
Compilers

Bottom-up Parsingp g

Yannis Smaragdakis U AthensYannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Bottom-Up ParsingBottom-Up Parsing

More general than top-down parsing
And just as efficient
Builds on ideas in top-down parsing
Preferred method in many instances

Specific algorithm: LR parsing
L means that tokens are read left to rightg
R means that it constructs a rightmost derivation
Donald Knuth (1965)
"On the Translation of Languages from Left to Right"

22

"On the Translation of Languages from Left to Right"

The IdeaThe Idea
An LR parser reduces a string to the start p g
symbol by inverting productions:

str = input string of terminalsstr = input string of terminals

repeat
Id tif β i t h th t A β i d tiIdentify β in str such that A → β is a production

(i.e., str = α β γ)
Replace β by A in strReplace β by A in str

(i.e., str becomes α A γ)
until str = G

33

until str G

A simple exampleA simple example
LR parsers:

Can handle left-recursion
Don’t need left factoring

Consider the following grammar:

E → E + (E) | int

Is this grammar LL(1) (as shown)?

44

A Bottom-up Parse in Detail (1)A Bottom-up Parse in Detail (1)
int + (int) + (int)() ()

int++int int()()

55

()()

A Bottom-up Parse in Detail (2)A Bottom-up Parse in Detail (2)
int + (int) + (int)() ()
E + (int) + (int)

EE

int++int int()()

66

()()

A Bottom-up Parse in Detail (3)A Bottom-up Parse in Detail (3)
int + (int) + (int)() ()
E + (int) + (int)
E + (E) + (int)

E EE

int++int int()()

E

77

()()

A Bottom-up Parse in Detail (4)A Bottom-up Parse in Detail (4)
int + (int) + (int)() ()
E + (int) + (int)
E + (E) + (int)
E + (int) E

E EE

int++int int()()

E

88

()()

A Bottom-up Parse in Detail (5)A Bottom-up Parse in Detail (5)
int + (int) + (int)() ()
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)

E

E EEE

int++int int()()

EE

99

()()

A Bottom-up Parse in Detail (6)A Bottom-up Parse in Detail (6)
Eint + (int) + (int)() ()

E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
E

E

E

E

EEE

int++int int()()

EE

1010

()()

Another exampleAnother example
Start with input stream

“Leaves” of parse tree
Build up towards goal symbol

Called “reducing”

Production rule
1
2
3

G → a A B e
A → A b c

| bCalled reducing
Construct the reverse derivation

3
4

| b
B → d

Rule Sentential formRule Sentential form

G
- abbcde
3 aAbcde
2 Ad

b b d
A B

A2 aAde
4 aABe
1 G

1111

a b b c d e

Easy?Easy?
Choosing a reduction:

Not good enough to simply findNot good enough to simply find
production right-hand sides and
reduce
Example:

Production rule
1
2
3

G → a A B e
A → A b c

| bExample:

Rule Sentential form
- abbcde

3
4

| b
B → d

3
2
?

abbcde
aAbcde
aAAcde
…now what?

“aAAcde” is not part of any
sentential form a b b c d e

A A

1212

sentential form a b b c d e

Key problemsKey problems
How do we make this work?

How do we know we won’t get stuck?
How do we find the next reduction?
Al h d fi d it ffi i tl ?Also: how do we find it efficiently?

Key:y
We are constructing the right-most derivation
Grammar is unambiguous

Unique right-most derivation for every string
Unique production applied at each forward step
Unique correct reduction at each backward step

1313

Unique correct reduction at each backward step

Right-most derivationRight-most derivation
Rule Sentential formRule Sentential form

-
1
3
6

expr
expr op expr
expr op <id,y>

* <id >

-
1
3
6

expr
expr op expr
expr op <id,y>

* <id > 6
1
2
5

expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>

6
1
2
5

expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>

Forward derivation:

5
3

expr <num,2> <id,y>
<id,x> - <num,2> * <id,y>

5
3

expr <num,2> <id,y>
<id,x> - <num,2> * <id,y>

Always expand right-most non-terminal
Reverse derivation (parse):

