
Compilers

Parsing

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

22

Next step

 Parsing: Organize tokens into “sentences”
 Do tokens conform to language syntax ?
 Good news: token types are just numbers
 Bad news: language syntax is fundamentally more complex than

lexical specification
 Good news: we can still do it in linear time in most cases

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

33

Parsing

 Parser
 Reads tokens from the scanner
 Checks organization of tokens against a grammar
 Constructs a derivation
 Derivation drives construction of IR

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

44

Study of parsing
 Discovering the derivation of a sentence

 “Diagramming a sentence” in grade school
 Formalization:

 Mathematical model of syntax – a grammar G
 Algorithm for testing membership in L(G)

 Roadmap:
 Context-free grammars
 Top-down parsers

Ad hoc, often hand-coded, recursive decent parsers
 Bottom-up parsers

Automatically generated LR parsers

55

Specifying syntax with a grammar

 Can we use regular expressions?
 For the most part, no

 Limitations of regular expressions
 Need something more powerful
 Still want formal specification (for automation)

 Context-free grammar
 Set of rules for generating sentences
 Expressed in Backus-Naur Form (BNF)

66

Context-free grammar
 Example:

 Formally: context-free grammar is
 G = (s, N, T, P)
 T : set of terminals (provided by scanner)
 N : set of non-terminals (represent structure)
 s  N : start or goal symbol
 P : set of production rules of the form N → (N  T)*

Production rule

1
2

 sheepnoise → sheepnoise baa
 | baa

“produces” or
“generates”

Alternative
(shorthand)

77

Language L(G)
 Language L(G)

 L(G) is all sentences generated from start symbol

 Generating sentences
 Use productions as rewrite rules
 Start with goal (or start) symbol – a non-terminal
 Choose a non-terminal and “expand” it to the right-hand

side of one of its productions
 Only terminal symbols left  sentence in L(G)
 Intermediate results known as sentential forms

88

Expressions
 Language of expressions

 Numbers and identifiers
 Allow different binary operators
 Arbitrary nesting of expressions

Production rule

1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

99

Language of expressions
 What’s in this language?

 We can build the string “x - 2 * y”
 This string is in the language

Production rule

1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

Rule Sentential form

- expr

1

3
5
1
2
6
3

expr op expr

<id,x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

1010

Derivations
 Using grammars

 A sequence of rewrites is called a derivation
 Discovering a derivation for a string is parsing

 Different derivations are possible
 At each step we can choose any non-terminal
 Rightmost derivation: always choose right NT
 Leftmost derivation: always choose left NT

(Other “random” derivations – not of interest)

1111

Left vs right derivations
 Two derivations of “x – 2 * y”

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Rule Sentential form

-
1
3
6
1
2
5
3

expr
expr op expr
expr op <id,y>
expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Left-most derivation Right-most derivation

1212

Derivations and parse trees

 Two different derivations
 Both are correct
 Do we care which one we use?

 Represent derivation as a parse tree
 Leaves are terminal symbols
 Inner nodes are non-terminals
 To depict production a → b g d

 show nodes b,g,d as children of a

 Tree is used to build internal representation

1313

Example (I)

 Concrete syntax tree
 Shows all details of syntactic structure

 What’s the problem with this tree?

expr

expropexpr

expr op expr y*

x - 2

Parse tree

Rule Sentential form

-
1
3
6
1
2
5
3

expr
expr op expr
expr op <id,y>
expr * <id,y>
expr op expr * <id,y>
expr op <num,2> * <id,y>
expr - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Right-most derivation

1414

Abstract syntax tree
 Parse tree contains extra junk

 Eliminate intermediate nodes
 Move operators up to parent nodes
 Result: abstract syntax tree

expr

expropexpr

expr op expr y*

x - 2

y

*

x

-

2

 Problem: Evaluates as (x – 2) * y

1515

Example (II)

 Solution: evaluates as x – (2 * y)

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Left-most derivation

expr

expr op expr

expr op exprx -

2 * y

Parse tree

1616

Derivations

y

*

x

-

2

Left-most derivation Right-most derivation

y

*x

-

2

1717

Derivations and semantics
 Problem:

 Two different valid derivations
 One captures “meaning” we want

(What specifically are we trying to capture here?)
 Key idea: shape of tree implies its meaning

 Can we express precedence in grammar?
 Notice: operations deeper in tree evaluated first
 Solution: add an intermediate production

