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Next step

 Parsing: Organize tokens into “sentences”
 Do tokens conform to language syntax ?
 Good news: token types are just numbers
 Bad news: language syntax is fundamentally more complex than 

lexical specification
 Good news: we can still do it in linear time in most cases

IR
Lexical

analyzer
Parsertokens

text
chars

Errors
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Parsing

 Parser
 Reads tokens from the scanner
 Checks organization of tokens against a grammar
 Constructs a derivation
 Derivation drives construction of IR

IR
Lexical

analyzer
Parsertokens

text
chars

Errors
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Study of parsing
 Discovering the derivation of a sentence

 “Diagramming a sentence” in grade school
 Formalization:

 Mathematical model of syntax – a grammar G
 Algorithm for testing membership in L(G)

 Roadmap:
 Context-free grammars
 Top-down parsers

Ad hoc, often hand-coded, recursive decent parsers
 Bottom-up parsers

Automatically generated LR parsers
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Specifying syntax with a grammar

 Can we use regular expressions?
 For the most part, no

 Limitations of regular expressions
 Need something more powerful
 Still want formal specification         (for automation)

 Context-free grammar
 Set of rules for generating sentences
 Expressed in Backus-Naur Form (BNF)
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Context-free grammar
 Example:

 Formally: context-free grammar  is
 G = (s, N, T, P)
 T : set of terminals                  (provided by scanner)
 N : set of non-terminals            (represent structure)
 s  N : start or goal symbol
 P : set of production rules of the form N → (N  T)* 

# Production rule

1
2

 sheepnoise →  sheepnoise  baa
                       |    baa

“produces” or 
“generates”

Alternative 
(shorthand)
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Language L(G)
 Language L(G)

   L(G) is all sentences generated from start symbol

 Generating sentences
 Use productions as rewrite rules
 Start with goal (or start) symbol – a non-terminal
 Choose a non-terminal and “expand” it to the right-hand 

side of one of its productions
 Only terminal symbols left  sentence in L(G)
 Intermediate results known as sentential forms
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Expressions
 Language of expressions

 Numbers and identifiers
 Allow different binary operators
 Arbitrary nesting of expressions

# Production rule

1
2
3
4
5
6
7

 expr →  expr   op   expr
           |   number
           |   identifier
op     →  +
           |   -
           |   *
           |   /
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Language of expressions
 What’s in this language?

    We can build the string “x - 2 * y”
   This string is in the language

# Production rule

1
2
3
4
5
6
7

 expr →  expr   op   expr
           |   number
           |   identifier
op     →  +
           |   -
           |   *
           |   /

Rule Sentential form

- expr

1

3
5
1
2
6
3

expr  op  expr

<id,x>  op  expr
<id,x>  -  expr
<id,x>  -  expr op expr
<id,x>  -  <num,2>  op  expr
<id,x>  - <num,2>  *  expr
<id,x>  - <num,2>  *  <id,y>



1010

Derivations
 Using grammars

 A sequence of rewrites is called a derivation
 Discovering a derivation for a string is parsing

 Different derivations are possible
 At each step we can choose any non-terminal
 Rightmost derivation: always choose right NT
 Leftmost derivation: always choose left NT

(Other “random” derivations – not of interest)
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Left vs right derivations
 Two derivations of “x – 2 * y”

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr  op  expr
<id, x>  op  expr
<id,x>  -  expr
<id,x>  -  expr op expr
<id,x>  -  <num,2>  op  expr
<id,x>  - <num,2>  *  expr
<id,x>  - <num,2>  *  <id,y>

Rule Sentential form

-
1
3
6
1
2
5
3

expr
expr  op  expr
expr  op  <id,y>
expr  *  <id,y>
expr  op  expr  *  <id,y>
expr  op  <num,2>  *  <id,y>
expr  -  <num,2>  *  <id,y>
<id,x>  -  <num,2>  *  <id,y>

Left-most derivation Right-most derivation
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Derivations and parse trees

 Two different derivations
 Both are correct
 Do we care which one we use?

