Compilers

Lecture 1
Introduction

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Discussion

® What does a compiler do?

® Why do you need that?

® Name some compilers you have used

% 2

A Brief History of
High-Level Languages

® 1953 IBM develops the 701
Memory: 4096 words of 36 bits
Speed: 60 msec for addition
All programming done in assembly code

701 OPERATORS PANEL

Programming

® What’s the problem?
Assembly programming very slow and error-prone
Software costs exceeded hardware costs!

® John Backus: “Speedcoding”
Simulate a more convenient machine
But, ran 10-20 times slower than hand-written assembly
® Backus
Idea: translate high-level code to assembly
Many thought this impossible
Had already failed in other projects
® 1954-7 FORTRAN I project
By 1958, >50% of all code is in FORTRAN
Cut development time dramatically — from weeks to hours

FORTRAN |

® The first compiler
Huge impact on computer science
Produced code almost as good as hand-written

® Led to an enormous body of work
Theoretical work on languages, compilers
Program semantics
Thousands of new languages

® Modern compilers preserve the outlines of FORTRAN |

§

Language implementations

e [Two major strategies:
Interpretation
Compilation

e \What are the main differences?

Can you think of
another strategy —
a “hybrid”?

“Online” read program, execute immediately
“Offline”. convert high-level program into assembly code

e Compilation is a language translation problem

What are the languages?

§

Languages involved

int 1 = 10;

while (i > 0) {

X =x * 2;
i=1i-1;
Source

L2

.L3:

movl
subl
movl

cmpl
jle

movl
sall
movl
leal
decl
Jmp

movl

sesp, 3%ebp
S$4, %esp
$10, -4 (%ebp)

$0 ’ -4 (%ebp)

.L3
8 (¥ebp) , %eax
$eax

%eax, 8 (%ebp)
-4 (%ebp) , %eax
$eax)

.L2

8 ($ebp) , %eax

Target

The compilation problem

® Assembly language
Converts trivially into machine code
No abstraction: load, store, add, jump, etc.
Extremely painful to program
What are other problems with assembly programming?

® High-level language
Easy to understand and maintain

Abstractions: control (loops, branches); data (variables,
records, arrays); procedures

Problem: how do we get from one to the other?

% (systematically)

Translation process

High-level language

Assembly/machine code

§

Sounds easy!

® Translation can be tricky...
Infallible source: the Internet

I saw the Pope (“el Papa”) ==> [saw the potato (“la papa”)

It won't leak in your It won't leak in your pocket
pocket and embarrass m=)> and make you pregnant
you (“no los embarass”) (“no embarazado”)

It takes a hard man to
m==> make a chicken
affectionate

It takes a tough man to
make a tender chicken

Job #1

® What is our primary concern?
Words or code: translate it correctly

® How do we know the translation is correct?

Specifically, how do we know the resulting machine code
does the same thing

® “Does the same thing”
What does that even mean?

1"

Correctness

® Practical solution: automatic tools

Parser generators, regular expressions, rewrite
systems, dataflow analysis frameworks, code
generator-generators

Extensive testing

® Theoretical solution: a bunch of math
Formal description of semantics
A proof that the translation is correct
C> Topic of current research

Incorrectness o’

® What is this?

® Int | fail In th
fin exception 06 has occured at 0028:CL11B3ADC in WD DiskTSD{03) +
n erna al u re In e 00001660, This was called firom 0028:C11640CE in WD woltrack{04) +
00000000, It may be possible to comtinue normally,

Ope rati ng SyStem * Press any key to attempt to continue,

Press CTRL#ALT4+RESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to cont inue

® Buggy device driver

13

Good enough?

® |s there more than correctness?

Our wines leave you nothing to hope for.
-Swiss menu
When passenger of foot heave in sight, tootle the horn.

Trumpet him melodiously at first, but if he still
obstacles your passage then tootle him with vigor.

-Car rental brochure

Drop your pants here for best results.

-Tokyo dry cleaner

14

Job #2

® Produce a “good” translation

® What does that mean for compilers?
Good performance — optimization
Reduce the amount of work (“be concise”)

Utilize the hardware effectively (“choose your words
carefully”)

® How hard could that be?

§

15

Past processors

8086

29,000 transistors .
Pentium M

140,000,000 transistors
® More speed, more complexity
® But, same machine code — why is that nice?

Tomorrow’s processors

Intel Core Duo Xbox 360

PS-3 CELL

® Parallel, heterogeneous
Really hard to program!

Structure of a compiler

Front End

Back End

§

18

Structure of a compiler

® Organized as a series of passes

® We will follow this outline in the class

§

Lexical Analysis
Parsing

Semantic Analysis
Optimization

Code Generation

19

What | want you to get
out of this class

® Understand how compilers work
Duh

® See how theory and practice work together
Yes, theory of computation is good for something
Also: graph algorithms, lattice theory, more...

® Work with a large-ish software systems

® Learn to think about tradeoffs

System design always involves tradeoffs
Impossible to maximize everything

20

Study of compilers

® Brings together many parts of CS
Practical and theoretical
Some solved problems, others unsolved

Theory of Programming
computation languages
Operating
systems
Computer
% architecture

21

Course Structure
Course has theoretical and practical aspects

® Programming assignments = practice

Two homework projects
40% of final grade

® Final exam: 65%

® Need to pass (> half points) all three (exam and each project)

§

22

Logistics

® Need to “show your work”, incrementally

— at submission time, you will share a github/gitlab
project with TAs

Programming Assignment 13

— need to see your progress every day you work on the

project
* multiple commits per day

® You will also be interviewed for one of the projects
to demonstrate ownership of the code

— In person, not remote Late policy:

Up to five late days per

A assignment, 5% penalty
per day

23

