the following grammar:
E—->E+(E)]|Int

Is this grammar LL(1) (as shown)?

%

A Bottom-up Parse in Detail (1)

int + (int) + (int)

nt + (int) + (Int)

5

A Bottom-up Parse in Detalil (2)

int + (int) + (int)
E + (int) + (int)

E

|
nt + (int) + (Int)

6

A Bottom-up Parse in Detail (3)

int + (int) + (int)
E + (int) + (int)
E +(E)+ (int)

E E

| |
nt + (int) + (Int)

7

A Bottom-up Parse in Detail (4)

int + (int) + (int)
E + (int) + (int)
E +(E)+ (int)

E + (int)

E E

| |
int + (int) + (int)

8

A Bottom-up Parse in Detail (5)

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

E + (int)

E+(E)

E E E

| | |
nt + (int) + (Int)

9

A Bottom-up Parse in Detail (6)

int + (int) + (int) E
E + (int) + (int)
E + (E)+ (int)
E + (int) =
E+(E)
E
E E
| |

E
\

nt + (int) + (Int)

%

10

Another example

e Start with input stream
“‘Leaves” of parse tree

e Build up towards goal symbol
Called “reducing”
Construct the reverse derivation

Rule | Sentential form

abbcde
aAbcde
aAde
aABe
G

R A DN W

Production rule

P OON= |

G — aABe

A

B

—
—

Abc

1o IT

11

Easy?

e Choosing a reduction:

Not good enough to simply find
production right-hand sides and
reduce

Example:

Rule | Sentential form

- abbcde
3 |aAbcde
2 aAAcde
? ...now what?

“aAAcde” is not part of any
sentential form

a

| Production rule
1 G — aABe
2 |A — Abc
3 | b

4 | B — d

AA

c d

12

Key problems :

e How do we make this work?
How do we know we won'’t get stuck?
How do we find the next reduction?
Also: how do we find it efficiently?

o Key:

We are constructing the right-most derivation

Grammar is unambiguous
Unique right-most derivation for every string
Unique production applied at each forward step
Unique correct reduction at each backward step

%

13

Right-most derivation

Rule | Sentential form Rule

Sentential form

expr

expr op expr

expr op <id,y>

expr * <id,y>

expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

W AN = OO W =
W T NN = O W =

expr

expr op expr

expr op <id,y>

expr * <id,y>

expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

e Forward derivation:
Always expand right-most non-terminal
e Reverse derivation (parse):

Correct reduction always occurs immediately to the left of some

point in a left-to-right reading of the tokens

14

LR parsing

e State of the parser:
o |y

o is a stack of terminals and non-terminals

v IS string of unexamined terminals

e Two operations:

| Production rule
1 |[E - E+ (E)
2 | Int

Shift — read next terminal, push on stack

E+(]int) N

E+(1nt])

Reduce — pop RHS symbols off stack, push LHS

E +() -

%

E+(E])

15

Example -

1. |int + C 1int) + (Int) Nothing on stack, get next token

Stack

16

Example -

1. |int + C 1int) + (Int) Nothing on stack, get next token
2. Int |+ Cint) + (C Int) Shift: push Int

Top of stack matches
E —int

~

Stack | Int

17

Example -

1. |int + C 1int) + (Int) Nothing on stack, get next token
int | + Cint) + (Int) Shift: push Int
3. Int |+ Cint) + (Int) Reduce:pop iInt

ey

Top of stack matches
E—int

Stack —

18

Example -

1. |int + C 1int) + (Int) Nothing on stack, get next token
int | + Cint) + (Int) Shift: push Int
3. Int |+ Cint) + (Int) Reduce: pop Int, push E

ey

Top of stack matches
E—int

<
E<”

int

Stack

19

000
000
o0
o
Example -
L X
o O
1. |int + C 1int) + (Int) Nothing on stack, get next token
2. int | + Cint) + (int) Shift: push int
3. Int| + Cint) + (Int) Reduce: pop Int, push E
4. 1nt + | Cint) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + (int |) + C int) Shift: push 1nt

Top of stack matches
E —int

~

Stack E + (Int

20

000
000
o0
o
Example -
L X
o O
1. |int + C 1int) + (Int) Nothing on stack, get next token
2. int | + Cint) + (int) Shift: push int
3. Int| + Cint) + (Int) Reduce: pop Int, push E
4. 1nt + | Cint) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + Cint|) + (int) Shift: push Int
7. int + Cint |) + (Int) Reduce: pop Int, push E