 New production isolates different levels of precedence
 Force higher precedence “deeper” in the grammar

1818

Adding precedence
 Two levels:

 Observations:
 Larger: requires more rewriting to reach terminals
 But, produces same parse tree under both left and right

derivations

Production rule

1
2
3
4
5
6
7
8

 expr → expr + term
 | expr - term
 | term
term → term * factor
 | term / factor
 | factor
factor → number
 | identifier

Level 1: lower precedence –
higher in the tree

Level 2: higher precedence –
deeper in the tree

1919

Expression example

 Now right derivation yields x – (2 * y)

Rule Sentential form

-
2
4
8
6
7
3
6
8

expr
expr - term
expr - term * factor
expr - term * <id,y>
expr - factor * <id,y>
expr - <num,2> * <id,y>
term - <num,2> * <id,y>
factor - <num,2> * <id,y>
<id,x> - <num,2> * <id,y>

Right-most derivation Parse tree

expr

expr op

op

x

-

2

* y

term

fact

term

term fact

fact

2020

With precedence

expr

expropexpr

expr op expr y*

x - 2

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact

expr

expr

x

-

2

*

y

term

fact

term

term fact

fact y

*

x

-

2

2828

Another issue
 Original expression grammar:

 Our favorite string:x – 2 * y

Production rule

1
2
3
4
5
6
7

 expr → expr op expr
 | number
 | identifier
op → +
 | -
 | *
 | /

2929

Another issue

 Multiple leftmost derivations
 Such a grammar is called ambiguous
 Is this a problem?

 Very hard to automate parsing

Rule Sentential form

-
1
3
5
1
2
6
3

expr
expr op expr
<id, x> op expr
<id,x> - expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

Rule Sentential form

-
1
1
3
5
2
6
3

expr
expr op expr
expr op expr op expr
<id, x> op expr op expr
<id,x> - expr op expr
<id,x> - <num,2> op expr
<id,x> - <num,2> * expr
<id,x> - <num,2> * <id,y>

3030

Ambiguous grammars
 A grammar is ambiguous iff:

 There are multiple leftmost or multiple rightmost derivations
for a single sentential form

 Note: leftmost and rightmost derivations may differ, even in
an unambiguous grammar

 Intuitively:
 We can choose different non-terminals to expand
 But each non-terminal should lead to a unique set of

terminal symbols

 What’s a classic example?
 If-then-else ambiguity

3131

If-then-else
 Grammar:

 Problem: nested if-then-else statements
 Each one may or may not have else
 How to match each else with if

Production rule

1
2
3

 stmt → if expr then stmt

 | if expr then stmt else stmt

 | …other statements…

3232

If-then-else ambiguity
 Sentential form with two derivations:

 if expr1 then if expr2 then stmt1 else stmt2

if

expr1 then else

if

expr2 then

stmt2

stmt1

if

expr1 then

else

if

expr2 then

stmt2stmt1

if

expr1 then

else

if

expr2 then

stmt2stmt1

prod. 2

prod. 1

prod. 1

prod. 2

3333

Removing ambiguity
 Restrict the grammar

 Choose a rule: “else” matches innermost “if”
 Codify with new productions

 Intuition: when we have an “else”, all preceding nested
conditions must have an “else”

Production rule

1
2
3
4
5

 stmt → if expr then stmt

 | if expr then withelse else stmt

 | …other statements…
withelse → if expr then withelse else withelse

 | …other statements…

3434

Ambiguity
 Ambiguity can take different forms

 Grammatical ambiguity (if-then-else problem)
 Contextual ambiguity

 In C: x * y; could follow typedef int x;
 In Fortran: x = f(y); f could be function or array

 Cannot be solved directly in grammar
 Issues of type (later in course)

 Deeper question:

 How much can the parser do?

3535

Parsing
 What is parsing?

 Discovering the derivation of a string
If one exists

 Harder than generating strings
Not surprisingly

 Two major approaches
 Top-down parsing
 Bottom-up parsing

 Don’t work on all context-free grammars
 Properties of grammar determine parse-ability
 Our goal: make parsing efficient
 We may be able to transform a grammar

3636

Two approaches
 Top-down parsers LL(1), recursive descent

 Start at the root of the parse tree and grow toward leaves
 Pick a production and try to match the input
 What happens if the parser chooses the wrong one?

