Compillers

Optimization

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

What we already saw

e Lowering
From language-level constructs to machine-level constructs

e At this point we could generate machine code
Output of lowering is a correct translation
What's left to do?

Map from lower-level IR to actual ISA

Maybe some register management (could be required)
Pass off to assembler

e Why have a separate assembler?

Handles “packing the bits”

Assembly addi <target>, <source>, <value>

Machine 0010 OOss ssst tttt 1nin nind 1nid @iid

%

But first...

e The compiler “understands” the program
IR captures program semantics

Lowering: semantics-preserving transformation
Why not do others?

e Compiler optimizations
Oh great, now my program will be optimal!
Sorry, it's a misnomer
What is an “optimization”?

%

Optimizations

e What are they?

Code transformations
Improve some metric

e Metrics

Performance: time, instructions, cycles
Are these metrics equivalent?

Memory
Memory hierarchy (reduce cache misses)
Reduce memory usage

Code Size

Energy

%

Big picture

o
o0
@&
S = Sem

canner arser checker

Checked R , Instruction
AST owering selection
assembly Register assembly Machine
o registers allocation k registers Assembler code

0000
| X RN
Bi : ce0oe
o
Ig PIC -
o o
tic
ker
Checked , Instruction
AST IR lowering tuples selleafar
assembly Register assembly Machine
« registers allocation k registers Assembler code

Why optimize?

e High-level constructs — —
may make some ALvID] = AlvdD-11 + 1
optimizations difficult t=A+ i*row + j
or impossible: = A+ i*row + j — 1
(*t) = (*s) +1

e High-level code may be more desirable
Program at high level
Focus on design; clean, modular implementation
Let compiler worry about gory details

e Premature optimization is the root of all evil!

%

Limitations

e \What are optimizers good at?
Consistent and thorough
Find all opportunities for an optimization
Uniformly apply the transformation

e What are they not good at?
Asymptotic complexity
Compilers can’t fix bad algorithms
Compilers can'’t fix bad data structures

e There’s no magic

%

Requirements

o Safety
Preserve the semantics of the program
What does that mean?

o Profitability

Will it help our metric?
Do we need a guarantee of improvement?

e Risk
How will interact with other optimizations?
How will it affect other stages of compilation?

%

. :
Example: loop unrolling :
o
for (1=0; 1<100; 1++) for (1=0; 1<25; 1++) {
*t++ = *S++ *t++ = *S++
*t++ = *S++
*t++ = *S++
o Safety: Tt = Tss b

Always safe; getting loop conditions right can be tricky.

o Profitability

Depends on hardware — usually a win — why?

e Risk?
Increases size of code in loop
k May not fit in the instruction cache

10

Optimizations

e Many, many optimizations invented

Constant folding, constant propagation, tail-call elimination,
redundancy elimination, dead code elimination, loop-
Invariant code motion, loop splitting, loop fusion, strength
reduction, array scalarization, inlining, cloning, data
prefetching, parallelization. . .etc . .

e How do they interact?
Optimist: we get the sum of all improvements!
Realist: many are in direct opposition

%

11

Rough categories

e Traditional optimizations
Transform the program to reduce work
Don’t change the level of abstraction

e Resource allocation
Map program to specific hardware properties
Register allocation
Instruction scheduling, parallelism
Data streaming, prefetching

e Enabling transformations

%

Don’t necessarily improve code on their own
Inlining, loop unrolling

Constant propagation

e ldea

If the value of a variable is known to be a constant at
compile-time, replace the use of variable with constant

n = 10; n = 10;
cC = 2; # = 2;
for (1=0;1<n |++) fo (i: 1<10; 1++)
S =S + 1* = S + 1*2;
o Safety
Prove the value is constant
e Notice:

May interact favorably with other optimizations, like loop
unrolling — now we know the trip count

13

%

Constant folding

e Ildea
If operands are known at compile-time, evaluate
expression at compile-time

r = 3.141 * 10; q r = 31.41:
What do we need to be careful of?