 Represent derivation as a parse tree
 Leaves are terminal symbols
 Inner nodes are non-terminals
 To depict production a → b g d 

    show nodes b,g,d as children of a

    Tree is used to build internal representation



1313

Example (I)

 Concrete syntax tree
 Shows all details of syntactic structure

 What’s the problem with this tree?

expr

expropexpr

expr op expr y*

x - 2

Parse tree

Rule Sentential form

-
1
3
6
1
2
5
3

expr
expr  op  expr
expr  op  <id,y>
expr  *  <id,y>
expr  op  expr  *  <id,y>
expr  op  <num,2>  *  <id,y>
expr  -  <num,2>  *  <id,y>
<id,x>  -  <num,2>  *  <id,y>

Right-most derivation
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Abstract syntax tree
 Parse tree contains extra junk

 Eliminate intermediate nodes
 Move operators up to parent nodes
 Result: abstract syntax tree

expr

expropexpr

expr op expr y*

x - 2

y

*

x

-

2

  Problem: Evaluates as  (x – 2) * y
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Example (II)

 Solution: evaluates as   x – (2 * y)

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr  op  expr
<id, x>  op  expr
<id,x>  -  expr
<id,x>  -  expr op expr
<id,x>  -  <num,2>  op  expr
<id,x>  - <num,2>  *  expr
<id,x>  - <num,2>  *  <id,y>

Left-most derivation

expr

expr op expr

expr op exprx -

2 * y

Parse tree
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Derivations

y

*

x

-

2

Left-most derivation Right-most derivation

y

*x

-

2
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Derivations and semantics
 Problem:

 Two different valid derivations
 One captures “meaning” we want

(What specifically are we trying to capture here?)
 Key idea: shape of tree implies its meaning

 Can we express precedence in grammar?
 Notice: operations deeper in tree evaluated first
 Solution: add an intermediate production

 New production isolates different levels of precedence
 Force higher precedence “deeper” in the grammar
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Adding precedence
 Two levels:

 Observations:
 Larger: requires more rewriting to reach terminals
 But, produces same parse tree under both left and right 

derivations

# Production rule

1
2
3
4
5
6
7
8

 expr   →  expr  +  term
             |   expr   -  term
             |   term
term    →  term  *  factor
             |   term  /  factor
             |   factor
factor  → number
             |   identifier

Level 1: lower precedence – 
higher in the tree

Level 2: higher precedence – 
deeper in the tree
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Expression example

      Now right derivation yields   x – (2 * y)

Rule Sentential form

-
2
4
8
6
7
3
6
8

expr
expr  -  term
expr  -  term  *  factor  
expr  -  term  *  <id,y>
expr  -  factor *  <id,y>
expr  -  <num,2>  *  <id,y>
term  - <num,2>  *  <id,y>
factor  - <num,2>  *  <id,y>
<id,x> - <num,2>  *  <id,y>

Right-most derivation Parse tree

expr

expr op

op

x

-

2

* y

term

fact

term

term fact

fact
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With precedence

expr

expropexpr

expr op expr y*

x - 2

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact y

*

x

-

2
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Another issue 
 Original expression grammar:

 Our favorite string:x – 2 * y

# Production rule

1
2
3
4
5
6
7

 expr →  expr   op   expr
           |   number
           |   identifier
op     →  +
           |   -
           |   *
           |   /
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Another issue 

 Multiple leftmost derivations
 Such a grammar is called ambiguous
 Is this a problem?

 Very hard to automate parsing

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr  op  expr
<id, x>  op  expr
<id,x>  -  expr
<id,x>  -  expr  op  expr
<id,x>  -  <num,2>  op  expr
<id,x>  - <num,2>  *  expr
<id,x>  - <num,2>  *  <id,y>

Rule Sentential form

-
1
1
3
5
2
6
3

expr
expr  op  expr
expr  op  expr  op  expr
<id, x>  op  expr  op  expr
<id,x>  -  expr  op  expr
<id,x>  -  <num,2>  op  expr
<id,x>  - <num,2>  *  expr
<id,x>  - <num,2>  *  <id,y>
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Ambiguous grammars
 A grammar is ambiguous iff:

 There are multiple leftmost or multiple rightmost derivations 
for a single sentential form

 Note: leftmost and rightmost derivations may differ, even in 
an unambiguous grammar

 Intuitively:
 We can choose different non-terminals to expand
 But each non-terminal should lead to a unique set of 

terminal symbols

 What’s a classic example?
 If-then-else ambiguity 
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If-then-else
 Grammar:

 Problem: nested if-then-else statements
 Each one may or may not have else
 How to match each else with if

# Production rule

1
2
3

 stmt →  if  expr  then  stmt

           |   if  expr  then  stmt  else  stmt

           |   …other statements…
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If-then-else ambiguity
 Sentential form with two derivations:

     if expr1 then if expr2 then stmt1 else stmt2

if

expr1 then else

if

expr2 then

stmt2

stmt1

if

expr1 then

else

if

expr2 then

stmt2stmt1

if

expr1 then

else

if

expr2 then

stmt2stmt1

prod. 2

prod. 1

prod. 1

prod. 2



3333

Removing ambiguity
 Restrict the grammar

 Choose a rule: “else” matches innermost “if”
 Codify with new productions

 Intuition: when we have an “else”, all preceding nested 
conditions must have an “else”

# Production rule

1
2
3
4
5

 stmt        →  if  expr  then  stmt

                  |   if  expr  then  withelse  else  stmt

                  |   …other statements…
withelse  →  if expr then withelse else withelse

                  |   …other statements…
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Ambiguity
 Ambiguity can take different forms

 Grammatical ambiguity           (if-then-else problem)
 Contextual ambiguity

 In C:           x * y;        could follow typedef int x;
 In Fortran:  x = f(y);  f could be function or array

   Cannot be solved directly in grammar
 Issues of type (later in course)

 Deeper question:

        How much can the parser do?
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Parsing
 What is parsing?

 Discovering the derivation of a string 
If one exists

 Harder than generating strings
Not surprisingly

 Two major approaches
 Top-down parsing
 Bottom-up parsing

 Don’t work on all context-free grammars
 Properties of grammar determine parse-ability
 Our goal: make parsing efficient
 We may be able to transform a grammar
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Two approaches
 Top-down parsers     LL(1), recursive descent

 Start at the root of the parse tree and grow toward leaves
 Pick a production and try to match the input
 What happens if the parser chooses the wrong one?

 Bottom-up parsers     LR(1), operator precedence
 Start at the leaves and grow toward root
 Issue: might have multiple possible ways to do this
 Key idea: encode possible parse trees in an internal state             

   (similar to our NFA  DFA conversion)
 Bottom-up parsers handle a large class of grammars
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Grammars and parsers

 LL(1) parsers
 Left-to-right input
 Leftmost derivation
 1 symbol of look-ahead

 LR(1) parsers
 Left-to-right input
 Rightmost derivation
 1 symbol of look-ahead

 Also: LL(k), LR(k), SLR, LALR, …

Grammars that they 
can handle are called 
LL(1) grammars

Grammars that they 
can handle are called 
LR(1) grammars
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Top-down parsing
 Start with the root of the parse tree

 Root of the tree: node labeled with the start symbol

 Algorithm:
Repeat until the fringe of the parse tree matches input string
 At a node A, select one of A’s productions

     Add a child node for each symbol on rhs
 Find the next node to be expanded             (a non-terminal)

 Done when:
 Leaves of parse tree match input string                (success)
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Example
 Expression grammar            (with precedence)

 Input string     x – 2 * y

# Production rule

1
2
3
4
5
6
7
8

 expr   →  expr  +  term
             |   expr   -  term
             |   term
term    →  term  *  factor
             |   term  /  factor
             |   factor
factor  → number
             |   identifier
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Example

 Problem:
 Can’t match next terminal
 We guessed wrong at step 2
 What should we do now?