Stack E + (E

21

000
000
o0
o
Example -
L X
o O
1. |int + C 1int) + (Int) Nothing on stack, get next token
2. int | + Cint) + (int) Shift: push int
3. Int| + Cint) + (Int) Reduce: pop Int, push E
4. 1nt + | Cint) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + Cint|) + (int) Shift: push Int
7. int + Cint |) + (Int) Reduce: pop Int, push E
8. int + Cint) | + (Iint) Shift: push)

Top of stack matches E-->E + (E)

Stack E + (E)

22

%

000
000
o0
o
Example -
L X
o O
1. |int + C 1int) + (Int) Nothing on stack, get next token
2. int | + Cint) + (int) Shift: push int
3. Int| + Cint) + (Int) Reduce: pop Int, push E
4. 1nt + | Cint) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + Cint|) + (int) Shift: push Int
7. int + Cint |) + (Int) Reduce: pop Int, push E
8. int + Cint) | + (Iint) Shift: push)
9. Int + CInt) | + (Int) Reduce: popx 5, pushE
Stack E

23

%

Example

9. Int + CInt) | + (Int) Reduce: pop x5, push E
10. int + C int) + | (Int) Shift: push +

11. int + C int) + (| Int) Shift: push (

12. 1nt + C int) + (Int |) Shift: push Int

Stack E + (int

Example
9. Int + CInt) | + (Int) Reduce: pop x5, push E
10. int + C int) + | C Int) Shift: push +
11. 1nt + C Iint) + (| int) Shift: push (
12. int + C Iint) + (Iint |) Shift: push Int
13. 1nt + C Iint) + (Int |) Reduce: pop Int, push E
14. int + C int) + (Int) | Shift: push)
Stack | E+ C E)

%

25

Example
9 int + Cint) | + (
10. iInt + (int)
11. int + (int)
12. int + (Int)
13. Int + (int)
14. int + (Iint)
15. 1Int + (Int)
DONE!
Stack E

%

+ + + + + +

Reduce: pop x 5, push E
Shift: push +

Shift: push (

Shift: push Int

Reduce: pop Int, push E
Shift: push)

Reduce: pop x 5, push E

26

Key problems :

e (1) Will this work?

How do we know that shifting and reducing using a
stack is sufficient to compute the reverse derivation?

e (2) How do we know when to shift and reduce?

Can we efficiently match top symbols on the stack
against productions?

Right-hand sides of productions may have parts in common

Will shifting a token move us closer to a reduction?
Are we making progress?
How do we know when an error occurs?

%

27

Why does it work?

e Right-most derivation

G—yy— 7> Y3 Y42 Y5 — input

e Consider last step:

IE <Z N

Gl e ... =

abcBXxyz| o)

e To reverse this step:

{}

input

abcgrsxyz

Production:

B->g r s

Read input until q, r, s on top of stack

k Reduceqg,r,stoB

28

Right-most derivation

e Could there be an alternative reduction?

75

G| =) ... === |abcBxyz

<2 N
——

{}

abcgrsxyz

B>g r s

and
5 <Z
G|l o) ... > aDIrsxyz| === abcqrsxyz
%
D>b ¢c g

e NO

Two right-most derivations for the same string

& |.e., the grammar would be ambiguous

29

Reductions

e Where is the next reduction?

Includes B:

V4

@ abez

Later in the input stream:

. <Z N
Could it be ear

<<\

%

V4

abcBHZz

ler?
Ya

aJBxyz

<< N

<< N

75

abcBxyz

/5

abcBxyz

/5

abcBxyz

/5

abcBxyz

No — this is not the right-most derivation!

30

Implications .

V4 /5 ® O
e Cases: abFyz|<* W abcBxyz

abcBHz|<* W|abcBxyz

e Parsing state: [Input: abcqgrs| xyz
Stack: | a b ¢ B

e Key: next reduction must consume top of stack
Possibly after shifting some terminal symbols

.) We can
e How does this help” perform LR

Can consume terminal symbols in order parsing using
k Never need to search inside the stack only stack

~

operations Y,

31

LR parsing :

repeat
if top symbols on stack match 3 for some A — 3
Reduce: “found an A”
Pop those symbols off
Push A on stack
else Get next token from scanner
if token is useful
Shift: “still working on something”
Push on stack

else error
until stack contains goal and
no more input

%

32

Key problems e
e (2) How do we know when to shift or reduce?