Correct reduction always occurs immediately to the left of some

1414

Correct reduction always occurs immediately to the left of some
point in a left-to-right reading of the tokens

LR parsingLR parsing
State of the parser:

α | γ
α is a stack of terminals and non-terminals
γ is string of unexamined terminals

Production rule
1 E → E + (E)

Two operations:
Shift – read next terminal, push on stack

1
2

E → E + (E)
| int

Shift read next terminal, push on stack
E + (| int) → E + (int |)

Reduce – pop RHS symbols off stack, push LHS

1515

E + (E + (E) |) → E + (E |)

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g

Stack

1616

Stack

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int

Top of stack matches
E → int

Stack

E → int

int

1717

Stack int

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int
3. int | + (int) + (int) Reduce: pop int

Top of stack matches
E → int

Stack

E → int

1818

Stack

int

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int
3. int | + (int) + (int) Reduce: pop int, push E

Top of stack matches
E → int

Stack E

E → int

1919

Stack E

int

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int
3. int | + (int) + (int) Reduce: pop int, push E
4 int + | (int) + (int) Shift: push +4. int + | (int) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + (int |) + (int) Shift: push int

Top of stack matches
E → int

Stack E + (

E → int

int

2020

Stack E + (int

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int
3. int | + (int) + (int) Reduce: pop int, push E
4 int + | (int) + (int) Shift: push +4. int + | (int) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + (int |) + (int) Shift: push int
7. int + (int |) + (int) Reduce: pop int, push E

Stack E + (E

2121

Stack E + (E

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int
3. int | + (int) + (int) Reduce: pop int, push E
4 int + | (int) + (int) Shift: push +4. int + | (int) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + (int |) + (int) Shift: push int
7. int + (int |) + (int) Reduce: pop int, push E
8. int + (int) | + (int) Shift: push)

T f t k t h E E (E)

Stack

Top of stack matches E --> E + (E)

E + ()E

2222

Stack E + ()E

ExampleExample
1. | int + (int) + (int) Nothing on stack, get next token| () () g , g
2. int | + (int) + (int) Shift: push int
3. int | + (int) + (int) Reduce: pop int, push E
4 int + | (int) + (int) Shift: push +4. int + | (int) + (int) Shift: push +
5. int + (| int) + (int) Shift: push (
6. int + (int |) + (int) Shift: push int
7. int + (int |) + (int) Reduce: pop int, push E
8. int + (int) | + (int) Shift: push)
9. int + (int) | + (int) Reduce: pop x 5, push E() | () p p , p

Stack E

2323

Stack E

ExampleExample
….….
9. int + (int) | + (int) Reduce: pop x 5, push E
10. int + (int) + | (int) Shift: push +
11 int + (int) + (| int) Shift: push (11. int + (int) + (| int) Shift: push (
12. int + (int) + (int |) Shift: push int

Stack E + (int

2424

Stack E + (int

ExampleExample
….….
9. int + (int) | + (int) Reduce: pop x 5, push E
10. int + (int) + | (int) Shift: push +
11 int + (int) + (| int) Shift: push (11. int + (int) + (| int) Shift: push (
12. int + (int) + (int |) Shift: push int
13. int + (int) + (int |) Reduce: pop int, push E
14. int + (int) + (int) | Shift: push)

Stack E + (E)

2525

Stack E + (E)

ExampleExample
….….
9. int + (int) | + (int) Reduce: pop x 5, push E
10. int + (int) + | (int) Shift: push +
11 int + (int) + (| int) Shift: push (11. int + (int) + (| int) Shift: push (
12. int + (int) + (int |) Shift: push int
13. int + (int) + (int |) Reduce: pop int, push E
14. int + (int) + (int) | Shift: push)
15. int + (int) + (int) | Reduce: pop x 5, push E

Stack E

DONE!

2626

Stack E

Key problemsKey problems
(1) Will this work?

How do we know that shifting and reducing using a
stack is sufficient to compute the reverse derivation?

(2) How do we know when to shift and reduce?
Can we efficiently match top symbols on the stack
against productions?against productions?

