Compllers

Instruction selection

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Back end

Essential tasks:

e Register allocation
Low-level IR assumes unlimited registers
Map to actual resources of machines
Goal: maximize use of registers

e Instruction selection
Map low-level IR to actual machine instructions

Not necessarily 1-1 mapping
CISC architectures, addressing modes

%

Instruction Selection

e Low-level IR different from machine ISA
Why?
Allow different back ends
Abstraction — to make optimization easier

e Differences between IR and ISA
IR: simple, uniform set of operations
ISA: many specialized instructions

e Often a single instruction does work of several

%

operations in the IR

Instruction Selection

e Easy solution
Map each IR operation to a single instruction
May need to include memory operations

mov vy, ril

Y = + 7- :::$> mov z, r2
-y ’ add r2, ri

mov rl, X

e Problem: inefficient use of ISA

%

Instruction Selection

e Instruction sets
ISA often has many ways to do the same thing

ldiom:

A single instruction that represents a common pattern or
sequence of operations

e Consider a machine with the following instructions:

add r2, ril rl—rl+r2 Sometimes
muli c, ri rl«rl*c (r2)
load r2, ri rl1«— *r2

store r2, rl *rl«—r2
movem r2, rl *rl « *r2
movex r3, r2, rl *rl «— *(r2+r3)

%

Example

e Generate code for:
a[i+1] = b[]}]

e Simplifying assumptions
All variables are globals
(No stack offset computation)

All variables are in registers
(Ignore load/store of variables)

%

LIR
tl = J*4
t2 = b+tl
t3 = *t2
t4 = 1+l
th = t4*4
t6 = a+th
*t6 = t3

Possible Translation

IR
e Address of b[j]: tl = jJ*4
t2 = b+tl
e Load value bfj]: t3 = *t2
e Address of a[i+1]: | t4 = 1+l
th = t4*4
t6 = a+th
o Storeinto afi+1]: | *t6 = T3

%

=

Assembly

mull 4, rj
add rj, rb
load rb, ril
addr 1, ri
mullt 4, ri
add ri, ra
Istore rl, ra |

X X)
| X J
. o
Another Translation
IR Assembly
e Address of b[j]: tl = 3*4 mull 4, rj
t2 = b+tl | | |add rj, rb
e (no load) t3 = *t2 ||)
o Address of a[i+1]: | t4 = i+1 "laddi 1, ri
th = t4*4 mulst 4, ri
t6 = at+th add ri1, ra
e Storeinto afi+1]: | *t6 = t3 movem rb, ra

Direct memory-to-
& memory operation

(XYY
000
:o
Yet Another Translation
IR Assembly
e Index of bJj]: tl = jJ*4 mull 4, rj
2 = b+tl
e (no load) t3 = *t2)
o Addressof g[i+1]: | t4 = 1+1 addr 1, ri
O = t4*%4 mult 4, ri
t6 = a+tb add ri, ra
e Storeinto afi+1]: | *t6 = t3 movex rj,rb,ra;
Compute the address of b[j] in
the memory move operation
movex rj, rb, ra *ra <« *(rj +rb)

%

9

Different translations

e Why is last translation preferable?
Fewer instructions
Instructions have different costs
Space cost: size of each instruction
Time cost: number of cycles to complete

¢ Example add r2, rl cost =1 cycle
mull c, rl cost =10 cycles

Idioms are load r2, ril cost =3 cycles
cheaper than store r2, rl cost =3 cycles
constituent parts movem r2, rl cost =4 cycles
movex r3, r2, ril cost =5 cycles

%

10

Wacky x86 idioms

e \What does this do?

xor %eax, %eax

e Why not use this?

mov $0, %eax

e Answer:

Immediate operands are encoded in the
instruction, making it bigger and therefore more
k costly to fetch and execute

11

More wacky x86 idioms

e \What does this do?

Xor
Xor
Xor

%ebx, %eax
Weax, %ebx
%ebx, %eax

eax=b®a
ebx=(b@a)eb="
eax=a®(b®a)="?

e Swap the values of %eax and %ebx
e Why do it this way?
e No need for extra register!

%

12

Minimizing cost

e Goal:
Find instructions with low overall cost

e Difficulty

How to find these patterns?

Machine idioms may subsume IR
operations that are not adjacent

e |dea: back to tree representation

Convert computation into a tree
Match parts of the tree

movem rb,

000
000
o0
o
IR
tl = J*4
t2 = b+tl
t3 = *t2
t4 = 1+1
t5 = t4*4
t6 = a+th
*t6 = t3
ra

%

15

Tree Representation
e Build atree: a[i1+1] = b[j]

IR
store

T (| t1 = j*4

+ load < | t2 = b+tl
/\ \ \ t3 = *t2
ol I ! (| t4 = i+l

4 A I t5 = ta*a
P AN \ t6 = a+th
i 1 il |4 *t6 = t3

e Goal: find parts of the tree that correspond to

%

machine instructions

16

Tiles

e Idea: a tile is contiguous piece of the
tree that correponds to a machine

Instruction

movem rb, ra

store

+ load
7\
a X +

7\ N

+ 4 b X
2\ /" \

1

] 4

tl
12
t3
t4
o
t6
*16

IR

1*4
b+tl
*t2
1+1
t4*4
a+th
t3

17

Tiling

e Tiling: cover the tree with tiles

Assembly

mull 4, rj
add rj, rb
addr 1, ri
mult 4, ri
add ri1, ra
movem rb, ra

18

Generating code

e Given a tiling of a tree

A tiling implements a tree if:
It covers all nodes in the tree
The overlap between tiles is exactly one node

e Post-order tree walk
Emit machine instructions for each tile
Tie boundaries together with registers
Note: order of children matters

%

19

Tiling
e \What's hard about this?

