
Compilers

Optimization

Yannis Smaragdakis, U. Athens
(i i l lid b S G @T ft)(original slides by Sam Guyer@Tufts)

What we already sawWhat we already saw
Lowering
F l l l t t t hi l l t tFrom language-level constructs to machine-level constructs

At this point we could generate machine code
Output of lowering is a correct translationOutput of lowering is a correct translation
What’s left to do?

Map from lower-level IR to actual ISA
Maybe some register management (could be required)Maybe some register management (could be required)
Pass off to assembler

Why have a separate assembler?y p
Handles “packing the bits”

Assembly addi <target>, <source>, <value>

M hi 0010 00 t tttt iiii iiii iiii iiii

22

Machine 0010 00ss ssst tttt iiii iiii iiii iiii

But firstBut first…
The compiler “understands” the programg

IR captures program semantics
Lowering: semantics-preserving transformation
Wh t d th ?Why not do others?

Compiler optimizationsp p
Oh great, now my program will be optimal!
Sorry, it’s a misnomer
What is an “optimization”?

33

OptimizationsOptimizations
What are they?

Code transformations
Improve some metric

Metrics
Performance: time, instructions, cycles

A th t i i l t?Are these metrics equivalent?
Memory

Memory hierarchy (reduce cache misses)
Reduce memory usage

Code Size
Energy

44

gy

Big pictureBig picture
Errors

Scanner Parser Semantic
checkerchars tokens AST

InstructionChecked

Optimizations

IR lowering Instruction
selection

Checked
AST tuples

Register
allocation

assembly
∞ registers

assembly
k registers Assembler Machine

code

55

Big pictureBig picture
Errors

Optimizations
Scanner Parser Semantic

checkerchars tokens AST
Optimizations

InstructionChecked
IR lowering Instruction

selection
Checked

AST tuples

Register
allocation

assembly
∞ registers

assembly
k registers Assembler Machine

code

66

Why optimize?Why optimize?
High-level constructs

A[i][j] A[i][j 1] + 1may make some
optimizations difficult
or impossible:

A[i][j] = A[i][j-1] + 1

t = A + i*row + j
s = A + i*row + j – 1p s o j
(*t) = (*s) + 1

High-level code may be more desirable
Program at high level
Focus on design; clean modular implementationFocus on design; clean, modular implementation
Let compiler worry about gory details

Premature optimization is the root of all evil!

77

Premature optimization is the root of all evil!

LimitationsLimitations
What are optimizers good at?

Consistent and thorough
Find all opportunities for an optimization
Uniformly apply the transformationUniformly apply the transformation

What are they not good at?
Asymptotic complexityy p p y
Compilers can’t fix bad algorithms
Compilers can’t fix bad data structures

There’s no magic

88

RequirementsRequirements
Safetyy

Preserve the semantics of the program
What does that mean?

Profitability
Will it help our metric?
Do we need a guarantee of improvement?

Risk
How will interact with other optimizations?
How will it affect other stages of compilation?

99

Example: loop unrollingExample: loop unrolling
for (i=0; i<100; i++) for (i=0; i<25; i++) {(; ;)

*t++ = *s++;
(; ;) {

*t++ = *s++;
*t++ = *s++;
*t++ = *s++;

Safety:
Always safe; getting loop conditions right can be tricky.

*t++ = *s++; }

Profitability
Depends on hardware – usually a win – why?

Risk?
Increases size of code in loop

1010

May not fit in the instruction cache

OptimizationsOptimizations
Many, many optimizations inventedy y

Constant folding, constant propagation, tail-call elimination,
redundancy elimination, dead code elimination, loop-
invariant code motion loop splitting loop fusion strengthinvariant code motion, loop splitting, loop fusion, strength
reduction, array scalarization, inlining, cloning, data
prefetching, parallelization. . .etc . .