Is the result the same as if executed at runtime?
Overflow/underflow, rounding and numeric stability

e Often repeated throughout compiler

%

x = A[2]; q tl = 2%4;
t2 = A+ t1;
X = *t2;

14

Partial evaluation :

e Constant propagation and folding together

e ldea:
Evaluate as much of the program at compile-time as possible
More sophisticated schemes:
Simulate data structures, arrays
Symbolic execution of the code

e Caveat: floating point

%

Preserving the error characteristics of floating point values

15

Algebraic simplification

e |dea:
Apply the usual algebraic rules to simplify expressions

—_+ * B %
o o
TD O W

e Repeatedly apply to complex expressions

e Many, many possible rules
Associativity and commutativity come into play

%

elimination

e |ldea:

If program computes the same expression multiple times,
reuse the value.

a=b + t=Db+c
c=b+c # a =t
_ c = t;
d =Db + C d=b+c:
o Safety:
Subexpression can only be reused until operands are
redefined

e Often occurs in address computations
k Array indexing and struct/field accesses

Common sub-expression eet

17

Dead code elimination

e |ldea:

If the result of a computation is never used, then we can
remove the computation

X:y+1;
y = 1; B y=1;
X =2 * z; X =2 * z

o Safety
Variable is dead if it is never used after defined
Remove code that assigns to dead variables

e This may, in turn, create more dead code

%

Dead-code elimination usually works transitively

18

Copy propagation

e |dea:
After an assignment x =y, replace any uses of x with y
X =Y, X =Y,

if (1) B if O~
s = x+F(X); s = y+T(y);

o Safety:
Only apply up to another assignment to x, or
...another assignment to y!

e What if there was an assignment y = z earlier?

%

Apply transitively to all assignments

19

Unreachable code elimination

e ldea:
Eliminate code that can never be executed

#define DEBUG O

1T (DEBUG)
print(*‘Current value = *“, v);

e Different implementations
High-level: look for if (false) or while (false)

Low-level: more difficult
Code is just labels and gotos
Traverse the graph, marking reachable blocks

%

20

How do these things happen?

e \WWho would write code with:
Dead code
Common subexpressions
Constant expressions
Copies of variables

e Two ways they occur
High-level constructs — we've already seen examples

Other optimizations
Copy propagation often leaves dead code
Enabling transformations: inlining, loop unrolling, etc.

%

21

Loop optimizations :

e Program hot-spots are usually in loops
Most programs: 90% of execution time is in loops

What are possible exceptions?
OS kernels, compilers and interpreters

e Loops are a good place to expend extra effort

Numerous loop optimizations
Often expensive — complex analysis
For languages like Fortran, very effective

What about C?

22

%

Loop-invariant code motion

e |ldea:

If a computation won’t change from one loop iteration to
the next, move it outside the loop

tl = X*X;

for (1=0;i1I<N;i1++)
A[1] = A[1] + t1;

for (1=0;iI<N;i++)
A[1] = A[1] + xX*Xx;

o Safety:
Determine when expressions are invariant
Just check for variables with no assignments?

e Useful for array address computations

& Not visible at source level

23

Strength reduction

e |ldea:

Replace expensive operations (mutiplication, division) with
cheaper ones (addition, subtraction, bit shift)

e Traditionally applied to induction variables
Variables whose value depends linearly on loop count
Special analysis to find such variables

v = 0;
for (i=0;i<N;i++) # for (1=0;1<N;i++)
vV = 4*1; Alv] = . . .
A[v] = . . . V =V + 4;

%

24

Strength reduction

e Can also be applied to simple arithmetic operations:

X * 2 X + X
X * 2\C # X<<C
X/2"C X>>C

e Typical example of premature optimization
Programmers use bit-shift instead of multiplication
“x<<2" is harder to understand
Most compilers will get it right automatically

%

25

Inlining

e |dea:
Replace a function call with the body of the callee

o Safety

What about recursion?

e Risk
Code size
Most compilers use heuristics to decide when
Has been cast as a knapsack problem

26

Inlining

e What are the benefits of inlining?