Right-hand sides of productions may have parts in common

Will hif i k l d i ?Will shifting a token move us closer to a reduction?
Are we making progress?
How do we know when an error occurs?

2727

Why does it work?Why does it work?
Right-most derivationg

Consider last step:

G → γ1 → γ2 → γ3 → γ4 → γ5 → input

Consider last step:

a b c q r s x y za b c B x y zG …
inputγ5

Production:
B → q r s

To reverse this step:
Read input until q, r, s on top of stack
R d t B

2828

Reduce q, r, s to B

Right-most derivationRight-most derivation
Could there be an alternative reduction?

a b c q r s x y za b c B x y zG …
γ5

B → q r s

γ5

and

a b c q r s x y za D r s x y zG …

D → b c q
No

Two right-most derivations for the same string
I th ld b bi

2929

I.e., the grammar would be ambiguous

ReductionsReductions
Where is the next reduction?

Includes B:
a b c B x y z

γ5

Includes B: γ5γ4

a b c B x y za b F y z…

Later in the input stream:
γ5γ4

a b c B x y za b c B H z…

Could it be earlier?

a b c B x y za b c B H z…

a b c B x y za J B x y z
γ5γ4

…

3030

No – this is not the right-most derivation!

ImplicationsImplications
Cases: a b c B x y za b F y z

γ5γ4

P i t t I t b |

a b c B x y za b c B H z

Parsing state:
Stack: Ba b c

Input: a b c q r s | x y z

Key: next reduction must consume top of stack
Possibly after shifting some terminal symbols

How does this help?
Can consume terminal symbols in order
N d t h i id th t k

We can
perform LR

parsing using
only stack

3131

Never need to search inside the stack only stack
operations

LR parsingLR parsing
repeat

if top s mbols on stack match β for some A βif top symbols on stack match β for some A → β
Reduce: “found an A”

Pop those symbols offp y
Push A on stack

else Get next token from scanner
if t k i f lif token is useful

Shift: “still working on something”
Push on stackPush on stack

else error
until stack contains goal and

3232

no more input

Key problemsKey problems
(2) How do we know when to shift or reduce?()

Shifts
Default behavior: shift when there’s no reduction
Still need to handle errors

Reductions
Good news:

At any given step, reduction is unique
Matching production occurs at top of stackMatching production occurs at top of stack

Problem:
How to efficiently find the right production

3333

y g p

Identifying reductionsIdentifying reductions
Where is the next reduction?

Includes B:
a b c B x y z

γ5

Includes B:
γ5γ4

a b c B x y za b F y z…

Later in the input stream:
γ5γ4

What is on the stack?

a b c B x y za b c B H z…

What is on the stack?
Sequence of terminals and non-terminals
All applicable reductions, except last, already applied
C ll d i bl fi

3434

Called a viable prefix

Identifying reductionsIdentifying reductions
Do viable prefixes have any special properties?
Key: viable prefixes are a regular language
Idea: a DFA that recognizes viable prefixes

I t t k t tInput: stack contents
(a mix of terminals, non-terminals)

Each state represents eitherp
A right sentential form – labeled with the reduction to apply
A viable prefix – labeled with tokens to expect next

3535

Shift/reduce DFAShift/reduce DFA
Using the DFA

At each parsing step run DFA on stack contents
Examine the resulting state X and the token t
immediately following | in the input streamimmediately following | in the input stream

If X has an outgoing edge labeled t, then shift
if X is labeled “A → β on t”, then reduceβ ,

Example: # Production rule
1 E → E + (E)1
2

E → E + (E)
| int

3636

First, we’ll look at how to use such a DFA…

Example
int

p
int

E → int
on $, +(+

E
0 1

I int + (int) + (int)$on $,

accept

(+

int
2 3 4

E
on $

E → int
on), +

E → E + (E)
567)

E → E (E)
on $, +

98
+

(
int

E → E + (E)10

9

11

8
+ E

)
3737

E → E + (E)
on), +

10 11)

Example
int

p
int

E → int
on $, +(+

E
0 1

I int + (int) + (int)$ shifton $,

accept

(+

int
2 3 4

() ()
int I + (int) + (int)$

E
on $

E → int
on), +

E → E + (E)
567)