How do they interact?
Optimist: we get the sum of all improvements!
R li t i di t itiRealist: many are in direct opposition

1111

Rough categoriesRough categories
Traditional optimizations

Transform the program to reduce work
Don’t change the level of abstraction

Resource allocationResource allocation
Map program to specific hardware properties
Register allocation
Instruction scheduling, parallelism
Data streaming, prefetching

E bli t f tiEnabling transformations
Don’t necessarily improve code on their own
Inlining, loop unrolling

1212

Constant propagationConstant propagation
Idea

If the value of a variable is known to be a constant at
compile-time, replace the use of variable with constant

n = 10;
c = 2;
for (i=0;i<n;i++)

+ i*

n = 10;
c = 2;
for (i=0;i<10;i++)

+ i*2Safety
Prove the value is constant

s = s + i*c; s = s + i*2;

Notice:
May interact favorably with other optimizations, like loop
unrolling – now we know the trip count

1313

unrolling now we know the trip count

Constant foldingConstant folding
Idea

If d k t il ti l tIf operands are known at compile-time, evaluate
expression at compile-time

r = 3 141 * 10; r = 31 41;

What do we need to be careful of?
I th lt th if t d t ti ?

r = 3.141 * 10; r = 31.41;

Is the result the same as if executed at runtime?
Overflow/underflow, rounding and numeric stability

Often repeated throughout compilerOften repeated throughout compiler
x = A[2]; t1 = 2*4;

t2 = A + t1;

1414

t2 A + t1;
x = *t2;

Partial evaluationPartial evaluation
Constant propagation and folding togetherg g g

Idea:
Evaluate as much of the program at compile-time as possiblep g p p
More sophisticated schemes:

Simulate data structures, arrays
S b li ti f th dSymbolic execution of the code

Caveat: floating point
P i th h t i ti f fl ti i t lPreserving the error characteristics of floating point values

1515

Algebraic simplificationAlgebraic simplification
Idea:

Apply the usual algebraic rules to simplify expressions

a * 1
/1

a
a/1
a * 0
a + 0
b || false

a
0
a
b

Repeatedly apply to complex expressions

b || false b

p y pp y p p
Many, many possible rules

Associativity and commutativity come into play

1616

Common sub-expression
eliminationelimination
Idea:

If program computes the same expression multiple times,
reuse the value.

t b +a = b + c;
c = b + c;
d = b + c;

t = b + c
a = t;
c = t;
d = b + c;

Safety:
Subexpression can only be reused until operands are
redefined

d = b + c;

redefined

Often occurs in address computations
Arra inde ing and str ct/field accesses

1717

Array indexing and struct/field accesses

Dead code eliminationDead code elimination
Idea:

If the result of a computation is never used, then we can
remove the computation

x = y + 1;x = y + 1;
y = 1;
x = 2 * z;

y = 1;
x = 2 * z;

Safety
Variable is dead if it is never used after defined
Remove code that assigns to dead variablesRemove code that assigns to dead variables

This may, in turn, create more dead code
Dead-code elimination usually works transitively

1818

Dead code elimination usually works transitively

Copy propagationCopy propagation
Idea:

After an assignment x = y, replace any uses of x with y

x = y; x = y;

S f t

if (x>1)
s = x+f(x);

if (y>1)
s = y+f(y);

Safety:
Only apply up to another assignment to x, or

another assignment to y!…another assignment to y!

What if there was an assignment y = z earlier?
Apply transitively to all assignments

1919

Apply transitively to all assignments

Unreachable code eliminationUnreachable code elimination
Idea:

Eliminate code that can never be executed

#define DEBUG 0
. . .
if (DEBUG)

print(“Current value = “, v);

Different implementations
High-level: look for if (false) or while (false)High level: look for if (false) or while (false)
Low-level: more difficult

Code is just labels and gotos
T th h ki h bl bl k

2020

Traverse the graph, marking reachable blocks

How do these things happen?How do these things happen?
Who would write code with:

Dead code
Common subexpressions
C t t iConstant expressions
Copies of variables

T thTwo ways they occur
High-level constructs – we’ve already seen examples
Other optimizationsOther optimizations

Copy propagation often leaves dead code
Enabling transformations: inlining, loop unrolling, etc.