 Bottom-up parsers LR(1), operator precedence
 Start at the leaves and grow toward root
 Issue: might have multiple possible ways to do this
 Key idea: encode possible parse trees in an internal state

 (similar to our NFA  DFA conversion)
 Bottom-up parsers handle a large class of grammars

3737

Grammars and parsers

 LL(1) parsers
 Left-to-right input
 Leftmost derivation
 1 symbol of look-ahead

 LR(1) parsers
 Left-to-right input
 Rightmost derivation
 1 symbol of look-ahead

 Also: LL(k), LR(k), SLR, LALR, …

Grammars that they
can handle are called
LL(1) grammars

Grammars that they
can handle are called
LR(1) grammars

3838

Top-down parsing
 Start with the root of the parse tree

 Root of the tree: node labeled with the start symbol

 Algorithm:
Repeat until the fringe of the parse tree matches input string
 At a node A, select one of A’s productions

 Add a child node for each symbol on rhs
 Find the next node to be expanded (a non-terminal)

 Done when:
 Leaves of parse tree match input string (success)

3939

Example
 Expression grammar (with precedence)

 Input string x – 2 * y

Production rule

1
2
3
4
5
6
7
8

 expr → expr + term
 | expr - term
 | term
term → term * factor
 | term / factor
 | factor
factor → number
 | identifier

4040

Example

 Problem:
 Can’t match next terminal
 We guessed wrong at step 2
 What should we do now?

Rule Sentential form Input string

- expr
expr

expr

x

+

term

fact

term
1 expr + term  x - 2 * y
3 term + term  x – 2 * y
6 factor + term  x – 2 * y
8 <id> + term x  – 2 * y
 - <id,x> + term x  – 2 * y

 x - 2 * y

Current position in
the input stream

4141

Backtracking

 If we can’t match next terminal:
 Rollback productions
 Choose a different production for expr
 Continue

Rule Sentential form Input string

- expr

1 expr + term  x - 2 * y
3 term + term  x – 2 * y
6 factor + term  x – 2 * y
8 <id> + term x  – 2 * y
? <id,x> + term x  – 2 * y

 x - 2 * y

Undo all these
productions

4242

Retrying

 Problem:
 More input to read
 Another cause of backtracking

Rule Sentential form Input string

- expr

expr

expr

x

-

term

fact

term
2 expr - term  x - 2 * y
3 term - term  x – 2 * y
6 factor - term  x – 2 * y
8 <id> - term x  – 2 * y
 - <id,x> - term x –  2 * y

 x - 2 * y

 3 <id,x> - factor x –  2 * y
 7 <id,x> - <num> x – 2  * y

fact

2

4343

Successful parse
Rule Sentential form Input string

- expr
expr

expr

x

-

term

fact

term

2 expr - term  x - 2 * y
3 term - term  x – 2 * y
6 factor - term  x – 2 * y
8 <id> - term x  – 2 * y
 - <id,x> - term x –  2 * y

 x - 2 * y

 4 <id,x> - term * fact x –  2 * y
 6 <id,x> - fact * fact x –  2 * y

2

 7 <id,x> - <num> * fact x – 2  * y
fact

 - <id,x> - <num,2> * fact x – 2 *  y
 8 <id,x> - <num,2> * <id> x – 2 * y 

term * fact

y

4444

Other possible parses

 Problem: termination
 Wrong choice leads to infinite expansion

 (More importantly: without consuming any input!)
 May not be as obvious as this
 Our grammar is left recursive

Rule Sentential form Input string

- expr

2 expr - term  x - 2 * y
2 expr - term - term  x – 2 * y
2 expr - term - term - term  x – 2 * y
2 expr - term - term - term - term  x – 2 * y

 x - 2 * y

4545

Left recursion
 Formally,

 A grammar is left recursive if  a non-terminal A such that
 A →* A a (for some set of symbols a)

 Bad news:
Top-down parsers cannot handle left recursion

 Good news:
We can systematically eliminate left recursion

What does →* mean?

A → B x
B → A y

4646

Notation
 Non-terminals

 Capital letter: A, B, C

 Terminals
 Lowercase, underline: x, y, z

 Some mix of terminals and non-terminals
 Greek letters: a, b, g
 Example:

Production rule

1
1

 A → B + x
 A → B a

a = + x

4747

Eliminating left recursion
 Fix this grammar:

 Rewrite as

Production rule

1
2

 foo → foo a
 | b

Production rule

1
2
3

 foo → b bar
 bar → a bar
 | e

New non-terminal

Language is b followed by
zero or more a

This production gives you
one b

These two productions
give you zero or more a

4848

Back to expressions
 Two cases of left recursion:

 How do we fix these?