Shifts
Default behavior: shift when there’s no reduction
Still need to handle errors

Reductions

Good news:
- At any given step, reduction is unique
= Matching production occurs at top of stack

Problem:
= How to efficiently find the right production

%

33

Identifying reductions

e Where is the next reduction?

Includes B:

<< N

Later in the input stream:

V4

abFyz

V4

. << W |abcBHz

e What is on the stack?
Sequence of terminals and non-terminals

All applicable reductions, except last, already applied

k Called a viable prefix

<< N

75

abcBi|xyz

/5

abcBxyz

/5

abcBxyj|z

34

Identifying reductions

e Do viable prefixes have any special properties?
e Key: viable prefixes are a regular language
e Ildea: a DFA that recognizes viable prefixes

Input: stack contents
(a mix of terminals, non-terminals)

Each state represents either

A right sentential form — labeled with the reduction to apply

A viable prefix — labeled with tokens to expect next

35

Shift/reduce DFA

e Using the DFA
At each parsing step run DFA on stack contents

Examine the resulting state X and the token t
immediately following | in the input stream

If X has an outgoing edge labeled t, then shift
if X is labeled “A — B on t”, then reduce

° Example: # | Production rule
1 E - E+ (E)

| 1Int

k First, we'll look at how to use such a DFA...

Example

» int + (int) + (int)$

37

Example

» int + (int) + (int)$ shift
int » + (int) + (int)$

38

Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ E -->int
E» + (int) + (int)$ shift(x3)
E+(intwe)+ (in)$ E -->int
E+(Ew»)+ (int) shift

E+ (E)» + (int)$

39

Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ E -->int
E » + (int) + (int)$ shift(x3)
E+(intwe)+ (in)$ E -->int
E+(Ew»)+ (int) shift

E + (E) » + (int)$E --> E+(E)
E » + (int)$shift (x3)

E + (int »)$ E --> int
E+(E»)$ shift
E+(E)»$ E --> E+(E)
E»$ accept

40

Improvements o

e Each DFA state represents stack contents
At each step, we rerun the DFA to compute the new state
Can we avoid this?

Two actions:
Shift: Push a new token
Reduce: Pop some symbols off, push a new symbol

e ldea:

For each symbol on the stack, remember the DFA state
that represents the contents up to that point

Push a new token = go forward in DFA

Pop a sequence of symbols = “unwind” DFA to previous
state

%

41

Example

» int + (int) + (int)$ shift

int » + (int) + (int)$ E -->int

E » + (int) + (int)$ shift(x3)
At state 2
go forward in DFA
2-->3-->4-->5

E+ (int»)+ (int)$ E -->int
Back up to state 4

Go forward with E
4-->6

42

Algorithm components :

e Stack
String of the form : (sym,, state,) ... (sym,, state_)
sym, : grammar symbol (left part of string)

state, : DFA state

Intuitively: represents what we've seen so far
state, is the final state of the DFA on sym, ... sym,
And, captures what we’re looking for next

e Represent as two tables:

action — whether to shift, reduce, accept, error
goto — next state

43

Example

push < ,0>
| int + (int) + (int)$ shift
push <int,1>
int | + (int) + (int)$ E --> int
pop <int, 1>
push <E, goto(0, E)=2>
E |+ (int) + (int)$ shift(x3)
push <+,3>, <(,4>, <int,5>
E+(intl)+(int)$ E -->int
pop <int,5>
push <E, goto(4, E) = 6>
etc....

44

Tables .

e Action
Given state and the next token, action[s;,a] =
Shift s’, where s’ is the next state on edge a
Reduce by a grammar production A — f3
Accept
Error

e Goto

%

Given a state and a grammar symbol, goto[s;, X] =
After reducing an X production
Unwind to state ending with X (to keep going)

45

e00
o00
o0
. o
Algorithm | -
Top of stack is .o:
push sO on stack handle
token = scanner.next_token() AP ° Work_
repeat Shift each token

s = state at top of stack Pop each token
if action[s, token] = reduce A — 3 then

pop | B | pairs (X, s,,) off the stack
s’ = top of stack e Errors
push A on stack

push goto[s’, A] on stack Input exhau.sted
else if action[s, token] = shift s’ then Error entry in table

push token on stack
push s’ on stack
token = scanner.next_token()
else if action(s, token) = accept then
return true
else error()