2121

Loop optimizationsLoop optimizations
Program hot-spots are usually in loopsg y

Most programs: 90% of execution time is in loops
What are possible exceptions?

OS k l il d i t tOS kernels, compilers and interpreters

Loops are a good place to expend extra effortLoops are a good place to expend extra effort
Numerous loop optimizations
Often expensive – complex analysis
For languages like Fortran, very effective
What about C?

2222

Loop-invariant code motionLoop-invariant code motion
Idea:

If a computation won’t change from one loop iteration to
the next, move it outside the loop

t1 *
for (i=0;i<N;i++)

A[i] = A[i] + x*x;

t1 = x*x;
for (i=0;i<N;i++)

A[i] = A[i] + t1;

Safety:
Determine when expressions are invariantp
Just check for variables with no assignments?

Useful for array address computations

2323

Not visible at source level

Strength reductionStrength reduction
Idea:

Replace expensive operations (mutiplication, division) with
cheaper ones (addition, subtraction, bit shift)

Traditionally applied to induction variables
Variables whose value depends linearly on loop count
Special analysis to find such variablesSpecial analysis to find such variables

v = 0;
for (i=0;i<N;i++)

v = 4*i;
A[v] = . . .

for (i=0;i<N;i++)
A[v] = . . .
v = v + 4;

2424

Strength reductionStrength reduction
Can also be applied to simple arithmetic operations:

x * 2
x * 2^c

x + x
x<<cx 2 c

x/2^c
x<<c
x>>c

Typical example of premature optimization
Programmers use bit-shift instead of multiplication
“ 2” i h d t d t d“x<<2” is harder to understand
Most compilers will get it right automatically

2525

InliningInlining
Idea:

Replace a function call with the body of the callee

Safety
What about recursion?

Risk
CCode size
Most compilers use heuristics to decide when
Has been cast as a knapsack problemp p

2626

InliningInlining
What are the benefits of inlining?

Eliminate call/return overhead
Customize callee code in the context of the caller

Use actual argumentsUse actual arguments
Push into copy of callee code using constant prop
Apply other optimizations to reduce code

HardwareHardware
Eliminate the two jumps
Keep the pipeline filled

Critical for OO languages
Methods are often small
Encaps lation mod larit force code apart

2727

Encapsulation, modularity force code apart

InliningInlining
In C:

At a call-site, decide whether or not to inline
(Often a heuristic about callee/caller size)

Look up the calleeLook up the callee
Replace call with body of callee

What about Java?What about Java?
What complicates this?
Virtual methods

class A { void M() {…} }
class B extends A

{ void M() {…} }

Even worse?
Dynamic class loading

void foo(A x)
{

x M(); // which M?

2828

x.M(); // which M?
}

Inlining in JavaInlining in Java
With guards: void foo(A x)g ()

{
if (x is type A)

x.M(); // inline A’s M
if (x is type B)

x.M(); // inline B’s M
}

Specialization y = new A();
foo(y);At a given call, we may be able to

determine the type
Requires fancy analysis

foo(y);
z = new B();
foo(z);

2929

Requires fancy analysis

Big pictureBig picture
When do we apply these optimizations?

High-level:
Inlining, cloning
Some algebraic simplificationsSome algebraic simplifications

Low-level
Everything else

It’s a black art
Ordering is often arbitrary
Many compilers just repeat the optimization passes overMany compilers just repeat the optimization passes over
and over

3030

Writing fast programsWriting fast programs
In practice:

Pick the right algorithms and data structures
Asymptotic complexity and constants
Memory usage memory layout data representationMemory usage, memory layout, data representation

Turn on optimization and profile
Run-time
Program counters (e.g., cache misses)

Evaluate problems

Tweak source code
Help the optimizer do “the right thing”

3131

Anatomy of an optimizationAnatomy of an optimization
Two big parts:

