
Compilers

Lecture 3Lecture 3

Lexical analysis

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Big picture

Front End Back EndIR
Source

code

Machine

code

Errors

22

� Front end responsibilities

� Check that the input program is legal

� Check syntax and semantics

� Emit meaningful error messages

� Build IR of the code for the rest of the compiler

Front end design

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

33

� Two part design

� Scanner (a.k.a. lexer)

� Reads in characters

� Classifies sequences into words or tokens

� Parser

� Checks sequence of tokens against grammar

� Creates a representation of the program (AST)

Lexical analysis

� The input is just a sequence of characters.
Example:

if (i == j)

z = 0;

else

44

else

z = 1;

� More accurately, the input is:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

� Goal: Partition input string into substrings

And classify them according to their role

Scanner

� Responsibilities

� Read in characters

� Produce a stream of tokens

i f (i = j) {= ...

55

� Token has a type and a value

i f (i = j) {

<key,if> <(> <id,i> <op,==>

=

<id,j>

...

...

Hand-coded scanner
� Explicit test for each token

� Read in a character at a time

� Example: recognizing keyword “if”

66

Hand-coded scanner

� What about other tokens?

Example: “if” is a keyword, “if0” is an identifier

c = readchar();

if (c != ‘i’) { other tokens… }

else {

77

else {

c = readchar();

if (c != ‘f’) { other tokens… }

else {

c = readchar();

if (c not alpha-numeric) {

putback(c);

return IF_TOKEN; }

while (c alpha-numeric) { build identifier }

Hand-coded scanner

Problems:

� Many different kinds of tokens

� Fixed strings (keywords)

� Special character sequences (operators)

� Tokens defined by rules (identifiers, numbers)

88

� Tokens defined by rules (identifiers, numbers)

� Tokens overlap

� “if” and “if0” example

� “=“ and “==“

� Coding this by hand is too painful!

Getting it right is a serious concern

Scanner construction

� Goal: automate process

� Avoid writing scanners by hand

� Leverage the underlying theory of languages

99

Scanner

Scanner

Generator
Specification

Source code tokens

Compile time

Design time

Outline

Problems we need to solve:

� Scanner description

� How to describe parts of the input language

� The scanning mechanism

How to break input string into tokens

1010

� How to break input string into tokens

� Scanner generator

� How to translate from (1) to (2)

� Ambiguities

� The need for lookahead

Problem 1:
Describing the scanner

� We want a high-level language D that

1. Describes lexical components, and

2. Maps them to tokens (determines type)

3. But doesn’t describe the scanner algorithm itself !

1111

� Part 3 is important

� Allows focusing on what, not on how

� Therefore, D is sometimes called a specification

language, not a programming language

� Part 2 is easy, so let’s focus on Parts 1 and 3

Specifying tokens

� Many ways to specify them

� Regular expressions are the most popular
� REs are a way to specify sets of strings

� Examples:
� a – denotes the set {“a”}

1212

� a – denotes the set {“a”}

� a|b – denotes the set {“a”, “b”}

� ab – denotes the set {“ab”}

� ab* – denotes the set {“a”, “ab”, “abb”, “abbb”, … }

� Why regular expressions?
� Easy to understand

� Strong underlying theory

� Very efficient implementation

May specify sets
of infinite size

Formal languages

� Def: a language is a set of strings

� Alphabet Σ : the character set

� Language is a set of strings over alphabet

� Each regular expression denotes a language

1313

� Each regular expression denotes a language

� If A is a regular expression, then L(A) is the set of

strings denoted by A

� Examples: given Σ = {‘a’, ‘b’}

� A = a L(A) = {“a”}

� A = a|b L(A) = {“a”, “b”}

� A = ab L(A) = {“ab”}

� A = ab* L(A) = {“a”, “ab”, “abb”, “abbb”, … }

Building REs

� Regular expressions over Σ

� Atomic REs

� ε is an RE denoting empty set

� if a is in Σ, then a is an RE for {a}

1414

� if a is in Σ, then a is an RE for {a}

� Compound REs

� if x and y are REs then:

� xy is an RE for L(x)L(y) Concatentation

� x|y is an RE for L(x) ∪ L(y) Alternation

� x* is an RE for L(x)* Kleene closure

Outline

Problems we need to solve:

� Scanner specification language DONE

� How to describe parts of the input language

� The scanning mechanism

� How to break input string into tokens

1515

� How to break input string into tokens

� Scanner generator

� How to translate from (1) to (2)

� Ambiguities

� The need for lookahead

Overview of scanning

� How do we recognize strings in the language?