Production rule

1
2
3

 expr → expr + term
 | expr - term
 | term

Production rule

4
5
6

term → term * factor
 | term / factor
 | factor

Production rule

1
2
3
4

expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e

Production rule

4
5
6

term → factor term2
term2 → * factor term2
 | / factor term2
 | e

4949

Eliminating left recursion
 Resulting grammar

 All right recursive
 Retain original language and

associativity
 Not as intuitive to read

 Top-down parser
 Will always terminate
 May still backtrack

Production rule

1
2
3
4
5
6
7
8
9

10

expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

There’s a lovely algorithm to do this
automatically, which we will skip

5050

Top-down parsers
 Problem: Left-recursion
 Solution: Technique to remove it

 What about backtracking?
 Current algorithm is brute force

 Problem: how to choose the right production?
 Idea: use the next input token (duh)
 How? Look at our right-recursive grammar…

5151

Right-recursive grammar

 We can choose the right
production by looking at the next
input symbol
 This is called lookahead
 BUT, this can be tricky…

Production rule

1
2
3
4
5
6
7
8
9

10

expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

Two productions
with no choice at all

All other productions are
uniquely identified by a
terminal symbol at the
start of RHS

5252

Lookahead
 Goal: avoid backtracking

 Look at future input symbols
 Use extra context to make right choice

 How much lookahead is needed?
 In general, an arbitrary amount is needed for the full class

of context-free grammars
 Use fancy-dancy algorithm CYK algorithm, O(n3)

 Fortunately,
 Many CFGs can be parsed with limited lookahead
 Covers most programming languages not C++ or Perl

5353

Top-down parsing
 Goal:

 Given productions A → a | b , the parser should be able to
choose between a and b

 Trying to match A
 How can the next input token help us decide?

 Solution: FIRST sets (almost a solution)
 Informally:

 FIRST(a) is the set of tokens that could appear as the first
symbol in a string derived from a

 Def: x in FIRST(a) iff a →* x g

5454

Top-down parsing
 Building FIRST sets

We’ll look at this algorithm later

 The LL(1) property
 Given A → a and A → b, we would like:

 FIRST(a)  FIRST(b) = 
 we will also write FIRST(A → a), defined as FIRST(a)

 Parser can make right choice by with one lookahead token
 ..almost..
 What are we not handling?

5555

Top-down parsing
 What about e productions?

 Complicates the definition of LL(1)
 Consider A → a and A → b and a may be empty
 In this case there is no symbol to identify a

 Example:
 What is FIRST(#4)?
 = {  }
 What would tells us we are matching production 4?

Production rule

1
2
3
4

S → A z
A → x B
 | y C
 | 

5656

Top-down parsing

 If A was empty
 What will the next symbol be?
 Must be one of the symbols that immediately follows an A

 Solution
 Build a FOLLOW set for each symbol that could produce e
 Extra condition for LL:

 FIRST(A→b) must be disjoint from FIRST(A→a) and FOLLOW(A)

Production rule

1
2
3
4

S → A z
A → x B
 | y C
 | 

5757

FOLLOW sets
 Example:

 FIRST(#2) = { x }
 FIRST(#3) = { y }
 FIRST(#4) = {  }

 What can follow A?
 Look at the context of all uses of A
 FOLLOW(A) = { z }
 Now we can uniquely identify each production:

If we are trying to match an A and the next token is z, then we
matched production 4

Production rule

1
2
3
4

S → A z
A → x B
 | y C
 | 

5858

FIRST and FOLLOW

more carefully
 Notice:

 FIRST and FOLLOW are sets
 FIRST may contain  in addition to other symbols

 Question:
 What is FIRST(#2)?
 = FIRST(B) = { x, y,  }?
 and FIRST(C)

 Question:
 When would we care

about FOLLOW(A)?
 Answer: if FIRST(C) contains 

Production rule

1
2
3
4
5
6
7

S → A z
A → B C
 | D
B → x
 | y
 | 
C → . . .

5959

LL(1) property
 Key idea:

 Build parse tree top-down
 Use look-ahead token to pick next production
 Each production must be uniquely identified by the terminal

symbols that may appear at the start of strings derived from
it.