E → E (E)
on $, +

98
+

(
int

E → E + (E)10

9

11

8
+ E

)
3838

E → E + (E)
on), +

10 11)

Example
int

p
int

E → int
on $, +(+

E
0 1

I int + (int) + (int)$ shifton $,

accept

(+

int
2 3 4

() ()
int I + (int) + (int)$ E --> int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E --> int

E
on $

E → int
on), +

E → E + (E)
567)

(t I) (t)$ t
E + (E I) + (int)$ shift
E + (E) I + (int)$

E → E (E)
on $, +

98
+

(
int

E → E + (E)10

9

11

8
+ E

)
3939

E → E + (E)
on), +

10 11)

Example
int

p
int

E → int
on $, +(+

E
0 1

I int + (int) + (int)$ shifton $,

accept

(+

int
2 3 4

() ()
int I + (int) + (int)$ E --> int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E --> int

E
on $

E → int
on), +

E → E + (E)
567)

(t I) (t)$ t
E + (E I) + (int)$ shift
E + (E) I + (int)$E --> E+(E)
E I + (int)$shift (x3)E → E (E)

on $, +

98
+

(

E I + (int)$shift (x3)
E + (int I)$ E --> int
E + (E I)$ shift
E (E) $ E E (E)

int

E → E + (E)10

9

11

8
+ E

E + (E) I $ E --> E+(E)
E I $ accept

)
4040

E → E + (E)
on), +

10 11)

ImprovementsImprovements
Each DFA state represents stack contents

At each step, we rerun the DFA to compute the new state
Can we avoid this?
Two actions:Two actions:

Shift: Push a new token
Reduce: Pop some symbols off, push a new symbol

Idea:
For each symbol on the stack, remember the DFA state
that represents the contents up to that pointthat represents the contents up to that point

Push a new token = go forward in DFA
Pop a sequence of symbols = “unwind” DFA to previous
state

4141

state

Example
int

p
int

E → int
on $, +(+

E
0 1

I int + (int) + (int)$ shifton $,

accept

(+

int
2 3 4

() ()
int I + (int) + (int)$ E --> int
E I + (int) + (int)$ shift(x3)

At state 2
E

on $
E → int
on), +

E → E + (E)
567)

At state 2
go forward in DFA
2-->3-->4-->5

E + (int I) + (int)$ E > intE → E (E)
on $, +

98
+

(

E + (int I) + (int)$ E --> int
Back up to state 4
Go forward with E
4 >6

int

E → E + (E)10

9

11

8
+ E

4-->6

)
4242

E → E + (E)
on), +

10 11)

Algorithm componentsAlgorithm components
Stack

String of the form : 〈 sym1, state1 〉 . . . 〈 symn, staten 〉
symi : grammar symbol (left part of string)

t t DFA t tstatei : DFA state
Intuitively: represents what we’ve seen so far
statek is the final state of the DFA on sym1 … symk
And, captures what we’re looking for next

Represent as two tables:Represent as two tables:
action – whether to shift, reduce, accept, error
goto – next state

4343

goto next state

Example
int

push < ,0>

p
int

E → int
on $, +(+

E
0 1

p _,
I int + (int) + (int)$ shift

push <int,1>
int I + (int) + (int)$ E --> int

on $,

accept

(+

int
2 3 4

E
pop <int, 1>
push <E, goto(0, E)=2>

E I + (int) + (int)$ shift(x3)

on $
E → int
on), +

E → E + (E)
567)

push <+,3>, <(,4>, <int,5>
E + (int I) + (int)$ E --> int

pop <int,5>

E → E (E)
on $, +

98
+

(
int

push <E, goto(4, E) = 6>
etc….