Every RE has an equivalent finite state automaton that

recognizes its language

(Often more than one)

1616

� Idea: scanner simulates the automaton

� Read characters

� Transition automaton

� Return a token if automaton accepts the string

Finite Automata

� Regular expressions = specification

� Finite automata = implementation

� A finite automaton consists of

� An input alphabet Σ

1717

� An input alphabet Σ

� A set of states S

� A start state n

� A set of accepting states F ⊆ S

� A set of transitions state →input state

Finite Automata State Graphs

� A state

• The start state

1818

• An accepting state

• A transition
a

FA Example

� Transition s1 →a s2

� Is read In state s1 on input “a” go to state s2

� FA accepts a string if we can follow transitions labeled

with the characters in the string from the start to an

accepting state

1919

accepting state

� What if we run out of characters?

� A finite automaton that accepts only “1”

1

Another Simple Example

� FA accepts any number of 1’s followed by a single 0

� Alphabet: {0,1}

1

2020

� Check that “1110” is accepted but “1101…” is not

0

1

And Another Example

� Alphabet {0,1}

� What language does this recognize?

1
0

2121

0 0

1

1

� Recognizing machine register names

� Typically “r” followed by register number (how many?)

Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

“Realistic” example

2222

S0 S2 S1

r

(0|1|2| … 9)

(0|1|2| … 9)

Recognizer for Register

r17 takes it through s0, s1, s2 and

accepts

r takes it through s0, s1 and fails

a takes it straight to se

REs and DFAs

� Key idea:

� Every regular expression has an equivalent DFA that

accepts only strings in the language

� Problem:

2323

� Problem:

� How do we construct the DFA for an arbitrary regular

expression?

� Not always easy

Example

� What is the FA for a(a|ε)b?

2424

� Need ε moves

� Transition A to B without consuming input!

ε
A B

Another example

� Remember this DFA?

0

1

0

1

0

2525

� We can simplify it as follows:

0
1

0

0

1

A different kind of automaton

� Accepts the same language

0
1

0

0

2626

Actually, it’s easier to understand!

� What’s different about it?

� Two different transitions on ‘0’

� This is a non-deterministic finite automaton

DFAs and NFAs

� Deterministic Finite Automata (DFA)

� One transition per input per state

� No ε-moves

2727

� Nondeterministic Finite Automata (NFA)

� Can have multiple transitions for one input in a given state

� Can have ε-moves

Execution of Finite Automata

� DFA can take only one path through the state graph

� Completely determined by input

NFAs can choose

2828

� NFAs can choose

� Whether to make ε-moves

� Which of multiple transitions for a single input to take

Acceptance of NFAs

� An NFA can get into multiple states

0

1

0

2929

• Input:

0

1 0 0

• Rule: NFA accepts if it can get in a final state

Non-deterministic finite automata

� An NFA accepts a string x iff ∃ a path through

the transition graph from s0 to a final state such

that the edge labels spell x

(Transitions on ε consume no input)

3030

� To “run” the NFA, start in s0 and guess the right

transition at each step

� Always guess correctly

� If some sequence of correct guesses accepts x then

accept

Why do we care about NFAs?

� Simpler, smaller than DFAs

� More importantly:
� Need them to support all RE capabilities

� Systematic conversion from REs to NFAs

3131

� Need ε transitions to connect RE parts

� Problem: how to implement NFAs?
� How do we guess the right transition?

Relationship between
NFAs and DFAs

� DFA is a special case of an NFA

� DFA has no ε transitions

� DFA’s transition function is single-valued

� Same rules will work

3232

� DFA can be simulated with an NFA (obvious)

� NFA can be simulated with a DFA (less obvious)

� Simulate sets of possible states

� Possible exponential blowup in the state space

� Still, one state per character in the input stream

Automatic scanner construction

� To convert a specification into code:
1 Write down the RE for the input language

2 Build a big NFA

3 Build the DFA that simulates the NFA

4 Systematically shrink the DFA

5 Turn it into code

3333

5 Turn it into code

� Scanner generators
� Lex and Flex work along these lines

� Algorithms are well-known and well-understood

� Key issue is interface to parser (define all parts of speech)

� You could build one in a weekend!