46

%

Representing the DFA

e Combined table:

(Y X
'YX
o0
O
O
o0
o o
action(state, token) goto
int + () $ E
3 s4
4 |sb g6
S ME->int ME->int
6 |s8 s’
7 e >E+(E) Ve >E+(E)

47

How is the DFA Constructed? .

e What's on the stack?
Viable prefix — a piece of a sentential form

E + (
E+(int
E+(E+(

Idea: we're part-way through some production

Problem: Productions can share pieces

DFA state represents the set of candidate productions
Represents all the productions we could be working on

Notation: LR(1) item shows where we are and what we
need to see

%

48

LR Items .

e An LR(1) item is a pair:
[A—>a-p,a]

A — af is a production
a is a terminal (the lookahead terminal)
LR(1) means 1 lookahead terminal

e [A — o B, a] describes a context of the parser

We are trying to find an A followed by an a, and
We have seen an o
We need to see a string derived from 3 a

%

49

LR Items .

e In context containing
[E>E+<+(E) +]

If “(“ is next then we can a shift to context containing
[E>E+(°E) +]

e In context containing
[E>E+(E)- +]

We can reduce withE > E + (E)

But only if a “+” follows

%

50

LR Items

e Consider the item
E-E+(°E), +
We expect a string derived from E) +
There are two productions for E
E—>int and E—> E + (E)

e \We extend the context with two more items:
E—>-int,)
E—->°*E+(E),)

e Each DFA state:

The set of items that represent all the possible productions we
could be working on — called the closure of the set of items

%

51

Closure operation

e Observation:

At A — a°B3 we expect to see Bf3 next
Means if B — vy is a production, then we could see ay

e Algorithm:
closure(ltems) =
repeat

for each [A — o B, a] in ltems

for each production B — vy

add [B — ey, ltems

until ltems is unchanged

%

What is the lookahead?

52

Closure operation
e Algorithm:

closure(ltems) =
repeat
for each [A — o B, a] in ltems
for each production B — y
for each b € FIRST(Ba)
add [B — ¢y, b] to ltems

until ltems is unchanged

%

53

Building the DFA - part 1

e Starting context = closure({S — ¢ E, $})

S—>¢E $

E — «E+(E), $
E > eint, $

E > sE+(E), +
E > eint, +

e Abbreviated:

%

S—>°*E $
E— «E+(E), $/+
E > eint, $/+

54

Building the DFA - part 2

e DFA states
Each DFA state is a closed set of LR(1) items
Start state: closure({S — °* E, $})

e Reductions
Label each item [A — oy », x] with
“Reduce with A — aff on lookahead x”

e \What about transitions?

%

55

DFA transitions o

e ldea:

If the parser was in state [A — a*X[3] and then recognized
an instance of X, then the new state is [A — aX<[3]

Note: X could be a terminal or non-terminal

e Algorithm:
Given a set of items | (DFA stats) and a symbol X
transition(l, X) =
J={}
for each [A — a°Xp, b] € |
add [A — aX<, b] to J
return closure(J)

%

56

DFA construction o

e Data structure:

T — set of states (each state is a set of items)

E — edges of the form | % J
where I, J € T and X is a terminal or non-terminal

e Algorithm:

T ={closure({S - Y, $}, E={}

repeat

for each state I in T
for each item [A — a*Xp, b] € |

let J = transition(l, X)
T=T+J
E=E+{l>J}

until E and T no longer change

57

Example DFA ssese
N 0 1 o o
S—>°*E . E - int
E_)0E+(E),$/+{E—)|nt ,$/+ on$’+
E — eint, $/+
E—>E+e(E), $/+ |3
2 \E /
S—>E-*53 | (
E — E«+(E), $/+ E > E+(E), $/+ |4
accept E E—>eE+E),)+
on $ / E — eint,)/+
6 E—>E+E-®) $/+ int 5
E—)E""(E),)/+ E >inte)/+ E > int
’ on), +

and so on...

58

%

To form into tables .

e Two tables
action(l, token)
goto(l, symbol)
e Layout:
One row for each state —each | in T
One column for each symbol
e Entries:

For each edge | 3

If X is a terminal, add shift J at position (I, X) in action
if X is a non-terminal, add goto J at position (I, X) goto

Foreachstate [A > af e, x]in |
Add reduce n at position (I, x) in action (where n is |rhs|)

%

59

Issues with LR parsers

e \What happens if a state contains:
[X—>a-aB,b] and [Y > vy- a]

13 7

e Then on input “a” we could either
Shift into state [X > aa B, b], or

Reduce with Y — v

e Thisis called a shift-reduce conflict

%

Typically due to ambiguity
Like what?