E → E + (E)10

9

11

8
+ E

)
4444

E → E + (E)
on), +

10 11)

TablesTables
Action
Given state and the next token, action[si,a] =

Shift s’, where s’ is the next state on edge a
R d b d ti A βReduce by a grammar production A → β
Accept
Erroro

Goto
Given a state and a grammar symbol, goto[si,X] =

After reducing an X production
U i d t t t di ith X (t k i)

4545

Unwind to state ending with X (to keep going)

AlgorithmAlgorithm
Workpush s0 on stack

token = scanner next token()

Top of stack is
handle
A → β

Shift each token
Pop each token

token scanner.next_token()
repeat

s = state at top of stack
if action[s, token] = reduce A → β then

pop | β | pairs (X s) off the stack
Errors

Input exhausted
E t i t bl

pop | β | pairs (Xi, sm) off the stack
s’ = top of stack
push A on stack
push goto[s’, A] on stack

Error entry in tableelse if action[s, token] = shift s’ then
push token on stack
push s’ on stack
token = scanner next token()token scanner.next_token()

else if action(s, token) = accept then
return true

else error()

4646

Representing the DFAp g
Combined table:

int + () $ E
(

int
3 4

E

action(state, token) goto

…
3 s4
4 s5 g6

int

56

E

5 rE-->int rE-->int

6 s8 s7
7 rE-->E+(E) rE-->E+(E)

E → int
on), +)

…

E → E + (E)
7

4747

on $, +

How is the DFA Constructed?How is the DFA Constructed?
What’s on the stack?

Viable prefix – a piece of a sentential form
E + (
E + (int
E + (E + (

Idea: we’re part-way through some production
Problem: Productions can share pieces
DFA state represents the set of candidate productionsDFA state represents the set of candidate productions

Represents all the productions we could be working on
Notation: LR(1) item shows where we are and what we

d t

4848

need to see

LR ItemsLR Items
An LR(1) item is a pair:() p

[A → α •β, a]
A → αβ is a productionA → αβ is a production
a is a terminal (the lookahead terminal)
LR(1) means 1 lookahead terminal

[A → α •β, a] describes a context of the parser
We are trying to find an A followed by an a andWe are trying to find an A followed by an a, and
We have seen an α
We need to see a string derived from β a

4949

g β

LR ItemsLR Items
In context containingg

[E → E + • (E), +]

If “(“ is next then we can a shift to context containing
[E → E + (• E), +]

I t t t i iIn context containing
[E → E + (E) •, +]

We can reduce with E → E + (E)
But only if a “+” follows

5050

LR ItemsLR Items
Consider the item

E → E + (• E) , +
We expect a string derived from E) +
There are two productions for EThere are two productions for E

E → int and E → E + (E)

We extend the context with two more items:We extend the context with two more items:
E → • int,)
E → • E + (E) ,)

Each DFA state:
The set of items that represent all the possible productions we
could be working on called the closure of the set of items

5151

could be working on – called the closure of the set of items

Closure operationClosure operation
Observation:

At A → α•Bβ we expect to see Bβ next
Means if B → γ is a production, then we could see a γ

Algorithm:Algorithm:
closure(Items) =

repeatp
for each [A → α •Bβ, a] in Items

for each production B → γ

add [B → •γ, ?] to Items
until Items is unchanged

5252

until Items is unchanged
What is the lookahead?

Closure operationClosure operation
Algorithm:

closure(Items) =
repeatrepeat

for each [A → α •Bβ, a] in Items
for each production B → γp γ

for each b ∈ FIRST(βa)
add [B → •γ, b] to Items

til It i h duntil Items is unchanged

5353

Building the DFA part 1Building the DFA – part 1
Starting context = closure({S → • E, $})g ({ })

S → •E, $
E → •E+(E), $
E i t $E → •int, $
E → •E+(E), +
E → •int, +

Abbreviated:
$S → • E, $

E → • E+(E), $/+
E → • int, $/+

5454

E nt, $/

Building the DFA part 2Building the DFA – part 2
DFA states

Each DFA state is a closed set of LR(1) items
Start state: closure({S → • E, $})

Reductions
L b l h i [A] i hLabel each item [A → αβ •, x] with
“Reduce with A → αβ on lookahead x”

What about transitions?