Program analysis
Pass over code to find:

OpportunitiesOpportunities
Check safety constraints

P t f tiProgram transformation
Change the code to exploit opportunity

Often: rinse and repeat

3232

Dead code eliminationDead code elimination
Idea:

Remove a computation if result is never used

y = w – 7;
+ 1

y = w – 7;
x = y + 1;
y = 1;
x = 2 * z;

y = 1;
x = 2 * z;

y = 1;
x = 2 * z;

Safety
Variable is dead if it is never used after defined
R d th t i t d d i blRemove code that assigns to dead variables

This may, in turn, create more dead code
D d d li i ti ll k t iti l

3333

Dead-code elimination usually works transitively

Dead codeDead code
Another example:

x = y + 1;
y = 2 * z; Which statements
x = y + z;
z = 1;
z = x;

c state e ts
can be safely
removed?

Conditions:

z = x;

Computations whose value is never used
Obvious for straight-line code
What about control flow?

3434

What about control flow?

Dead codeDead code
With if-then-else:

x = y + 1;
y = 2 * z;
if () +

Which
statements are

b d? if (c) x = y + z;
z = 1;
z = x;

can be removed?

Which statements are dead code?
What if “c” is false?
Dead only on some paths through the code

3535

Dead codeDead code
And a loop:

while (p) {
x = y + 1;

2 *

Which
statements are

b d? y = 2 * z;
if (c) x = y + z;
z = 1;

can be removed?

}
z = x;

Now which statements are dead code?

3636

Dead codeDead code
And a loop:

while (p) {
x = y + 1;

2 *

Which
statements are

b d? y = 2 * z;
if (c) x = y + z;
z = 1;

can be removed?

}
z = x;

Statement “x = y+1” not dead
What about “z = 1”?

3737

What about z 1 ?

Low-level IRLow-level IR
Most optimizations performed in low-level IR

Labels and jumps
No explicit loops

label1:
jumpifnot p label2

+ 1

Even harder to see

x = y + 1
y = 2 * z
jumpifnot c label3

Even harder to see
possible paths

x = y + z
label3:
z = 1
jump label1
label2:
z = x

3838

Optimizations and control flowOptimizations and control flow
Dead code is flow sensitive

Not obvious from program
Dead code example: are there any possible paths that
make use of the value?make use of the value?

Must characterize all possible dynamic behavior
Must verify conditions at compile-time

Control flow makes it hard to extract information
High-level: different kinds of control structures
Low-level: control-flow hard to infer

Need a unifying data structure

3939

Control flow graphControl flow graph
Control flow graph (CFG):
a graph representation of the program

Includes both computation and control flow
Easy to check control flow propertiesEasy to check control flow properties
Provides a framework for global optimizations and other compiler
passes

Nodes are basic blocks
Consecutive sequences of non-branching statements

Edges represent control flowEdges represent control flow
From jump to a label
Each block may have multiple incoming/outgoing edges

4040

CFG ExampleCFG Example
Program Control flow graph

x = a + b;
y = 5;
if () {

x = a + b;
y = 5;
if ()

BB1

if (c) {
x = x + 1;
y = y + 1;

if (c)

T F
BB2 BB3

} else {
x = x – 1;
y = y – 1;

x = x + 1;
y = y + 1;

x = x – 1;
y = y – 1;

BB2 BB3

y y 1;
}
z = x + y;

4141

z = x + y;BB4

Multiple program executionsMultiple program executions
Control flow graph

CFG models all
program executions

x = a + b;
y = 5;
if ()

BB1

An actual execution is
a path through the
graph

if (c)

T F
BB2 BB3graph

Multiple paths: multiple

x = x + 1;
y = y + 1;

x = x – 1;
y = y – 1;

BB2 BB3

p p p
possible executions

How many?

