
Compilers

Lecture 1

Introduction

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

222

Discussion
 What does a compiler do?

 Why do you need that?

 Name some compilers you have used

333

A Brief History of
High-Level Languages
 1953 IBM develops the 701

 Memory: 4096 words of 36 bits
 Speed: 60 msec for addition
 All programming done in assembly code

444

Programming
 What’s the problem?

 Assembly programming very slow and error-prone
 Software costs exceeded hardware costs!

 John Backus: “Speedcoding”
 Simulate a more convenient machine
 But, ran 10-20 times slower than hand-written assembly

 Backus
 Idea: translate high-level code to assembly
 Many thought this impossible

 Had already failed in other projects
 1954-7 FORTRAN I project

 By 1958, >50% of all code is in FORTRAN
 Cut development time dramatically – from weeks to hours

555

FORTRAN I
 The first compiler

 Huge impact on computer science
 Produced code almost as good as hand-written

 Led to an enormous body of work
 Theoretical work on languages, compilers
 Program semantics
 Thousands of new languages

 Modern compilers preserve the outlines of FORTRAN I

666

Language implementations

Can you think of
another strategy –

a “hybrid”?

777

Languages involved

int i = 10;

while (i > 0) {

 x = x * 2;

 i = i – 1;

}

 movl %esp, %ebp
 subl $4, %esp
 movl $10, -4(%ebp)
.L2:
 cmpl $0, -4(%ebp)
 jle .L3
 movl 8(%ebp), %eax
 sall %eax
 movl %eax, 8(%ebp)
 leal -4(%ebp), %eax
 decl (%eax)
 jmp .L2
.L3:
 movl 8(%ebp), %eax

Source

Target

888

The compilation problem
 Assembly language

 Converts trivially into machine code
 No abstraction: load, store, add, jump, etc.
 Extremely painful to program
 What are other problems with assembly programming?

 High-level language
 Easy to understand and maintain
 Abstractions: control (loops, branches); data (variables,

records, arrays); procedures
 Problem: how do we get from one to the other?

 (systematically)

999

Translation process

Words

Sentences

Meaning

Sentences

Words

Assembly/machine codeHigh-level language

Letters Letters

101010

Sounds easy!
 Translation can be tricky…

 Infallible source: the Internet

I saw the Pope (“el Papa”) I saw the potato (“la papa”)

It won't leak in your
pocket and embarrass
you (“no los embarass”)

It won't leak in your pocket
and make you pregnant
(“no embarazado”)

It takes a tough man to
make a tender chicken

It takes a hard man to
make a chicken
affectionate

111111

Job #1
 What is our primary concern?

 Words or code: translate it correctly

 How do we know the translation is correct?
 Specifically, how do we know the resulting machine code

does the same thing

 “Does the same thing”
 What does that even mean?

121212

Correctness
 Practical solution: automatic tools

 Parser generators, regular expressions, rewrite
systems, dataflow analysis frameworks, code
generator-generators

 Extensive testing

 Theoretical solution: a bunch of math
 Formal description of semantics
 A proof that the translation is correct

 Topic of current research

131313

Incorrectness
 What is this?

 The infamous
“Blue Screen of Death”

 Internal failure in the
operating system

 Buggy device driver

141414

Good enough?
 Is there more than correctness?

Drop your pants here for best results.

-Tokyo dry cleaner

Our wines leave you nothing to hope for.

-Swiss menu

When passenger of foot heave in sight, tootle the horn.
Trumpet him melodiously at first, but if he still
obstacles your passage then tootle him with vigor.

-Car rental brochure

151515

Job #2
 Produce a “good” translation

 What does that mean for compilers?
Good performance – optimization
 Reduce the amount of work (“be concise”)
 Utilize the hardware effectively (“choose your words

carefully”)

 How hard could that be?

161616

Past processors

 More speed, more complexity
 But, same machine code – why is that nice?

Pentium M

8086
29,000 transistors

140,000,000 transistors

171717

Tomorrow’s processors

 Parallel, heterogeneous
 Really hard to program!

Xbox 360
PS-3 CELL

Intel Core Duo

181818

Structure of a compiler

Words

Sentences

Meaning

Sentences

Words

Back EndFront End

Letters Letters

191919

Structure of a compiler

 Organized as a series of passes
 Lexical Analysis
 Parsing
 Semantic Analysis
 Optimization
 Code Generation

 We will follow this outline in the class

Front End

Back End

202020

What I want you to get
out of this class
 Understand how compilers work

 Duh

 See how theory and practice work together
 Yes, theory of computation is good for something
 Also: graph algorithms, lattice theory, more…

 Work with a large-ish software systems

 Learn to think about tradeoffs
 System design always involves tradeoffs
 Impossible to maximize everything

212121

Study of compilers
 Brings together many parts of CS

 Practical and theoretical
 Some solved problems, others unsolved

Compiler

Programming
languages

Operating
systems

Computer
architecture

Theory of
computation

Algorithms

222222

Course Structure
Course has theoretical and practical aspects

 Programming assignments = practice
 Two homework projects
 40% of final grade

 Final exam: 65%
 Need to pass (> half points) all three (exam and each project)

232323

Programming Assignment
Logistics

 Need to “show your work”, incrementally
– at submission time, you will share a github/gitlab

project with TAs

– need to see your progress every day you work on the
project

• multiple commits per day
 You will also be interviewed for one of the projects

to demonstrate ownership of the code
– in person, not remote Late policy:

Up to five late days per
assignment, 5% penalty
per day