5555

DFA transitionsDFA transitions
Idea:

If the parser was in state [A → α•Xβ] and then recognized
an instance of X, then the new state is [A → αX•β]
Note: X could be a terminal or non terminalNote: X could be a terminal or non-terminal

Algorithm:
Gi t f it I (DFA t t) d b l XGiven a set of items I (DFA stats) and a symbol X

transition(I, X) =
J = {}{}
for each [A → α•Xβ, b] ∈ I

add [A → αX•β , b] to J

5656

return closure(J)

DFA constructionDFA construction
Data structure:

T t f t t (h t t i t f it)T – set of states (each state is a set of items)
E – edges of the form I → J

where I, J ∈ T and X is a terminal or non-terminal

X

Algorithm:
T = {closure({S → • Y, $}, E = {}
repeatrepeat

for each state I in T
for each item [A → α•Xβ, b] ∈ I

l t J t iti (I X)let J = transition(I, X)
T = T + J
E = E + { I → J }

til E d T l h

5757

until E and T no longer change

Example DFAExample DFA

E → int S → • E, $
0

E → int • $/+
1

E → E+ • (E), $/+

E → int
on $, +

, $
E → • E+(E), $/+
E → • int, $/+

3

E → int •, $/+
int

E
(), $

E → E+(• E) $/+ 4
S → E •, $
E → E • +(E) $/+

2 E +
(

accept
on $

E → E+(• E), $/+
E → • E+(E),)/+
E → • int,)/+

4E → E +(E), $/+

E

E → int •,)/+ E → int
)

E → E+(E •), $/+
E → E • +(E),)/+

56 int

5858

E → int ,)/
on), +

and so on…

To form into tablesTo form into tables
Two tables

action(I, token)
goto(I, symbol)

Layout:Layout:
One row for each state – each I in T
One column for each symboly

Entries:
For each edge I → J

X

If X is a terminal, add shift J at position (I, X) in action
if X is a non-terminal, add goto J at position (I, X) goto

For each state [A → αβ •, x] in I

5959

Add reduce n at position (I, x) in action (where n is |rhs|)

Issues with LR parsersIssues with LR parsers
What happens if a state contains:

[X → α •aβ, b] and [Y → γ •, a]

Then on input “a” we could eitherThen on input a we could either
Shift into state [X → αa •β, b], or

Reduce with Y → γγ

This is called a shift-reduce conflict
Typically due to ambiguityTypically due to ambiguity
Like what?

6060

Shift/Reduce conflictsShift/Reduce conflicts
Classic example: the dangling elseg g

S → if E then S | if E then S else S | OTHER

Will h DFA t t t i iWill have DFA state containing
[S → if E then S •, else]
[S if E th S l S][S → if E then S • else S, x]

Practical solutions:
Painful: modify grammar to reflect the precedence of else
Many LR parsers default to “shift”

6161

Often have a precedence declaration

Another exampleAnother example
Consider the ambiguous grammar

E E E | E * E | i tE → E + E | E * E | int

Part of the DFA:

[E → E * • E, +]
[E → • E + E, +]

[E → E * E •, +]
[E → E • + E, +]

E

We have a shift/reduce on input +

… …

What do we want to happen?
Consider: x * y + z
We need to reduce (* binds more tightly than +)

6262

Default action is shift

PrecedencePrecedence
Declare relative precedence

Explicitly resolve conflict
Tell parser: we prefer the action involving * over +

[E → E * • E, +]
[E → • E + E, +]

[E → E * E •, +]
[E → E • + E, +]

E

In practice:
Parser generators support a precedence declaration forParser generators support a precedence declaration for
operators
What is the alternative?

6363

MoreMore…
Still a problem?

[E → E + • E, +]
[E → • E + E +]

[E → E + E •, +]
[E → E • + E +]

E

Shift/reduce conflict on +

[E → • E + E, +] [E → E • + E, +]

Do we care?
Maybe: we want left associativity

parse: “a+b+c” as “((a+b)+c)”parse: a+b+c as ((a+b)+c)
Which rule should we choose?
Also handled by a declaration “+ is left-associative”

6464

Other problemsOther problems
If a DFA state contains both

[X → α •, a] and [Y → β •, a]

What’s the problem here?What s the problem here?
Two reductions to choose from when next token is a

This is called a reduce/reduce conflict
Usually a serious ambiguity in the grammar
Must be fixed in order to generate parserMust be fixed in order to generate parser
Think about relationship between α and β

6565

Reduce/Reduce conflictsReduce/Reduce conflicts
Example: a sequence of identifiers

S → ε | id | id S

There are two parse trees for the string id
S → id
S → id S → id

How does this confuse the parser?How does this confuse the parser?