Eliminate call/return overhead

Customize callee code in the context of the caller
Use actual arguments
Push into copy of callee code using constant prop
Apply other optimizations to reduce code

Hardware
Eliminate the two jumps
Keep the pipeline filled

e Critical for OO languages
Methods are often small
k Encapsulation, modularity force code apart

27

Inlining

e InC:

At a call-site, decide whether or not to inline
(Often a heuristic about callee/caller size)
Look up the callee

Replace call with body of callee

e What about Java? class A { void MO {.} }
What complicates this? class B extends A
Virtual methods L void MO {-}+ }
Even worse? void foo(A x)
Dynamic class loading 1
x.MQ; // which M?
}

%

28

Inlining In Java

e With guards: void Foo(A x)

{
IT (X 1s type A)
X.-MO); /7 inline A’s M
iIT (X 1s type B)
X.-M(O); /7 inline B’s M

e Specialization y = new AQ);

%

_ foo(y);
At a given call, we may be able to Z = new BO:

determine the type f00(2);
Requires fancy analysis

29

Big picture

e \When do we apply these optimizations?
High-level:
Inlining, cloning
Some algebraic simplifications
Low-level
Everything else

e It's a black art
Ordering is often arbitrary

Many compilers just repeat the optimization passes over
and over

%

30

Writing fast programs

In practice:

e Pick the right algorithms and data structures
Asymptotic complexity and constants
Memory usage, memory layout, data representation

e Turn on optimization and profile
Run-time
Program counters (e.g., cache misses)

e Evaluate problems

e [weak source code

%

Help the optimizer do “the right thing”

31

Anatomy of an optimization

Two big parts:

e Program analysis
Pass over code to find:
Opportunities
Check safety constraints

e Program transformation
Change the code to exploit opportunity

e Often: rinse and repeat

%

32

Dead code elimination

e |dea:
Remove a computation if result is never used
y =w — 7; y =w — 7;
X =y + 1;
X =2 % z; X =2 * z; X
o Safety

Variable is dead if it is never used after defined
Remove code that assigns to dead variables

e This may, in turn, create more dead code
& Dead-code elimination usually works transitively

X X)
| X
o
o
o
1;
2 * z

33

Dead code

e Another example:

X =y + 1;

y =2 * z; Which statements
X =Yy + Z; can be safely

z = 1; removed?

Z = X,

e Conditions:

%

Computations whose value is never used
Obvious for straight-line code
What about control flow?

34

Dead code

e With if-then-else:

Which
statements are
can be removed?

X
)_/ =
|
Z
Z

e Which statements are dead code”?

%

What if “c” is false?
Dead only on some paths through the code

35

Dead code :
o
e And a loop:
Which while (p) {
statements are X =y +1;
can be removed? y = 2 * z;
IT (¢c) xX =y + z
z = 1;
}
Z = X;

e Now which statements are dead code”?

%

36

Dead code

e And a loop:

Which
statements are
can be removed?

wh

I
X
Y
I
Z

}
z

X,

e Statement “x = y+1” not dead
e What about “z =177

%

37

Low-level IR

e Most optimizations performed in low-level IR

Labels and jumps
No explicit loops

e Even harder to see
possible paths

%

—

—

labell:

Jjumpifnot p label2
X =y +1

y =2 * z
jumpifnot c label3
X =y + Z

label3:

z =1

jump labell
label2:

Z = X

38

Optimizations and control flow

e Dead code is flow sensitive

Not obvious from program

Dead code example: are there any possible paths that
make use of the value?

Must characterize all possible dynamic behavior
Must verify conditions at compile-time

e Control flow makes it hard to extract information
High-level: different kinds of control structures
Low-level: control-flow hard to infer

e Need a unifying data structure

%

39

Control flow graph

e Control flow graph (CFG):

a graph representation of the program
Includes both computation and control flow
Easy to check control flow properties

Provides a framework for global optimizations and other compiler

passes

e Nodes are basic blocks
Consecutive sequences of non-branching statements

e Edges represent control flow

%

From jump to a label
Each block may have multiple incoming/outgoing edges

40

CFG Example

Program

a + b;

m K X

T (©) {

e
< X 00K X
]

p

N =

I
X
+
S

%

Control flow graph

BB, [X = a + b;
y = 5;
it (c)
/\
BB, BB,
X =X + 1; X =
y =y + 1; Y =

41

Multiple program executions

Control flow graph

%

CFG models all
program executions

An actual execution is
a path through the
graph

Multiple paths: multiple
possible executions

How many?