Define system of tiles in the compiler

Finding a tiling that implements the tree
(Covers all nodes in the tree)

Finding a "good” tiling Interesting result (Dias and }

Ramsey): in general,
undecidable

e Different approaches

%

Ad-hoc pattern matching

Automated tools + mov tl, t3
PN add t2, t3

20

Tiling

load rb, ril
store rl1, ra

movex rj, rb, ra

/ store \
N
+

load

Algorithms

e Goal: find a tiling with the fewest tiles

e Ad-hoc top-down algorithm
Start at top of the tree
Find largest tile matches top node
Tile remaining subtrees recursively

Tile(n) {
IT ((op(n) == PLUS) &&
(left(n).1sConst()))
{
Code c = Tile(right(n));
c.append(ADDI left(n) right(n))
by
+

%

22

Ad-hoc algorithm

e Problem: what does tile size mean?

Not necessarily the best fastest code
(Example: multiply vs add)

How to include cost?

e |ldea:
Total cost of a tiling is sum of costs of each tile

e Goal: find a minimum cost tiling

%

23

Dynamic programming

Including cost:

e |dea
For problems with optimal substructure
Compute optimal solutions to sub-problems
Combine into an optimal overall solution

e How does this help?

Use memoization:
Save previously computed solutions to sub-problems

Sub-problems recur many times
Can work top-down or bottom-up

25

%

Recursive algorithm

e Memoization
For each subtree, record best tiling in a table

(Note: need a quick way to find out if we’ve seen a subtree
before — some systems use DAGs instead of trees)

e At each node
First check table for optimal tiling for this node
If none, try all possible tiles, remember lowest cost
Record lowest cost tile in table
Greedy, top-down algorithm

e We can emit code from table

%

26

o000
'YX
:o
Pseudocode
Tile(n) {
IT (best(n)) return best(n)
S // -- Check all tiles
store 1IT ((op(n) == STORE) &&
(op(right(n)) == LOAD) &&
:::> + load (op(childgright(n)) == PLUS)) {
PO \ Code c = Tlle(leftgn)))
c.add(Tile(left(child(right(n)))
a x /:\ c.add(Tile(right(child(right(n)))
N Z— N c.append(MOVEX . . .)
+ 4{::> b | |x <::: if (cost(c) < cost(best(n))
7\ N best(n) = c
i 1 j| |4 +
// . . . and all other tiles . . .

return best(n)

}

27

Ad-hoc algorithm

e Problem?
Hard-codes the tiles in the code generator

e Alternative:
Define tiles in a separate specification

Use a generic tree pattern matching algorithm to
compute tiling

Tools: code generator generators

Probably overkill for RISC

28

Code generator generators

e Tree description language
Represent IR tree as text

e Specification
IR tree patterns
Code generation actions

e Generator

%

Takes the specification
Produces a code generator

29

-9
. o
Tree notation
e Use prefix notation to avoid confusion
store(+(a,x(+(i,1),4)),load(+(b, x(j, 4))))
store
/\
+(a,x(+(i,1),4)) + load load(+(b, x(j, 4)))
7\ \
x(+(1,1),4)| & [X * +(b, x(j, 4))
AN AN
+(i,1) + 4 b X ><(j, 4)
PN /\

i 1 j 4

30

Rewrite rules

e Rule
Pattern to match and replacement
Cost
Code generation template

May include actions — e.g., generate register name

Pattern, replacement Cost

Template

+(reg,,reg,) — reg, 1

add r1, r2

store(reg,, load(reg,)) — done 5

movem r2, r1

31

Rewrite rules

e Example rules:

Pattern, replacement Cost | Template
+(reg,,reg,) — reg, 1 |add ri1, r2
x(reg,,reg,) — reg, 10 |mul r1, r2

+(num,reg,) — reg,

addr num, rl

x(num,reg,) — reg,

10

mullt num, rl

GO B O DN -] H#*

store(reg,, load(reg,)) — done

movem r2, rl

32

Example

Assembly

mull 4, rj
add rj, rb
addr 1, ri
mult 4, ri
add ri1, ra
movem rb, ra

33

Rewriting process

store(+(ra,x(+(ri,1),4)),load(+(rb,|x(rj, 4)))
: store(+(ra,x(+(ri,1),4)),load(+(rb, rj))! mult 4, rj
: store(+(ra,x(+(ri,1)4)),load(rb)) add rj, rb
: store(+(ra}x(ri,4)),load(rb)) addir 1, ri
: store(+(ra,ri){load(rb)) mult 4, ri
: store(ra,load(rb)) add ri, ra
> done movem rb, ra

34

Implementation

e What does this remind you of?

e Similar to parsing
Implement as an automaton
Use cost to choose from competing productions

e Provides linear time optimal code generation

%

BURS (bottom-up rewrite system)
burg, Twig, BEG

35

Summary

Ad-hoc pattern
matchers

Probably reasonable
for RISC machines

Encode matching as
automaton

Fast, optimal code
generation — requires
separate tool

Use parsers

Can lead to highly
ambiguous grammars

37

Modern processors

e Execution time not sum of tile times

e Instruction order matters
Pipelining: parts of different instructions overlap

Bad ordering stalls the pipeline — e.g., too many operations
of one type
Superscalar: some operations executed in parallel

e Cost is an approximation

e Instruction scheduling helps

%

38