 Def: FIRST+(A → a) as
 FIRST(a) U FOLLOW(A), if e  FIRST(a)
 FIRST(a), otherwise

 Def: a grammar is LL(1) iff
 A → a and A → b and

 FIRST+(A → a)  FIRST+(A → b) = 

6060

Parsing LL(1) grammar
 Given an LL(1) grammar

 Code: simple, fast routine to recognize each production
 Given A  1 | 2 | 3, with

 FIRST+(i)  FIRST+ (j) =  for all i != j

/* find rule for A */
if (current token  FIRST+(1))
 select A  1

else if (current token  FIRST+(2))
 select A  2

else if (current token  FIRST+(3))
 select A  3
else
 report an error and return false

6161

Top-down parsing
 Build parse tree top down

t1 t2 t3 t4 t5 t6 t7 t8 t9
… token stream

Production rule

1
2
3
4
5

G → A a B z
A → b g d

B → C D
 | F
 | e

A a B z

G

b g d

A B

?

t5  FOLLOW(B)

t5  FIRST(C D)

t5  FIRST(F)

e

Consider all possible
strings derivable from “CD”
What is the set of tokens
that can appear at start?

Is “CD”?
disjoint?

C D

6262

FIRST and FOLLOW sets

FIRST()
 For some  (T  NT)*, define FIRST() as the set of

tokens that appear as the first symbol in some string that
derives from 

That is, x  FIRST() iff  * x , for some 
 and   FIRST() iff  * 

FOLLOW(A)
 For some A  NT, define FOLLOW(A) as the set of symbols

that can occur immediately after A in a valid sentence.
FOLLOW(G) = {EOF}, where G is the start symbol

The right-hand side of
a production

6363

Computing FIRST sets
 Idea:

 Use FIRST sets of the right side of production

 Cases:
 FIRST(A→B) = FIRST(B1)

 What does FIRST(B1) mean?
 Union of FIRST(B1→g) for all g

 What if e in FIRST(B1)?

  FIRST(A→B) = FIRST(B2) repeat as needed
 What if  in FIRST(Bi) for all i?
  FIRST(A→B)  = {e} leave {} for later

A → B1 B2 B3 …

Why  = ?

6464

Algorithm
 For one production: p = A → b

if (b is a terminal t)
FIRST(p) = {t}

else if (b == )
FIRST(p) = {}

else
Given b = B1 B2 B3 … Bk

InAll = true
for (i  1 to k)

FIRST(p) += FIRST(Bi) - {}
if ( not in FIRST(Bi))

InAll = false
break

if (InAll) FIRST(p) += {}

Why do we need
to remove  from

FIRST(Bi)?

6565

Algorithm
 For one production:

 Given A → B1 B2 B3 B4 B5
 Compute FIRST(A→B) using FIRST(B)
 How do we get FIRST(B)?

 What kind of algorithm does this suggest?
 Recursive?
 Like a depth-first search of the productions

 Problem:
 What about recursion in the grammar?
 A → x B y and B → z A w

6666

Algorithm
 Solution

 Start with FIRST(B) empty
 Compute FIRST(A) using empty FIRST(B)
 Now go back and compute FIRST(B)

 What if it’s no longer empty?
 Then we recompute FIRST(A)
 What if new FIRST(A) is different from old FIRST(A)?
 Then we recompute FIRST(B) again…

 When do we stop?
 When no more changes occur – we reach convergence
 FIRST(A) and FIRST(B) both satisfy equations

 This is another fixpoint algorithm

6767

Algorithm
 Using fixpoints:

 Can we be smarter?
 Yes, visit in special order
 Reverse post-order depth first search

 Visit all children (all right-hand sides) before visiting the left-
hand side, whenever possible

forall p FIRST(p) = {}

while (FIRST sets are changing)
pick a random p
compute FIRST(p)

6868

Example
Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

FIRST(3) = { + }
FIRST(4) = { - }
FIRST(5) = { e }

FIRST(7) = { * }
FIRST(8) = { / }
FIRST(9) = { e }

FIRST(1) = ?

FIRST(1) = FIRST(2)
 = FIRST(6)
 = FIRST(10)  FIRST(11)
 = { number, identifier }

6969

Computing FOLLOW sets
 Idea:

 Push FOLLOW sets down, use FIRST where needed

 Cases:
 What is FOLLOW(B1)?