BB, (X = a + b;
y = 5;
it (c)
/\
BB, BB,
X =X + 1; X =x - 1;
y =y + 1; y =y - 1;
BB, |£Z = X + VY,

42

Execution 1

e CFG models all
program executions

e Execution 1:
cis true

Program executes
BB,, BB,, and BB,

Control flow graph

X — 1;

BB, (X = a + b;
y = 5;
it (c)
/\
BB, BB,
X =X + 1; X =
y =y + 1; y =

y — 1;

43

Execution 2

e CFG models all
program executions

e Execution 2:
c is false

Program executes
BB,, BB;, and BB,

Control flow graph

X — 1;

BB, (X = a + b;
y = 5;
it (c)
/\
BB, BB,
X =X + 1; X =
y =y +1; Y =

y — 1;

44

Basic blocks

e |ldea:

Once execution enters the sequence, all statements (or
instructions) are executed

Single-entry, single-exit region

e Detalls
Starts with a label
Ends with one or more branches
Edges may be labeled with predicates
May include special categories of edges
Exception jumps
Fall-through edges
Computed jumps (jump tables)

%

45

Building the CFG

e [wo passes
First, group instructions into basic blocks
Second, analyze jumps and labels

e How to identify basic blocks?
Non-branching instructions
Control cannot flow out of a basic block without a jump
Non-label instruction
Control cannot enter the middle of a block without a label

%

46

Basic blocks

e Basic block starts:
At a label
After a jump

e Basic block ends:
At a jump
Before a label

%

614

|

1

labell:

jumpifnot p label2
X =y +1

y =2 * z
Jumpifnot c label3
X =y + 2

label3:

z = 1

jump labell
label?2:

Z = X

47

Basic blocks

labell:
e Basic block starts: jumpifnot p label2
At a label X =y + 1
After a jump y =2 * 7

jumpifnot c label3

e Basic block ends:

X =Yy + z
At a jump
Before a label label3:

Zz =1

jump labell

e Note: order still matters

1abel?2:
Z = X

%

Add edges

e Unconditional jJump

Add edge from source of
jump to the block
containing the label

e Conditional jump
2 successors

One may be the fall-
through block

e Fall-through

%

o000
o0
O
o
o0
o o
labell:
Jumpifnot p label2
v
X =y + 1
y =2 * z
Jumpifnot c label3
X =Yy + Z
label3:
z =1
Jump labell
N 7
label?2:
Z = X

49

Two CFGs

e From the high-level
Break down the complex constructs
Stop at sequences of non-control-flow statements
Requires special handling of break, continue, goto

e From the low-level
Start with lowered IR — tuples, or 3-address ops
Build up the graph
More general algorithm
Most compilers use this approach

e Should lead to roughly the same graph

%

50

Using the CFG

e Uniform representation for program behavior
Shows all possible program behavior
Each execution represented as a path
Can reason about potential behavior
Which paths can happen, which can’t
Possible paths imply possible values of variables

e Example: liveness information

e ldea:
Define program points in CFG
Describe how information flows between points

%

51

Program points

e |In between instructions
Before each instruction
After each instruction

May have multiple
successors or
predecessors

52

Live variables analysis

e |ldea
Determine live range of a variable

Region of the code between when the variable is assigned
and when its value is used

Specifically:
Def. A variable v is live at point p if
There is a path through the CFG from p to a use of v
There are no assignments to v along the path
==) Compute a set of live variables at each point p

e Uses of live variables:
Dead-code elimination — find unused computations

k Also: register allocation, garbage collection

53

Computing live variables

e How do we compute live variables?
(Specifically, a set of live variables at each program point)

e What is a straight-forward algorithm?
Start at uses of v, search backward through the CFG
Add v to live variable set for each point visited
Stop when we hit assignment to v

e Can we do better?
Can we compute liveness for all variables at the same time?

ldea:
Maintain a set of live variables
Push set through the CFG, updating it at each instruction

%

54

Flow of information

e Question 1: how does information
flow across instructions?

e Question 2: how does information
flow between predecessor and

o
X =y +
o
y = 2*z
o
1T (c©)
o

successor blocks?