6666

Reduce/Reduce conflictsReduce/Reduce conflicts
Consider the DFA states:

[S → id • $]
[G → • S, $]
[S → • $]

[S → id •, $]
[S → id • S, $]
[S → • $]

id
[S → •, $]
[S → • id, $]
[S → • id S $]

[S → •, $]
[S → • id, $]
[S → • id S $]

Reduce/reduce conflict on input $

[S → • id S, $] [S → • id S, $]

G → S → id
G → S → id S → id

Fi it th S | S
6767

Fix: rewrite the grammar: S → ε | id S

Practical issuesPractical issues
We use an LR parser generator…g

Question: how many DFA states are there?
Does it matter?
What does that affect?

Parsing time is the same
Table size: occupies memoryTable size: occupies memory

Even simple languages have 1000s of states
Most LR parser generators don’t construct the DFA as
described

6868

LR(1) Parsing tablesLR(1) Parsing tables
But many states are similar, e.g.y g

and E → int •)/+ E → int
5

E → int
 $ E → int •, $/+

1

H l it thi ?

E → int •,)/+ on), +on $, +E → int , $/

How can we exploit this?
Same reduction, different lookahead tokens
Idea: merge the statesIdea: merge the states…

E → int
 $)E → int •, $/+/)

1’

6969

on $, +,), $)

The core of a set of LR ItemsThe core of a set of LR Items
When can states be merged?

Def: the core of a set of LR items is:
Just the production parts of the itemsJust the production parts of the items
Without the lookahead terminals

E l th fExample: the core of
{ [X → α•β, b], [Y → γ•δ, d] }

isis
{ X → α•β, Y → γ•δ }

7070

Merging statesMerging states
Consider for example the LR(1) states

{ [X → α•, a], [Y → β•, c] }
{ [X → α•, b], [Y → β•, d] }

They have the same core and can be merged
Resulting state is:g

{ [X → α•, a/b], [Y → β•, c/d] }

These are called LALR(1) states

Does this
state do the
same thing?

These are called LALR(1) states
Stands for LookAhead LR
Typically 10X fewer LALR(1) states than LR(1)

7171

Typically 10X fewer LALR(1) states than LR(1)

The LALR(1) DFAThe LALR(1) DFA
Algorithm:
repeat

Choose two states with same core
Merge the states by combining the itemsMerge the states by combining the items
Point edges from predecessors to new state
New state points to all the previous successors

until all states have distinct core

A CB A C

ED F
BE

D F

7272

Conversion LR(1) to LALR(1).
int

E → int E
0 1 int0 1,5E

on $, +(+

int
2 3 4

E

E → int
on $, +,)E

int
accept

E → int
on), +

int

567)

E

accept

(
2 3,8 4,9+

p
on $

on),
E → E + (E)
on $, +

98

+
(

int

p
on $ +

)

E

10

9

11

8
+ E

(

E → E + (E)
on $ +)

6,107,11)

7373

E → E + (E)
on), +

10 11)
on $, +,)

LALR statesLALR states
Consider the LR(1) states:

{ [X → α•, a], [Y → β•, b] }
{ [X → α•, b], [Y → β•, a] }

And the merged LALR(1) state
{ [X → α•, a/b], [Y → β•, a/b] }{ [,], [β ,] }

What’s wrong with this?
Introduces a new reduce reduce conflictIntroduces a new reduce-reduce conflict
In practice such cases are rare

7474

LALR vs LR ParsingLALR vs. LR Parsing

LALR is an efficiency hack on LR languagesLALR is an efficiency hack on LR languages

Any “reasonable” programming language has a LALR(1)
grammar

Languages that are not LALR(1) are weird, unnatural languages

LALR(1) has become a standard for programming
languages and for parser generators