60

Shift/Reduce conflicts

e Classic example: the dangling else
S—>ifEthenS | ifEthenSelse S | OTHER

e Will have DFA state containing
[S > if Ethen S e, else]
[S>ifEthen Seelse S, X]

e Practical solutions:
Painful: modify grammar to reflect the precedence of else
Many LR parsers default to “shift”
k Often have a precedence declaration

61

Another example

e Consider the ambiguous grammar
E>E+E|E*E]|int

e Part of the DFA:

[E—>E*<E, +] [E—>E*Ee° +]
[E > E+E, +] »[E—>Ee+E, +]

e \We have a shift/reduce on input +
e \What do we want to happen?
Consider: X * y + Zz
We need to reduce (* binds more tightly than +)

& Default action is shift

62

Precedence

e Declare relative precedence

Explicitly resolve conflict

Tell parser: we prefer the action involving * over +

[E>E*eE, +]

E

[E > +E+E, +]

e In practice:

Parser generators support a precedence declaration for

operators
What is the alternative?

%

[E>E*Es, +]
[E>Ee+E, +]

63

More...

e Still a problem?

[E>E+<E, +]| E
[E—>+E+E, +]

[E—>E+Es, +]
[E—>Ee+E, +]

e Shift/reduce conflict on +
Do we care?
Maybe: we want left associativity
parse: “atb+c” as “((at+b)+c)”
Which rule should we choose?

Also handled by a declaration “+ is left-associative”

%

64

Other problems .

e If a DFA state contains both
[X—>aealand[Y —> P a]

What's the problem here?
Two reductions to choose from when next token is a

e This is called a reduce/reduce conflict
Usually a serious ambiguity in the grammar
Must be fixed in order to generate parser
Think about relationship between o and 3

%

65

Reduce/Reduce conflicts

e Example: a sequence of identifiers
S—»e|id|idS

e There are two parse trees for the string id
S—>id
S—>idS—>id

e How does this confuse the parser?

%

66

Reduce/Reduce conflicts

e Consider the DFA states:

G—>eS, § |

- - id

S >, §1, —
S —>eid, §]

S —>eidS, §]

S —>ide, §
S —>ideS, I
S > $
S —>eid, 9]

S—>eidS, 3

e Reduce/reduce conflict on input $

G—->S—id
G->S—->idS—id

E Fix: rewrite the grammar: S —»¢ |id S

67

Practical issues .

We use an LR parser generator...

e Question: how many DFA states are there?
Does it matter?
What does that affect?
Parsing time is the same
Table size: occupies memory

e Even simple languages have 1000s of states

%

Most LR parser generators don’t construct the DFA as
described

68

LR(1) Parsing tables

e But many states are similar, e.qg.

1

Einte $/+

E > int
on $,+

and

e How can we exploit this?
Same reduction, different lookahead tokens
Idea: merge the states...

%

5

Einte,)/+

10

E_inte $/+/)| E—int

on$,+,)

E > int
on), +

69

The core of a set of LR Items

e \When can states be merged?

e Def: the core of a set of LR items is:
Just the production parts of the items
Without the lookahead terminals

e Example: the core of
{[X— aB, b], [Y > v+, d] }
IS
{X> a3, Y >y}

%

70

Merging states .

e Consider for example the LR(1) states
{[X—>asa], [Y > P cl}
{[X—>ae, b], [Y - e, d] }

e They have the same core and can be merged

e Resulting state is: _
{[X - o, alb], [Y - Be, ¢/d] } ﬁ;’a‘:ﬁz;ﬂﬁe}

same thing?

e These are called LALR(1) states
Stands for LookAhead LR
Typically 10X fewer LALR(1) states than LR(1)

4l

The LALR(1) DFA Soi
e Algorithm: o
repeat

Choose two states with same core

Merge the states by combining the items

Point edges from predecessors to new state

New state points to all the previous successors
until all states have distinct core

(® ©
E

@GB

72

%

Conversion LR(1) to LALR(1).

int :

0

73

LALR states

e Consider the LR(1) states:
{[X—> e, a], [Y - B, b] }
{[X—> ae, b], [Y > e, a] }

e And the merged LALR(1) state
{[X > a-, alb], [Y — B, alb] }

e What's wrong with this?