°
X =Y
°

%

N
o || o
=

55

Live variables analysis

e At each program point:

Which variables contain values computed earlier and
needed later

e Forinstruction I:
in[l] : live variables at program point before |
out[l] : live variables at program point after |

e For a basic block B:
in[B] : live variables at beginning of B
out[B] : live variables at end of B

e Note: in[l] = in[B] for first instruction of B

%

out[l] = out[B] for last instruction of B

Computing liveness

e Answer question 1: for each inl[I]

Instruction |, what is relation between
in[l] and out[l]?

out[l]

e Answer gquestion 2: for each basic
block B, with successors B, ..., B, .
what is relationship between out[B] out[B]

and in[B,] ... In[B] A

In[B1] in[Bn]
B1 Bn

3
. . .
Part 1. Analyze instructions
o
e Live variables across instructions
e Examples:
in[l] ={y.z} infl] ={y,z,1t} in[l] = {x.t}
X =y + z X =Yy + Z X =x+1
out[l] = {x} out[l] = {x,t,y} out[l] = {x,t}

e Is there a general rule?

%

58

LIveness across instructions

e How is liveness determined?

All variables that | uses are live before |
Called the uses of |

All variables live after | are also live
before |, unless | writes to them

Called the defs of |

e Mathematically:

%

in[l] = (out[l] = def[l]) U use[l]

in[l] = {b}
a=b+ 2

infl] ={y,z}
X =5
out[l] ={x,y,z}

59

Example

e Single basic block

(obviously: out[l] = in[succ(l)]) Livel
Live1 = in[B] =in[l1] X = y+1
Live2 = out[l1] = in[l2] Live2
Live3 = out[I2] = in[I3] y = 2*z
Live4 = out[l3] = out[B] Live3

it (d)
e Relation between live sets Live4

Live1 = (Live2 — {x}) U {y}
Live2 = (Live3 — {y}) U {z}
Live3 = (Lived4 — {}) u {d}

00
o0
. . o
Flow of information ee
o O
e Equation:
in[l] = (out[l] = def[l]) U use[l]
. : Livel
e Notice: information flows backwards B
Need out[] sets to compute in[] sets /\ X - y+1
Propagate information up Livez
y = 2%z
Live3
e Many problems are forward - iflvzd)
Common sub-expressions, constant Lived

propagation, others

%

61

Part 2. Analyze control flow

e Question 2: for each basic block B, with successors B,
..., B, what is relationship between out[B] and
in[B4] ... In[B,]

e Example: Out:Ez }
in={) in={)
W=X+2Z; | g=EXtY;
Bl Bn

e What's the general rule?

%

62

Control flow

e Rule: A variable is live at end of block B if it is live at
the beginning of any of the successors
Characterizes all possible executions
Conservative: some paths may not actually happen

e Mathematically:

out[B]= U In[B]]

B’ € succ(B)

e Again: information flows backwards

%

63

System of equations Tt
e Put parts together:
in[l] = (out[l] = def[l]) U use[l] N
out[l] = in[succ(l)] Ofgztgfrlllic]j a
out[B]= U In[B] Dataflow
B’ e succ(B) Equations

e Defines a system of equations (or constraints)

Consider equation instances for each instruction and each
basic block

What happens with loops?
Circular dependences in the constraints
|s that a problem?

%

64

Solving the problem

e lterative solution:
Start with empty sets of live variables
Iteratively apply constraints
Stop when we reach a fixpoint

For all instructions in[l] = out[l] = G

Repeat
For each instruction |
in[l] = (out[l] — def[l]) U use]l]
out[l] = in[succ(l)]
For each basic block B
out[B] = GSKU{C(B) in[B’]
Until no new changes in sets

65

Example

o Steps:
Set up live sets for each
program point
Instantiate equations
Solve equations

66

Example

e Program points

67

Example

L1=L2 v {c}
L2=L3 u L11

L3 = (L4 —{x}) v {y}
L4 = (L5 —{y}) v {z}
LS5 =L6 v {d}
L6=L70UL9

L7 =(L8 —{x}) u{y,z}
L8=L9

L9 =L10 —{z}
L10=L1

L11 =(L12 — {z}) U {Xx}
L12 = {}

%

L1={X,y,z,¢c,d}
L2={x,y,z,¢c,d}
L3={y,z,c,d}

L4={x,z,c¢c,d }

L5={x,y,z,¢,d}
L6={Xx,y,z,¢c,d}

L7={y,z,c,d}
L8={x,y,c,d}
L9={x,y,c,d}

L10={x,y,z,¢c,d}
L11={x }
L12 ={ }

68

Questions

e Does this terminate?

e Does this compute the right answer?

e How could generalize this scheme for other kinds of

analysis?