Scanner construction

[0] Define tokens as regular expressions

[1] Construct NFA for all REs

� Connect REs with εεεε transitions

� Thompson’s construction

[2] Convert NFA into a DFA

3434

[2] Convert NFA into a DFA

� DFA is a simulation of NFA

� Possibly much larger than NFA

� Subset construction

[3] Minimize the DFA

� Hopcroft’s algorithm

[4] Generate implementation

[1] Thompson’s construction

� Goal:

Systematically convert regular expressions for our

language into a finite state automaton

3535

� Key idea:

� FA “pattern” for each RE operator

� Start with atomic REs, build up a big NFA

� Idea due to Ken Thompson in 1968

Thompson’s construction

By induction on RE structure

� Base case:

Construct FA that recognizes atomic regular expressions:

S0 S1

a

3636

� Induction:

Given FAs for two regular expressions, x and y, build a new FA
that recognizes:

� xy

� x|y

� x*

Thompson’s construction

� Given:

� Build xy

S0 S1

x

S2 S3

y

S0 S1

x

S2 S3

y
εεεε

3737

� Why can’t we do this?

S0

x

S2 S3

y

Need for εεεε transitions

� What if x and y look like this:

S0 S1 S2 S3

a b

3838

� Then xy ends up like this:

S0 S2 S3

ab

Thompson’s construction

� Given:

� xy

S0 S1

x

S2 S3

y

S0 S1

x

S2 S3

y
εεεε

x

3939

� x|y

� x*

S0 S1

x

S2 S3

y

εεεε

S5

εεεε

S4

εεεε

εεεε

S0 S1

xεεεε

εεεε

S4 S5

εεεε εεεε

Example

Regular expression: a (b | c)*

� a, b, & c

� b | c

S0 S1

a
S0 S1

b
S0 S1

c

S1 S2

b
ε ε

4040

� b | c

� (b | c)*
S2 S3

b

S4 S5

c

S1 S6 S0 S7

ε

ε

ε ε

ε ε

ε ε

S3 S4

c

S0 S5

ε ε

Example

� a (b | c)*

S0 S1

a ε
S4 S5

b

S6 S7

c

S3 S8 S2 S9

ε

ε

ε ε

ε ε

ε ε

4141

� Note: a human could design something simpler…

� Like what?

S0 S1

a

b | c

Problem

� How to implement NFA scanner code?

� Will the table-driven scheme work?

� Non-determinism is a problem

� Explore all possible paths?

4242

� Observation:

We can build a DFA that simulates the NFA

� Accepts the same language

� Explores all paths simultaneously

� Subset construction algorithm
� Intuition: each DFA state represents the possible states

reachable after one input in the NFA

[2] NFA to DFA

q
q3

a State in DFA = set of states
from NFA

4343

� Two key functions

� next(si, a) – the set of states reachable from si on a

� εεεε-closure(si) – the set of states reachable from si on ε

� DFA transition function

� Edge labeled a from state si to state εεεε-closure(next(si, a))

q1

q0

q2
a εεεε

from NFA
s1 = { q0 }
s2 = { q2, q3 }

NFA to DFA example

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε ε

ε ε

ε εa (b | c)* :

Subsets S
(DFA states) NFA states

εεεε-closure(next(s,αααα))

a b c

4444
Accepting states

(DFA states) NFA states a b c

s0
q0

q1, q2, q3,

q4, q6, q9
none none

q5, q8, q9,
q3, q4, q6

q7, q8, q9,
q3, q4, q6

s1

s2

s3

q5, q8, q9,

q3, q4, q6

q1, q2, q3,
q4, q6, q9

q7, q8, q9,

q3, q4, q6

none

none (also s2) (also s3)

(also s2) (also s3)none

NFA to DFA example

� Convert each subset in S into a state:

δ a b c

s0 s1 - -

s1 - s2 s3

s2

s0 s1

b

a
b c

b

4545

� All transitions are deterministic

� Smaller than NFA, but still bigger than necessary

s1 - s2 s3

s2 - s2 s3

s3 - s2 s3
s3

s0 s1

c

b

c

c

Subset construction

� Algorithm

Build a set of subsets of NFA states

s0 ← ε-closure(initial)
S ← { s0 }

worklist ← { s0 }

Start with the ε-closure

over the initial state

Initialize the worklist to this

one subset

While there are more subsets

4646

worklist ← { s0 }

while (worklist is not empty)
remove s from worklist

for each α ∈ Σ
t← ε-closure(next(s,α))

if (t ∉ S) then
add t to S
add t to worklist
add transition (s, αααα, t)

on the worklist, remove the

next subset

Apply each input symbol to

the set of NFA states to

produce a new set.