Rule Sentential form Input string

-  expr
expr

expr

x

+

term

fact

term
1      expr  +  term  x - 2 * y 
3      term  +  term  x – 2 * y 
6      factor  +  term  x – 2 * y 
8      <id>  +  term x  – 2 * y 
 -      <id,x>  +  term x  – 2 * y 

 x - 2 * y 

Current position in 
the input stream
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Backtracking

 If we can’t match next terminal:
 Rollback productions
 Choose a different production for expr
 Continue

Rule Sentential form Input string

-  expr

1      expr  +  term  x - 2 * y 
3      term  +  term  x – 2 * y 
6      factor  +  term  x – 2 * y 
8      <id>  +  term x  – 2 * y 
?      <id,x>  +  term x  – 2 * y 

 x - 2 * y 

Undo all these 
productions
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Retrying

 Problem:
 More input to read
 Another cause of backtracking

Rule Sentential form Input string

-  expr

expr

expr

x

-

term

fact

term
2      expr  -  term  x - 2 * y 
3      term  -  term  x – 2 * y 
6      factor  -  term  x – 2 * y 
8      <id>  -  term x  – 2 * y 
 -      <id,x>  -  term x –  2 * y 

 x - 2 * y 

 3     <id,x>  -  factor x –  2 * y 
 7     <id,x>  -  <num> x – 2  * y 

fact

2
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Successful parse
Rule Sentential form Input string

-  expr
expr

expr

x

-

term

fact

term

2      expr  -  term  x - 2 * y 
3      term  -  term  x – 2 * y 
6      factor  -  term  x – 2 * y 
8      <id>  -  term x  – 2 * y 
 -      <id,x> - term x –  2 * y 

 x - 2 * y 

 4     <id,x> - term * fact x –  2 * y 
 6     <id,x> - fact * fact x –  2 * y 

2

 7     <id,x> - <num> * fact x – 2  * y 
fact

 -      <id,x> - <num,2> * fact x – 2 *  y 
 8     <id,x> - <num,2> * <id> x – 2 * y 

term * fact

y



4444

Other possible parses

 Problem: termination
 Wrong choice leads to infinite expansion

    (More importantly: without consuming any input!)
 May not be as obvious as this
 Our grammar is left recursive

Rule Sentential form Input string

-  expr

2      expr - term  x - 2 * y 
2      expr - term - term  x – 2 * y 
2      expr - term - term - term  x – 2 * y 
2      expr - term - term - term - term  x – 2 * y 

 x - 2 * y 
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Left recursion
 Formally,

    A grammar is left recursive if  a non-terminal A such that 
   A →* A a      (for some set of symbols a)

 Bad news:
Top-down parsers cannot handle left recursion

 Good news:
We can systematically eliminate left recursion

What does →* mean?

A → B x
B → A y



4646

Notation
 Non-terminals

 Capital letter:   A, B, C

 Terminals
 Lowercase, underline:  x, y, z

 Some mix of terminals and non-terminals
 Greek letters:   a, b, g
 Example:

# Production rule

1
1

 A   →  B  +  x
 A   →  B  a

a =   +  x



4747

Eliminating left recursion
 Fix this grammar:

 Rewrite as

# Production rule

1
2

 foo   →  foo   a
           |   b

# Production rule

1
2
3

 foo   →  b bar
 bar   →  a bar
           |   e

New non-terminal

Language is b followed by 
zero or more a

This production gives you 
one b

These two productions 
give you zero or more a
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Back to expressions
 Two cases of left recursion:

 How do we fix these?

# Production rule

1
2
3

 expr   →  expr  +  term
             |   expr   -  term
             |   term

# Production rule

4
5
6

term    →  term  *  factor
             |   term  /  factor
             |   factor

# Production rule

1
2
3
4

expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e

# Production rule

4
5
6

term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
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Eliminating left recursion
 Resulting grammar

 All right recursive
 Retain original language and 

associativity
 Not as intuitive to read

 Top-down parser
 Will always terminate
 May still backtrack

# Production rule

1
2
3
4
5
6
7
8
9

10

expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier

There’s a lovely algorithm to do this 
automatically, which we will skip
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Top-down parsers
 Problem: Left-recursion
 Solution: Technique to remove it

 What about backtracking?
    Current algorithm is brute force

 Problem: how to choose the right production?
 Idea: use the next input token               (duh)
 How? Look at our right-recursive grammar…
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Right-recursive grammar