%

69

Generalization

e Dataflow analysis
A common framework for such analysis
Computes information at each program point
Conservative: characterizes all possible program behaviors

e Methodology

Describe the information (e.g., live variable sets) using a
structure called a lattice

Build a system of equations based on:
How each statement affects information
How information flows between basic blocks
Solve the system of constraints

70

Parts of live variables analysis

e Live variable sets
Called flow values
Associated with program points
Start “empty”, eventually contain solution

e Effects of instructions
Called transfer functions

Take a flow value, compute a new flow value that captures the
effects

One for each instruction — often a schema

e Handling control flow
Called confluence operator
k Combines flow values from different paths

71

Mathematical model

e Flow values

Elements of a lattice L = (P, ©)
Flow value v € P

e Transfer functions
Set of functions (one for each instruction)
F,:P—>P

e Confluence operator

Merges lattice values
C:PXP->P

e How does this help us?

%

72

Lattices

e LatticeL = (P, ©)

e A partial order relation
Reflexive, anti-symmetric, transitive

e Upper and lower bounds
Consider a subset S of P
Upper bound of S: ueS : vVxeS xcu
Lower bound of S: leS : VxeS lcx

e Lattices are complete

%

Unigue greatest and least elements
“Top” TeP:VxeP xc T
“Bottom” 1eP:VxeP 1L cx

Confluence operator

e Combine flow values

“Merge” values on different control-flow paths
Result should be a safe over-approximation
We use the lattice < to denote “more safe”

e Example: live variables
vl ={x,vy, z} andv2={y, w}
How do we combine these values?
v=viuv2={w, XY, z}
What is the “c” operator?
Superset

%

74

Meet and join

e Goal:
Combine two values to produce the “best” approximation
Intuition:
Given vl ={x, y, z} and v2 = {y, w}
A safe over-approximation is “all variables live”
We want the smallest set

e Greatest lower bound
Given x,y €P
GLB(x,y) =z such that
zcxandzcy and
vwwcXxandwcy=>wcz
Meet operator: x Ay = GLB(X, y)

ﬁ; Natural “opposite”: Least upper bound, join operator

75

Termination

e Monotonicity

Transfer functions F are monotonic if
Given x,y €P

If x 2y then F(x)

F(y)
Alternatively: F(x) < x

-
-
e Key idea:
lterative dataflow analysis terminates if
Transfer functions are monotonic

Lattice has finite height
Intuition: values only go down, can only go to bottom

%

76

Example

e Prove monotonicity of live variables analysis
Equation: in[i] = (out[i] — def[i]) U use]i]
(For each instruction i)

As a function: F(x) = (x — def[i]) U use]i]

Obligation: If x cy then F(x) < F(y)

Prove:

Xcy => (x — def[i]) U use[i] < (y — def]i]) U use]i]
Somewhat trivially:
XCYy=>X—ScCy-—S5
XCYy=>XUScCyuUs

%

1

Dataflow solution

e Question:
What is the solution we compute?
Start at lattice top, move down
Called greatest fixpoint
Where does approximation come from?
Confluence of control-flow paths

e Knaster Tarski theorem

Every monotonic function F over a complete lattice L has a
unique least (and greatest) fixpoint

(Actually, the theorem is more general)

%

79

Summary

e Dataflow analysis
Lattice of flow values
Transfer functions (encode program behavior)
lterative fixpoint computation

e Key insight:
If our dataflow equations have these properties:
Transfer functions are monotonic
Lattice has finite height
Transfer functions distribute over meet operator
Then:
Our fixpoint computation will terminate
Will compute meet-over-all-paths solution

%

81