4242

z = x + y;BB4

Execution 1Execution 1
Control flow graph

CFG models all
program executions

x = a + b;
y = 5;
if ()

BB1

Execution 1:
c is true

if (c)

T F
BB2 BB3Program executes

BB1, BB2, and BB4
x = x + 1;
y = y + 1;

x = x – 1;
y = y – 1;

BB2 BB3

4343

z = x + y;BB4

Execution 2Execution 2
Control flow graph

CFG models all
program executions

x = a + b;
y = 5;
if ()

BB1

Execution 2:
c is false

if (c)

T F
BB2 BB3Program executes

BB1, BB3, and BB4
x = x + 1;
y = y + 1;

x = x – 1;
y = y – 1;

BB2 BB3

4444

z = x + y;BB4

Basic blocksBasic blocks
Idea:

Once execution enters the sequence, all statements (or
instructions) are executed
Single-entry, single-exit regiong y, g g

Details
Starts with a label
Ends with one or more branches
Edges may be labeled with predicates
May include special categories of edgesMay include special categories of edges

Exception jumps
Fall-through edges
Computed jumps (jump tables)

4545

Computed jumps (jump tables)

Building the CFGBuilding the CFG

Two passes
First, group instructions into basic blocks
Second, analyze jumps and labels

H t id tif b i bl k ?How to identify basic blocks?
Non-branching instructions

Control cannot flow out of a basic block without a jumpControl cannot flow out of a basic block without a jump
Non-label instruction

Control cannot enter the middle of a block without a label

4646

Basic blocksBasic blocks

l b l1
Basic block starts:

At a label

label1:
jumpifnot p label2
x = y + 1

After a jump

Basic block ends:

y
y = 2 * z
jumpifnot c label3
x = y + zBasic block ends:

At a jump
Before a label

x = y + z
label3:
z = 1
j l b l1jump label1
label2:
z = x

4747

Basic blocksBasic blocks
label1:

Basic block starts:
At a label

label1:
jumpifnot p label2

x = y + 1
After a jump

Basic block ends:

y
y = 2 * z
jumpifnot c label3

Basic block ends:
At a jump
Before a label

x = y + z

label3:

Note: order still matters

z = 1
jump label1

4848

label2:
z = x

Add edgesAdd edges
Unconditional jump label1:j

Add edge from source of
jump to the block
containing the label

jumpifnot p label2

x = y + 1containing the label

Conditional jump

y = 2 * z
jumpifnot c label3

2 successors
One may be the fall-
through block

x = y + z

label3:
1through block

Fall-through

z = 1
jump label1

4949

label2:
z = x

Two CFGsTwo CFGs
From the high-levelg

Break down the complex constructs
Stop at sequences of non-control-flow statements
R i i l h dli f b k ti tRequires special handling of break, continue, goto

From the low-level
Start with lowered IR – tuples, or 3-address ops
Build up the graph
More general algorithmMore general algorithm
Most compilers use this approach

Should lead to roughly the same graph

5050

Should lead to roughly the same graph

Using the CFGUsing the CFG
Uniform representation for program behaviorg

Shows all possible program behavior
Each execution represented as a path
C b t t ti l b h iCan reason about potential behavior

Which paths can happen, which can’t
Possible paths imply possible values of variablesp p y p

Example: liveness information
Idea:

Define program points in CFG
Describe how information flows between points

5151

Describe how information flows between points

Program pointsProgram points
•

x = y + 1
•

In between instructions
Before each instruction

•
y = 2*z

•
if (c)

After each instruction
(c)
•

•
x = y + z

•

May have multiple
successors or
predecessors

•
1

5252

z = 1
•

Live variables analysisLive variables analysis
Idea

Determine live range of a variable
Region of the code between when the variable is assigned
and when its value is used
Specifically:
Def: A variable v is live at point p if

There is a path through the CFG from p to a use of vThere is a path through the CFG from p to a use of v
There are no assignments to v along the path

Compute a set of live variables at each point p

Uses of live variables:
Dead-code elimination – find unused computations
Al i t ll ti b ll ti

5353

Also: register allocation, garbage collection

Computing live variablesComputing live variables
How do we compute live variables?
(S ifi ll t f li i bl t h i t)(Specifically, a set of live variables at each program point)