7575

Another variationAnother variation
Lookahead symbol

How is it computed in LR, LALR parser?
In closure operation

for each [A → α •Bβ, a] in Itemsβ

for each production B → γ
for each b ∈ FIRST(βa)

add [B → •γ, b] to Items[γ,]
Based on context of use

Simplify this process:S p y s p ocess
What symbol (set of symbols) could I use for [B → •γ, ?]
FOLLOW(B)
Called SLR (Simple LR) parser

7676

Called SLR (Simple LR) parser

More power?More power?
So far:

LALR and SLR: reduce size of tables
Also reduce space of languages
Wh t if I t t d th f l ?What if I want to expand the space of languages?

What could I do at a reduce/reduce conflict?
Try both reductions!
GLR parsing

At a choice: split the stack explore both possibilitiesAt a choice: split the stack, explore both possibilities
If one doesn’t work out, kill it

Run-time proportional to “amount of ambiguity”

7777

Must design the stack data structure very carefully

General algorithmsGeneral algorithms
Parsers for full class of context-free grammars

Mostly used in linguistics – constructive proof of decidability
CYK (1965)

Bottom-up dynamic programming algorithmBottom up dynamic programming algorithm
O(n3)

Earley’s algorithm (1970)
Top-down dynamic programming algorithm

Developed the “•” notation for partial production
Worst-case O(n3) running timeWorst case O(n) running time
But, O(n2) even for unambiguous grammars

GLR
W O(3) b O() f bi

7878

Worse-case O(n3), but O(n) for unambiguous grammars

LR parsingLR parsing

a1 a2 … ai … an $Input: Scanner

Stack:

LR Parsing Enginesm
Xm
sm-1
X C il iXm-1
…
s0 Parser

G tAction Goto Grammar

Compiler construction

Generator

LR tables

7979

Real world parsersReal world parsers
Real generated codeg

lex, flex, yacc, bison

Interaction between lexer and parserInteraction between lexer and parser
C typedef problem
Merging two languagese g g o a guages

Debugging
Diagnosing reduce/reduce conflicts
How to step through an LR parser

8080

Parser generatorsParser generators
Example: JavaCUP

LALR(1) parser generatorLALR(1) parser generator
Input: grammar specification
Output: Java classes

Generic engineGeneric engine
Action/goto tables

Separate scanner specification

Similar tools:
SableCC

d bi t C/C++yacc and bison generate C/C++ parsers
JavaCC: similar, but generates LL(1) parser

8181

JavaCUP exampleJavaCUP example
Simple expression grammarg

Operations over numbers only

// Import generic engine code
import java_cup.runtime.*;

/* Preliminaries to set up and use the scanner. */
init with {: scanner.init(); :};
scan with {: return scanner.next_token(); :};

Note: interface to scanner
One issue: how to agree on names of the tokens

8282

ExampleExample
Define terminals and non-terminals
Indicate operator precedenceIndicate operator precedence

/* Terminals (tokens returned by the scanner). */
terminal SEMI PLUS MINUS TIMES DIVIDE MOD;terminal SEMI, PLUS, MINUS, TIMES, DIVIDE, MOD;
terminal UMINUS, LPAREN, RPAREN;
terminal Integer NUMBER;

/* Non terminals */
non terminal expr_list, expr_part;
non terminal Integer expr, term, factor;

/* Precedences */
precedence left PLUS, MINUS;

8383

precedence left TIMES, DIVIDE, MOD;

ExampleExample
Grammar rules

expr_list ::= expr_list expr_part
| expr_part ;

expr_part ::= expr SEMI ;

expr ::= expr PLUS expr
| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| expr MOD expr
| LPAREN expr RPAREN
| NUMBER ;

8484

Summary of parsingSummary of parsing

Parsing
A solid foundation: context-free grammars
A simple parser: LL(1)
A more powerful parser: LR(1)
An efficiency hack: LALR(1)An efficiency hack: LALR(1)
LALR(1) parser generators

8585

A Hierarchy of Grammar
ClassesClasses

From Andrew Appel,
“Modern Compiler
Implementation in Java”Implementation in Java

8686