 We can choose the right 
production by looking at the next 
input symbol
 This is called lookahead
 BUT, this can be tricky…

# Production rule

1
2
3
4
5
6
7
8
9

10

expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier

Two productions 
with no choice at all

All other productions are 
uniquely identified by a 
terminal symbol at the 
start of RHS
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Lookahead
 Goal: avoid backtracking

 Look at future input symbols
 Use extra context to make right choice

 How much lookahead is needed?
 In general, an arbitrary amount is needed for the full class 

of context-free grammars
 Use fancy-dancy algorithm              CYK algorithm, O(n3)

 Fortunately,
 Many CFGs can be parsed with limited lookahead
 Covers most programming languages         not C++ or Perl
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Top-down parsing
 Goal:

  Given productions A → a | b , the parser should be able to 
choose between a and b

 Trying to match A
  How can the next input token help us decide?

 Solution: FIRST  sets                  (almost a solution)
 Informally: 

   FIRST(a) is the set of tokens that could appear as the first 
symbol in a string derived from a

 Def: x in FIRST(a) iff a →* x g



5454

Top-down parsing
 Building FIRST sets

We’ll look at this algorithm later

 The LL(1) property
 Given A → a and A → b, we would like:

             FIRST(a)  FIRST(b) = 
 we will also write FIRST(A → a), defined as FIRST(a)

 Parser can make right choice by with one lookahead token
 ..almost..
 What are we not handling?
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Top-down parsing
 What about e productions?

 Complicates the definition of LL(1)
 Consider A → a and A → b and a may be empty
 In this case there is no symbol to identify a

 Example:
 What is FIRST(#4)?
  = {  }
 What would tells us we are matching production 4?

# Production rule

1
2
3
4

S   →   A   z
A   →   x   B
       |    y   C
       |    
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Top-down parsing

 If A was empty
 What will the next symbol be?
 Must be one of the symbols that immediately follows an A

 Solution
 Build a FOLLOW set for each symbol that could produce e
 Extra condition for LL:

 FIRST(A→b) must be disjoint from FIRST(A→a) and FOLLOW(A)

# Production rule

1
2
3
4

S   →   A   z
A   →   x   B
       |    y   C
       |    
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FOLLOW sets
 Example:

 FIRST(#2) = { x }
 FIRST(#3) = { y }
 FIRST(#4) = {  }

 What can follow A?
 Look at the context of all uses of A
 FOLLOW(A) = { z }
 Now we can uniquely identify each production:

If we are trying to match an A and the next token is z, then we 
matched production 4

# Production rule

1
2
3
4

S   →   A   z
A   →   x   B
       |    y   C
       |    
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FIRST and FOLLOW 

more carefully
 Notice:

 FIRST and FOLLOW are sets
 FIRST may contain  in addition to other symbols

 Question:
 What is FIRST(#2)?
 = FIRST(B) = { x, y,  }?
 and FIRST(C)

 Question:
   When would we care

about FOLLOW(A)?
   Answer: if FIRST(C) contains 

# Production rule

1
2
3
4
5
6
7

S   →   A   z
A   →   B   C
       |    D
B   →   x
       |    y
       |    
C   → . . .
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LL(1) property
 Key idea:

 Build parse tree top-down
 Use look-ahead token to pick next production
 Each production must be uniquely identified by the terminal 

symbols that may appear at the start of strings derived from 
it.

 Def:    FIRST+(A → a) as
 FIRST(a) U FOLLOW(A), if e  FIRST(a)
 FIRST(a), otherwise

 Def:    a grammar is LL(1) iff
     A → a and A → b and

     FIRST+(A → a)  FIRST+(A → b) = 
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Parsing LL(1) grammar
 Given an LL(1) grammar

 Code: simple, fast routine to recognize each production
 Given A  1 | 2 | 3, with 

           FIRST+(i)  FIRST+ (j) =         for all i != j

/* find rule for A */
if (current token  FIRST+(1))
    select A  1

else if (current token  FIRST+(2))
    select A  2

else if (current token  FIRST+(3))
    select A  3 
else 
    report an error and return false
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Top-down parsing
 Build parse tree top down

t1 t2 t3 t4 t5 t6 t7 t8 t9
… token stream

# Production rule

1
2
3
4
5

G   →  A   a   B  z
A   →  b   g   d

B   →  C  D
       |   F
       |   e

A         a         B         z

G

b        g        d

A B

?

t5  FOLLOW(B)

t5  FIRST(C D)

t5  FIRST(F)

e

Consider all possible
strings derivable from “CD”
What is the set of tokens
that can appear at start?