What is a straight-forward algorithm?
Start at uses of v, search backward through the CFG
Add v to live variable set for each point visited
Stop when we hit assignment to vStop when we hit assignment to v

Can we do better?
Can we compute liveness for all variables at the same time?Can we compute liveness for all variables at the same time?
Idea:

Maintain a set of live variables

5454

Push set through the CFG, updating it at each instruction

Flow of informationFlow of information
•

Question 1: how does information
flow across instructions?

x = y + 1
•

y = 2*z
•

Question 2: how does information
flow between predecessor and

•
if (c)

•

flow between predecessor and
successor blocks? •

x = y + z
•

•

5555

•
z = 1

•

Live variables analysisLive variables analysis
At each program point:

Which variables contain values computed earlier and
needed later

For instruction I:For instruction I:
in[I] : live variables at program point before I
out[I] : live variables at program point after I

For a basic block B:
in[B] : live variables at beginning of B
out[B] : live variables at end of B

Note: in[I] = in[B] for first instruction of B
out[I] = out[B] for last instruction of B

5656

out[I] = out[B] for last instruction of B

Computing livenessComputing liveness

Answer question 1: for each
instruction I, what is relation between
in[I] and out[I]?

in[I]
I

out[I]
in[I] and out[I]?

Answer question 2: for each basic s e quest o o eac bas c
block B, with successors B1, …, Bn,
what is relationship between out[B]
and in[B] in[B]

B
out[B]

and in[B1] … in[Bn]

in[B1]
B1

in[Bn]
Bn…

5757

B1 Bn

Part 1: Analyze instructionsPart 1: Analyze instructions

Live variables across instructionsLive variables across instructions
Examples:

x = y + z x = y + z x = x + 1
in[I] = {y,z}

out[I] = {x}

in[I] = {y,z,t}
x = y + z
out[I] = {x t y}

in[I] = {x,t}

out[I] = {x t}

Is there a general rule?

out[I] = {x} out[I] = {x,t,y} out[I] = {x,t}

g

5858

Liveness across instructionsLiveness across instructions
How is liveness determined?How is liveness determined?

All variables that I uses are live before I
Called the uses of I

in[I] = {b}
a = b + 2

All variables live after I are also live
before I, unless I writes to them

C ll d th d f f I
in[I] = {y,z}

5Called the defs of I

Mathematically:

x = 5
out[I] = {x,y,z}

in[I] = (out[I] – def[I]) ∪ use[I]

5959

ExampleExample
Single basic block g
(obviously: out[I] = in[succ(I)])

Live1 = in[B] = in[I1]
Li 2 [I1] i [I2]

Live1
x = y+1

Live2 = out[I1] = in[I2]
Live3 = out[I2] = in[I3]
Live4 = out[I3] = out[B]

Live2
y = 2*z

Live3Live4 out[I3] out[B]

Relation between live sets

Live3
if (d)

Live4
Live1 = (Live2 – {x}) ∪ {y}
Live2 = (Live3 – {y}) ∪ {z}
Live3 = (Live4 – {}) ∪ {d}

6060

Live3 = (Live4 – {}) ∪ {d}

Flow of informationFlow of information
Equation:

in[I] = (out[I] – def[I]) ∪ use[I]

Notice: information flows backwards
Need out[] sets to compute in[] sets

Live1
x = y+1

Live2Propagate information up

Many problems are forward

Live2
y = 2*z

Live3
Many problems are forward

Common sub-expressions, constant
propagation, others

if (d)
Live4

6161

Part 2: Analyze control flowPart 2: Analyze control flow
Question 2: for each basic block B, with successors B1,
…, Bn, what is relationship between out[B] and
in[B1] … in[Bn]

BExample: B
out={ }

in={ }
w=x+z;

B1

in={ }
q=x+y;

Bn

…

What’s the general rule?