If we haven’t seen that

subset before, add it to S

and the worklist, and record

the set-to-set transition

Does it work?

� Does the algorithm halt?

� S contains no duplicate subsets

� 2|NFA| is finite

� Main loop adds to S, but does not remove

It is a monotone function

S contains all the reachable NFA states

4747

� S contains all the reachable NFA states

Tries all input symbols, builds all NFA configurations

� Note: important class of compiler algorithms

� Fixpoint computation

� Monotonic update function

� Convergence is guaranteed

[3] DFA minimization

� Hopcroft’s algorithm

� Discover sets of equivalent states in DFA

� Represent each set with a single state

� When would two states in the DFA be equivalent?

4848

� When would two states in the DFA be equivalent?

� Two states are equivalent iff:

� For all input symbols, transitions lead to equivalent states

This is the key to the algorithm

DFA minimization

� A partition P of the states S

� Each s ∈ S is in exactly one set pi ∈ P

� Idea:

If two states s and t transition to different partitions, then they
must be in different partitions

4949

� Algorithm:

Iteratively partition the DFA’s states

� Group states into maximal size sets, optimistically

� Iteratively subdivide those sets, as needed

� States that remain grouped together are equivalent

Splitting S around αααα

S

Tα

Original set S

S has transitions

5050

R

The algorithm partitions S around α

α

Q

α

S has transitions
on α to R, Q, & T

Splitting S around αααα

Tα

Original set S

α

S1

S2

5151

R

α

Q

α
S2

Could we split S2 further?

Yes, but it does not help
asymptotically

S2 is everything
in S - S1

DFA minimization

� Details:

� Given DFA (S,Σ,δ,s0,F)

� Initial partition: P0 = {F, S-F}

Intuition: final states are always different

Splitting a set around symbol a

5252

� Splitting a set around symbol a

� Assume sa & sb ∈ pi, and δ(sa,a) = sx, & δ(sb,a) = sy

� Split pi if:

� If sx & sy are not in the same set

� If sa has a transition on a, but sb does not

Intuition: one state in DFA cannot have two transitions on a

DFA minimization algorithm

P ← { F, {Q-F}}

while (P is still changing)
T ← { }

for each set S ∈ P

Start with two sets: final

states, everything else

Build a new partitioning

For each set and each input

5353

for each set S ∈ P
for each α ∈ Σ

partition S by α
into S1, and S2

T ← T ∪ S1 ∪ S2

if T ≠ P then
P ← T

This is a fixed-point algorithm!

For each set and each input

symbol, try to partition the

set

Collect the resulting sets in a

new partition, see if it’s

different

Does it work?

� Algorithm halts

� Partition P ∈ 2S

� Start off with 2 subsets of S {F} and {S-F}

� While loop takes Pi→Pi+1 by splitting 1 or more sets

� Pi+1 is at least one step closer to partition with |S| sets

5454

� Pi+1 is at least one step closer to partition with |S| sets

� Maximum of |S | splits

� Note that

� Partitions are never combined

� Initial partition ensures that final states are intact

DFA minimization
Refining the algorithm

� As written, it examines every S ∈ P on each iteration
� This does a lot of unnecessary work

� Only need to examine S if some T, reachable from S, has
been split

� Reformulate the algorithm using a “worklist”

5555

� Reformulate the algorithm using a “worklist”
� Start worklist with initial partition, F and {Q-F}

� When it splits S into S1 and S2, place S2 on worklist

This version looks at each S ∈ P many fewer times

Well-known, widely used algorithm due to John Hopcroft

Implementation

� Finite automaton
� States, characters

� State transition δ uniquely determines next state

� Next character function

6262

� Reads next character into buffer

� (May compute character class by fast table lookup)

� Transitions from state to state
� Implement δ as a table

� Access table using current state and character

Example

Turning the recognizer into code

seses1s0

All

others

0,1,2,3,4,5

,6,7,8,9rδ Char ← next character
State ← s0

while (Char ≠ EOF)

S0 S2 S1

r

(0|1|2| … 9)

(0|1|2| … 9)