Is “CD”?
disjoint?

C    D
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FIRST and FOLLOW sets

FIRST()
    For some  (T  NT)*, define FIRST() as the set of 

tokens that appear as the first symbol in some string that 
derives from  

That is, x  FIRST() iff   * x ,  for some 
 and       FIRST() iff   * 

FOLLOW(A)
    For some A  NT, define FOLLOW(A) as the set of symbols 

that can occur immediately after A in a valid sentence.
FOLLOW(G) = {EOF}, where G is the start symbol

The right-hand side of 
a production
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Computing FIRST sets
 Idea:

    Use FIRST sets of the right side of production

 Cases:
 FIRST(A→B) = FIRST(B1)

 What does FIRST(B1) mean?
 Union of FIRST(B1→g) for all g

 What if e in FIRST(B1)?

         FIRST(A→B) = FIRST(B2)            repeat as needed
 What if  in FIRST(Bi) for all i?
         FIRST(A→B)  = {e}                       leave {} for later

A   →   B1   B2   B3 …

Why  = ?
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Algorithm
 For one production: p = A → b

if (b is a terminal t)
FIRST(p) = {t}

else if (b == )
FIRST(p) = {}

else
Given   b = B1 B2 B3 … Bk

InAll = true
for (i  1 to k) 

FIRST(p) += FIRST(Bi)  -  {}
if ( not in FIRST(Bi)) 

InAll = false
break

if (InAll) FIRST(p) += {}

Why do we need 
to remove  from 

FIRST(Bi)?
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Algorithm
 For one production:

 Given A   →   B1   B2   B3   B4   B5 
 Compute FIRST(A→B) using FIRST(B)
 How do we get FIRST(B)?

 What kind of algorithm does this suggest?
 Recursive?
 Like a depth-first search of the productions

 Problem:
 What about recursion in the grammar?
 A → x B y   and   B → z A w
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Algorithm
 Solution

 Start with FIRST(B) empty
 Compute FIRST(A) using empty FIRST(B)
 Now go back and compute FIRST(B)

 What if it’s no longer empty?
 Then we recompute FIRST(A)
 What if new FIRST(A) is different from old FIRST(A)?
 Then we recompute FIRST(B) again…

 When do we stop?
 When no more changes occur – we reach convergence
 FIRST(A) and FIRST(B) both satisfy equations

 This is another fixpoint algorithm
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Algorithm
 Using fixpoints:

 Can we be smarter?
 Yes, visit in special order
 Reverse post-order depth first search

    Visit all children (all right-hand sides) before visiting the left-
hand side, whenever possible

forall p    FIRST(p) = {}

while (FIRST sets are changing)
pick a random p
compute FIRST(p) 
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Example
# Production rule

1
2
3
4
5
6
7
8
9

10
11

goal    →   expr
expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier

FIRST(3) = { + }
FIRST(4) = { - }
FIRST(5) = { e }

FIRST(7) = { * }
FIRST(8) = { / }
FIRST(9) = { e }

FIRST(1) = ?

FIRST(1) = FIRST(2)
               = FIRST(6)
               = FIRST(10)  FIRST(11)
               = { number, identifier }
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Computing FOLLOW sets
 Idea:

   Push FOLLOW sets down, use FIRST where needed

 Cases:
 What is FOLLOW(B1)?

 FOLLOW(B1) = FIRST(B2)

 In general:  FOLLOW(Bi) = FIRST(Bi+1)

 What about FOLLOW(Bk)?
 FOLLOW(Bk) = FOLLOW(A)

 What if e  FIRST(Bk)?