6262

Control flowControl flow
Rule: A variable is live at end of block B if it is live atRule: A variable is live at end of block B if it is live at
the beginning of any of the successors

Characterizes all possible executions
Conservative: some paths may not actually happen

M th ti llMathematically:

out[B] = ∪ in[B’]
B’ (B)

Again: information flows backwards

B’ ∈ succ(B)

6363

ga o a o o s bac a ds

System of equationsSystem of equations
Put parts together:g

in[I] = (out[I] – def[I]) ∪ use[I]
out[I] = in[succ(I)] Often called a

D fi t f ti (t i t)

[] [()]
out[B] = ∪ in[B’]

B’ ∈ succ(B)

system of
Dataflow

Equations

Defines a system of equations (or constraints)
Consider equation instances for each instruction and each
basic block
What happens with loops?

Circular dependences in the constraints
I th t bl ?

6464

Is that a problem?

Solving the problemSolving the problem
Iterative solution:

Start with empty sets of live variables
Iteratively apply constraints
St h h fi i tStop when we reach a fixpoint

For all instructions in[I] = out[I] = ∅

RepeatRepeat
For each instruction I

in[I] = (out[I] – def[I]) ∪ use[I]
t[I] i [(I)]out[I] = in[succ(I)]

For each basic block B
out[B] = ∪ in[B’]

6565

out[B] ∪ in[B]

Until no new changes in sets
B’ ∈ succ(B)

ExampleExample
Steps:

Set up live sets for each
program point
Instantiate equations

if (c)

x = y+1Instantiate equations
Solve equations

x = y+1
y = 2*z
if (d)

x = y+z

z = 1

z = x

6666

ExampleExample
Program points

L1
g

if (c)

x = y+1

L1

L2

L3
x = y+1
y = 2*z
if (d) L5

L6

L4

x = y+z

L9

L7

L8

z = 1

z = x

L9

L11
L10

L12

6767

L12

ExampleExample

L1 = { x y z c d }
L1 = L2 ∪ {c}

if (c)

x = y+1

L1 = { x, y, z, c, d }

L2 = { x, y, z, c, d }

L3 = { y, z, c, d }

1

2

L2 = L3 ∪ L11
L3 = (L4 – {x}) ∪ {y}
L4 = (L5 – {y}) ∪ {z} x = y+1

y = 2*z
if (d) L5 = { x, y, z, c, d }

L6 = { x, y, z, c, d }

L4 = { x, z, c, d }
2
3
4

({y}) { }
L5 = L6 ∪ {d}
L6 = L7 ∪ L9
L7 = (L8 {x}) ∪ {y z}

x = y+z

L9 = { x y c d }

L7 = { y, z, c, d }

L8 = { x, y, c, d }
5

L7 = (L8 – {x}) ∪ {y,z}
L8 = L9
L9 = L10 – {z}

z = 1

z = x

L9 = { x, y, c, d }

L11 = { x }
L10 = { x, y, z, c, d }

L12 { }

6

7

L10 = L1
L11 = (L12 – {z}) ∪ {x}
L12 = {}

6868

L12 = { }
{}

QuestionsQuestions

Does this terminate?

Does this compute the right answer?

How could generalize this scheme for other kinds of
analysis?

6969

GeneralizationGeneralization
Dataflow analysis

A common framework for such analysis
Computes information at each program point
Conservative: characterizes all possible program behaviorsConservative: characterizes all possible program behaviors

Methodology
Describe the information (e g live variable sets) using aDescribe the information (e.g., live variable sets) using a
structure called a lattice
Build a system of equations based on:

H h t t t ff t i f tiHow each statement affects information
How information flows between basic blocks

Solve the system of constraints

7070

Parts of live variables analysisParts of live variables analysis
Live variable sets

Called flow values
Associated with program points
Start “empty”, eventually contain solutionStart empty , eventually contain solution

Effects of instructions
Called transfer functions
Take a flow value, compute a new flow value that captures the
effects
One for each instruction – often a schema

Handling control flow
Called confluence operator

7171

Combines flow values from different paths

Mathematical modelMathematical model
Flow values

Elements of a lattice L = (P, ⊆)
Flow value v ∈ P

Transfer functions
Set of functions (one for each instruction)
Fi : P → PFi : P → P

Confluence operator
Merges lattice valuesg
C : P × P → P

How does this help us?