%

Introduces a new reduce-reduce conflict
In practice such cases are rare

74

LALR vs. LR Parsing

e LALR is an efficiency hack on LR languages

e Any “reasonable” programming language has a LALR(1)

grammar
Languages that are not LALR(1) are weird, unnatural languages

e LALR(1) has become a standard for programming
languages and for parser generators

%

75

Another variation .

e Lookahead symbol
How is it computed in LR, LALR parser?

In closure operation
for each [A — a *Bf3, a] in ltems

for each production B — vy

for each b € FIRST(Ba)
add [B — ¢y, b] to Items

Based on context of use

e Simplify this process:

%

What symbol (set of symbols) could | use for [B — ¢y, ?]

FOLLOW(B)
Called SLR (Simple LR) parser

76

More power? ee

e So far:
LALR and SLR: reduce size of tables
Also reduce space of languages
What if | want to expand the space of languages?

e What could | do at a reduce/reduce conflict?
Try both reductions!
GLR parsing
At a choice: split the stack, explore both possibilities
If one doesn’t work out, Kill it
Run-time proportional to “amount of ambiguity”
Must design the stack data structure very carefully

77

General algorithms

e Parsers for full class of context-free grammars

Mostly used in linguistics — constructive proof of decidability
e CYK(1965)

Bottom-up dynamic programming algorithm

O(n3)
e Earley’s algorithm (1970)

Top-down dynamic programming algorithm

Developed the “®” notation for partial production

Worst-case O(n3) running time
But, O(n?) even for unambiguous grammars

e GLR
k Worse-case O(n3), but O(n) for unambiguous grammars

78

YY)
Y
o0
|| . .
LR parsing se
o o
Input: fa, a, ... a a, $ |<==| Scanner
Stack: ﬂ
)S(: <==>| LR Parsing Engine
sm1 R L L L LR L L L L L L L ERRELL
X1 Compiler construction :
=0 Action | Goto <:I FELECD <:I
Generator
LR tables NN NN NN NS NN EEEEE NN NN NS EE NN NN NSNS EE NN NN NS EE NN NN EEEEEEEEEEEEEEEEEE

79

Real world parsers

e Real generated code
lex, flex, yacc, bison

e Interaction between lexer and parser
C typedef problem
Merging two languages

e Debugging

%

Diagnosing reduce/reduce conflicts
How to step through an LR parser

80

Parser generators

e Example: JavaCUP
LALR(1) parser generator
Input: grammar specification
Output: Java classes
Generic engine
Action/goto tables

e Separate scanner specification

e Similar tools:
SableCC
yacc and bison generate C/C++ parsers
JavaCC: similar, but generates LL(1) parser

%

81

JavaCUP example .

e Simple expression grammar
Operations over numbers only

// Import generic engine code
import java cup.runtime.™;

/* Preliminaries to set up and use the scanner. */

intt with {: scanner.init(Q); :};
scan with {: return scanner.next_token(); :};

Note: interface to scanner
One issue: how to agree on names of the tokens

82

%

Example

e Define terminals and non-terminals
e Indicate operator precedence

/* Terminals (tokens returned by the scanner). */
terminal SEMI, PLUS, MINUS, TIMES, DIVIDE, MOD;

terminal UMINUS, LPAREN, RPAREN;
terminal Integer NUMBER;

/* Non terminals */
non terminal

/* Precedences */
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE, MOD;

expr_list, expr_part;
non terminal Integer expr, term, factor;

\

83

Example

e Grammar rules

expr_list :-:= expr_list expr_part
| expr_part ;

expr_part :-:= expr SEMI ;

expr :-:= expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr
expr MOD expr
LPAREN expr RPAREN
NUMBER ;

84

Summary of parsing

e Parsing
A solid foundation: context-free grammars
A simple parser: LL(1)
A more powerful parser: LR(1)
An efficiency hack: LALR(1)
LALR(1) parser generators

85

A Hierarchy of Grammar 3T
Classes :

°0
C
Unambiguous Grammars Ambiguous
Grammars
L(k) LR(k)
LD LR(1)
| |LALR(D From Andrew Appel,
“Modern Compiler
SLR Implementation in Java"
LR(0)

86