     FOLLOW(Bk-1) = FOLLOW(A)     extends to k-2, etc.

A   →   B1   B2   B3   B4   … Bk 
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Example

# Production rule

1
2
3
4
5
6
7
8
9

10
11

goal    →   expr
expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier

FOLLOW(goal) = { EOF }

FOLLOW(expr) = FOLLOW(goal) = { EOF }

FOLLOW(expr2) = FOLLOW(expr) = { EOF }

FOLLOW(term) = ? 

FOLLOW(term) += FIRST(expr2) 

                          += { +, -, e }

                          += { +, -, FOLLOW(expr)}

                          += { +, -, EOF }
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Example

# Production rule

1
2
3
4
5
6
7
8
9

10
11

goal    →   expr
expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier

FOLLOW(term2) += FOLLOW(term)

FOLLOW(factor)  = ?

FOLLOW(factor) += FIRST(term2)

                            += { *, / ,  }

                            += { *, / , FOLLOW(term)}

                            += { *, / , +,  -, EOF }
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Computing FOLLOW Sets

FOLLOW(G)  {EOF }
for each A  NT, FOLLOW(A)  Ø

while (FOLLOW sets are still changing)
  for each p  P, of the form A … B1B2…Bk

    FOLLOW(Bk)  FOLLOW(Bk)  FOLLOW(A)

    TRAILER  FOLLOW(A)
     for i  k down to 2
        if   FIRST(Bi ) then

        TRAILER  TRAILER  ( FIRST(Bi ) – {  } )

        else
 TRAILER  FIRST(Bi) 

 FOLLOW(Bi-1 )  FOLLOW(Bi-1)  TRAILER 
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LL(1) property
 Def: a grammar is LL(1) iff

     A → a and A → b and
     FIRST+(A → a)  FIRST+(A → b) = 

 Problem
 What if my grammar is not LL(1)?
 May be able to fix it, with transformations

 Example:

# Production rule

1
2
3

A  →   a   b1

      |    a   b2

      |    a   b3

# Production rule

1
2
3
4

A  → a  Z
Z  →  b1

      |   b2

      |   b3
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Left factoring
 Graphically

# Production rule

1
2
3

A  →   a   b1

      |    a   b2

      |    a   b3

# Production rule

1
2
3

A  → a  Z
Z  →  b1

      |   b2

      |   b3

A

1

3

2

Z

1

3

2A
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Expression example

After left factoring:

              In this form, it has LL(1) property

# Production rule

1
2
3

factor  → identifier
              |  identifier [ expr ]

              |  identifier ( expr )

First+(1) = {identifier}

First+(2) = {identifier}

First+(3) = {identifier}

# Production rule

1
2
3
4

factor   →  identifier  post

post     →  [ expr ]
              |   ( expr )
              |   e

First+(1) = {identifier}

First+(2) = { [ }

First+(3) = { ( }

First+(4) = ?

= Follow(post)
= {operators}
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Left factoring
 Graphically

factor

identifier

[

(

]

)

identifier

identifier

expr

expr

No basis for choice

factor [

(

]

)

identifier expr

expr

e

Next word determines choice
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Left factoring
 Question

Using left factoring and left recursion elimination, can we turn an 
arbitrary CFG to a form where it meets the LL(1) condition?

 Answer
Given a CFG that does not meet LL(1) condition, it is undecidable 

whether or not an LL(1) grammar exists

 Example
    {an 0 bn | n  1}   {an 1 b2n | n  1}   has no LL(1) grammar

aaa0bbb
aaa1bbbbbb
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Limits of LL(1)

 No LL(1) grammar for this language:

{an 0 bn | n  1}   {an 1 b2n | n  1}   has no LL(1) grammar

# Production rule

1
2
3
4
5
6

G  →   a  A  b
      |    a  B  bb
A  →   a  A  b
      |    0
B  →   a  B  bb
      |    1

Problem: need an unbounded 
number of a characters before you 
can determine whether you are in 
the A group or the B group
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Predictive parsing

 Predictive parsing
 The parser can “predict” the correct expansion
 Using lookahead and FIRST and FOLLOW sets

 Two kinds of predictive parsers
 Recursive descent

   Often hand-written
 Table-driven

   Generate tables from First and Follow sets
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Recursive descent
 This produces a parser with six 

mutually recursive routines:
  Goal
  Expr
  Expr2
  Term
  Term2
  Factor

 Each recognizes one NT or T
 The term descent refers to the 

direction in which the parse tree is 
built.