7272

LatticesLattices
Lattice L = (P, ⊆)

A partial order relation ⊆
Reflexive, anti-symmetric, transitive

Upper and lower bounds
Consider a subset S of P

Upper bound of S: u∈S : ∀x∈S x ⊆ uUpper bound of S: u∈S : ∀x∈S x ⊆ u
Lower bound of S: l∈S : ∀x∈S l ⊆ x

Lattices are completep
Unique greatest and least elements

“Top” T∈P : ∀x∈P x ⊆ T
“Bottom” ⊥∈P : ∀x∈P ⊥ ⊆ x

7373

Bottom ⊥∈P : ∀x∈P ⊥ ⊆ x

Confluence operatorConfluence operator
Combine flow values

“Merge” values on different control-flow paths
Result should be a safe over-approximation
W th l tti t d t “ f ”We use the lattice ⊆ to denote “more safe”

Example: live variablesp
v1 = {x, y, z} and v2 = {y, w}
How do we combine these values?

1 2 { }v = v1 ∪ v2 = {w, x, y, z}
What is the “⊆” operator?
Superset

7474

p

Meet and joinMeet and join
Goal:
Combine two values to produce the “best” approximation

Intuition:
Given v1 = {x, y, z} and v2 = {y, w}
A safe over-approximation is “all variables live”
We want the smallest set

Greatest lower bound
Given x,y ∈P
GLB(x,y) = z such that

z ⊆ x and z ⊆ y andz ⊆ x and z ⊆ y and
∀w w ⊆ x and w ⊆ y ⇒ w ⊆ z

Meet operator: x ∧ y = GLB(x, y)

Natural “opposite”: Least upper bound join operator

7575

Natural “opposite”: Least upper bound, join operator

TerminationTermination
Monotonicityy
Transfer functions F are monotonic if

Given x,y ∈P
If th F() F()If x ⊆ y then F(x) ⊆ F(y)
Alternatively: F(x) ⊆ x

K idKey idea:
Iterative dataflow analysis terminates if

Transfer functions are monotonicTransfer functions are monotonic
Lattice has finite height
Intuition: values only go down, can only go to bottom

7676

ExampleExample
Prove monotonicity of live variables analysisy y

Equation: in[i] = (out[i] – def[i]) ∪ use[i]
(For each instruction i)

As a function: F(x) = (x – def[i]) ∪ use[i]
Obligation: If x ⊆ y then F(x) ⊆ F(y)g ⊆ y () ⊆ (y)
Prove:
x ⊆ y => (x – def[i]) ∪ use[i] ⊆ (y – def[i]) ∪ use[i]

SSomewhat trivially:
x ⊆ y ⇒ x – s ⊆ y – s
x ⊆ y ⇒ x ∪ s ⊆ y ∪ s

7777

⊆ y ⊆ y

Dataflow solutionDataflow solution
Question:

What is the solution we compute?
Start at lattice top, move down
C ll d t t fi i tCalled greatest fixpoint
Where does approximation come from?
Confluence of control-flow pathsCo ue ce o co o o pa s

Knaster Tarski theorem
Every monotonic function F over a complete lattice L has aEvery monotonic function F over a complete lattice L has a
unique least (and greatest) fixpoint
(Actually, the theorem is more general)

7979

SummarySummary
Dataflow analysis

Lattice of flow values
Transfer functions (encode program behavior)
Iterative fixpoint computation

Key insight:
If our dataflow equations have these properties:

Transfer functions are monotonic
Lattice has finite height
Transfer functions distribute over meet operator

Then:
Our fixpoint computation will terminate
Will compute meet-over-all-paths solution

8181