6363

sesesese

ses2ses2

ses2ses1

Table encoding RE

while (Char ≠ EOF)
State ← δ(State,Char)
Char ← next character

if (State is a final state)
then report success
else report failure

Skeleton recognizer

Example
Adding actions

se

error

se

error

s1

start

s0

All

others

0,1,2,3,4,5

,6,7,8,9rδ Char ← next character
State ← s0

while (Char ≠ EOF)

S0 S2 S1

r

(0|1|2| … 9)

(0|1|2| … 9)

6464

se

error

se

error

se

error

se

se

error

s2

add
se

error

s2

se

error

s2

add
se

error

s1

errorerrorstart

Table encoding RE

while (Char ≠ EOF)
State ← δ(State,Char)
perform specified action
Char ← next character

if (State is a final state)
then report success
else report failure

Skeleton recognizer

Tighter register specification

� The DFA for
Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

S3 S2

0,1,2

(0|1|2| … 9)

6565

� Accepts a more constrained set of registers

� Same set of actions, more states

S0 S5 S1

r

S4

S6

0,1,2

3 0,1

4,5,6,7,8,9

Tighter register specification

seseseseses1s0

sssssss

ses3s3s3s3ses2

ses4s5s2s2ses1

All

others4-9320,1rδ

6666

sesesesesesese

seseseseseses6

seseseses6ses5

seseseseseses4

seseseseseses3

Table encoding RE for the tighter register specification

Runs in the
same
skeleton
recognizer

Building a scanner

Specification

“if”

“while”

[a-zA-Z][a-zA-Z0-9]*

[0-9][0-9]*

(

NFA for each RE Giant NFA

6767

� Language: if | while | [a-zA-Z][a-zA-Z0-9]* | [0-9][0-9]*…

� Problem:

� Giant NFA either accepts or rejects a one token

� We need to partition a string, and indicate the kind

(

)

…

Partitioning

� Input: stream of characters

x0, x1, x2, x3, … , xn

Giant NFA

ID

IF

6868

� Annotate the NFA

� Remember the accepting state of each RE

� Annotate with the kind of token

� Does giant NFA accept some substring x0…xi ?

� Return substring and kind of token

� Restart the NFA at xi+1

IF

Partitioning problems

� Matching is ambiguous

� Example: “foo+3”

� We want <foo>,<+>,<3>

� But: <f>,<oo>,<+>,<3> also works with our NFA

� Can end the identifier anywhere

Note: “foo+” does not satisfy NFA

6969

� Note: “foo+” does not satisfy NFA

� Solution: “maximal munch”

� Choose the longest substring that is accepted

� Must look at the next character to decide -- lookahead

� Keep munching until no transition on lookahead

More problems

� Some strings satisfy multiple REs
� Example: “new foo”

� <new> could be an identifier or a keyword

� Solution: rank the REs

7070

� Solution: rank the REs
� First, use maximal munch

� Second, if substring satisfies two REs, choose the one with
higher rank

� Order is important in the specification

� Put keywords first!

C scanner

%{
#include "parser.tab.h“
%}

identifier ([a-zA-Z_][0-9a-zA-Z_]*)
octal_escape ([0-7][^'"\n]*)
any_white ([\011\013\014\015])
%%

Declarations

Short-hand

7171

%%
{any_white}+ { }
for { lval.tok = get_pos(); return ctokFOR;}
if { lval.tok = get_pos(); return ctokIF;}
{identifier} { lval.tok = get_pos();

lval.idN = new idNode(cbtext, cblval.tok);
if (is_typename(cbtext)) return TYPEDEFname;
else return IDENTIFIER; }

{decimal_constant} { lval.exprN = atoi(cbtext);
return INTEGERconstant; }

%%
...any special code...

REs and

actions

Implementation

� Table driven
� Read and classify character

� Select action

� Find the next state, assign to state variable

� Repeat

7272

� Alternative: direct coding

� Each state is a chunk of code

� Transitions test and branch directly

� Very ugly code – but who cares?

� Very efficient

This is how lex/flex

work: states are

encoded as cases

in a giant switch

statement

Building a lexer

Specification

“if”

“while”

[a-zA-Z][a-zA-Z0-9]*

[0-9][0-9]*

(

NFA for each RE Giant NFA

7373

(

)

Giant DFA Table or code

Building scanners

� The point

� Theory lets us automate construction

� Language designer writes down regular expressions

� Generator does: RE � NFA � DFA � code

� Reliably produces fast, robust scanners

7474

� Reliably produces fast, robust scanners

� Works for most modern languages

Think twice about language features that defeat the DFA-

based scanners