# Production rule

1
2
3
4
5
6
7
8
9

10
11
12

goal    →   expr
expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier
             |   (  expr  )
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Example code
 Goal symbol:

 Top-level expression

main()
  /* Match goal --> expr */
  tok = nextToken();
  if (expr() && tok == EOF)
    then proceed to next step;
    else return false;

expr()
  /* Match expr --> term expr2 */
  if (term() && expr2());
    return true;
  else return false;
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Example code
 Match expr2

expr2()
  /* Match expr2 --> + term expr2 */
  /* Match expr2 --> - term expr2 */
  
  if (tok == ‘+’ or tok == ‘-’)
    tok = nextToken();
    if (term())
      then if (expr2())
             return true;
      else return false;

  /* Match expr2 --> empty */
  return true;

Check FIRST and 
FOLLOW sets to 

distinguish
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Example code
factor()
  /* Match factor --> ( expr ) */
  if (tok == ‘(‘)
    tok = nextToken();
    if (expr() && tok == ‘)’)
      return true;
    else
      syntax error: expecting )
      return false

  /* Match factor --> num */
  if (tok is a num)
    return true

  /* Match factor --> id */
  if (tok is an id)
    return true;
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Top-down parsing
 So far:

 Gives us a yes or no answer
 Is that all we want?
 We want to build the parse tree
 How?

 Add actions to matching routines
 Create a node for each production
 How do we assemble the tree?
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Building a parse tree
 Notice:

 Recursive calls match the shape of the tree

 Idea: use a stack
 Each routine:

 Pops off the children it needs
 Creates its own node
 Pushes that node back on the stack

main
  expr
    term
      factor
    expr2
      term
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Building a parse tree
 With stack operations

expr()
  /* Match expr --> term expr2 */
  if (term() && expr2())
    expr2_node = pop();
    term_node = pop();
    expr_node = new exprNode(term_node,
                              expr2_node)
    push(expr_node);
    return true;
  else return false;
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Generating (automatically) 
a top-down parser

 Two pieces:
 Select the right RHS
 Satisfy each part

 First piece:
 FIRST+() for each rule
 Mapping:

    NT   → rule#

  Look familiar? Automata?

# Production rule

1
2
3
4
5
6
7
8
9

10
11

goal    →   expr
expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier
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Generating (automatically)
a top-down parser

 Second piece
 Keep track of progress
 Like a depth-first search
 Use a stack

 Idea:
 Push Goal on stack
 Pop stack:

 Match terminal symbol, or
 Apply NT mapping, push RHS 

on stack

# Production rule

1
2
3
4
5
6
7
8
9

10
11

goal    →   expr
expr    →   term  expr2
expr2  →   +  term expr2
             |     -  term expr2
             |    e
term    →  factor term2
term2  →  *  factor  term2
             |   /  factor   term2
             |   e
factor  → number
             |   identifier

This will be clearer once we see the algorithm
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Table-driven approach
 Encode mapping in a table

 Row for each non-terminal
 Column for each terminal symbol

   Table[NT, symbol] = rule#

      if symbol  FIRST+(NT -> rhs(#))

+,- *, / id, num

expr2 term expr2 error error

term2 e factor term2 error

factor error error (do nothing)
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Code

       Missing else’s for error conditions

push the start symbol, G, onto Stack
top  top of Stack
loop forever
   if top = EOF and token = EOF then break & report success
   if top is a terminal then
       if top matches token then
           pop Stack // recognized top
           token  next_token()
   else   // top is a non-terminal
       if TABLE[top,token] is A B1B2…Bk then
           pop Stack            // get rid of A
           push Bk, Bk-1, …, B1  // in that order
   top  top of Stack
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