 FOLLOW(B1) = FIRST(B2)

 In general: FOLLOW(Bi) = FIRST(Bi+1)

 What about FOLLOW(Bk)?
 FOLLOW(Bk) = FOLLOW(A)

 What if e  FIRST(Bk)?

  FOLLOW(Bk-1) = FOLLOW(A) extends to k-2, etc.

A → B1 B2 B3 B4 … Bk

7070

Example

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

FOLLOW(goal) = { EOF }

FOLLOW(expr) = FOLLOW(goal) = { EOF }

FOLLOW(expr2) = FOLLOW(expr) = { EOF }

FOLLOW(term) = ?

FOLLOW(term) += FIRST(expr2)

 += { +, -, e }

 += { +, -, FOLLOW(expr)}

 += { +, -, EOF }

7171

Example

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

FOLLOW(term2) += FOLLOW(term)

FOLLOW(factor) = ?

FOLLOW(factor) += FIRST(term2)

 += { *, / ,  }

 += { *, / , FOLLOW(term)}

 += { *, / , +, -, EOF }

7272

Computing FOLLOW Sets

FOLLOW(G)  {EOF }
for each A  NT, FOLLOW(A)  Ø

while (FOLLOW sets are still changing)
 for each p  P, of the form A … B1B2…Bk

 FOLLOW(Bk)  FOLLOW(Bk)  FOLLOW(A)

 TRAILER  FOLLOW(A)
 for i  k down to 2
 if   FIRST(Bi) then

 TRAILER  TRAILER  (FIRST(Bi) – {  })

 else
 TRAILER  FIRST(Bi)

 FOLLOW(Bi-1)  FOLLOW(Bi-1)  TRAILER

7373

LL(1) property
 Def: a grammar is LL(1) iff

 A → a and A → b and
 FIRST+(A → a)  FIRST+(A → b) = 

 Problem
 What if my grammar is not LL(1)?
 May be able to fix it, with transformations

 Example:

Production rule

1
2
3

A → a b1

 | a b2

 | a b3

Production rule

1
2
3
4

A → a Z
Z → b1

 | b2

 | b3

7474

Left factoring
 Graphically

Production rule

1
2
3

A → a b1

 | a b2

 | a b3

Production rule

1
2
3

A → a Z
Z → b1

 | b2

 | b3

A

1

3

2

Z

1

3

2A

7575

Expression example

After left factoring:

 In this form, it has LL(1) property

Production rule

1
2
3

factor → identifier
 | identifier [expr]

 | identifier (expr)

First+(1) = {identifier}

First+(2) = {identifier}

First+(3) = {identifier}

Production rule

1
2
3
4

factor → identifier post

post → [expr]
 | (expr)
 | e

First+(1) = {identifier}

First+(2) = { [}

First+(3) = { (}

First+(4) = ?

= Follow(post)
= {operators}

7676

Left factoring
 Graphically

factor

identifier

[

(

]

)

identifier

identifier

expr

expr

No basis for choice

factor [

(

]

)

identifier expr

expr

e

Next word determines choice

7777

Left factoring
 Question

Using left factoring and left recursion elimination, can we turn an
arbitrary CFG to a form where it meets the LL(1) condition?

 Answer
Given a CFG that does not meet LL(1) condition, it is undecidable

whether or not an LL(1) grammar exists

 Example
 {an 0 bn | n  1}  {an 1 b2n | n  1} has no LL(1) grammar

aaa0bbb
aaa1bbbbbb

7878

Limits of LL(1)

 No LL(1) grammar for this language:

{an 0 bn | n  1}  {an 1 b2n | n  1} has no LL(1) grammar

Production rule

1
2
3
4
5
6

G → a A b
 | a B bb
A → a A b
 | 0
B → a B bb
 | 1

Problem: need an unbounded
number of a characters before you
can determine whether you are in
the A group or the B group

7979

Predictive parsing

 Predictive parsing
 The parser can “predict” the correct expansion
 Using lookahead and FIRST and FOLLOW sets

 Two kinds of predictive parsers
 Recursive descent

 Often hand-written
 Table-driven

 Generate tables from First and Follow sets

8080

Recursive descent
 This produces a parser with six

mutually recursive routines:
 Goal
 Expr
 Expr2
 Term
 Term2
 Factor

 Each recognizes one NT or T
 The term descent refers to the

direction in which the parse tree is
built.

Production rule

1
2
3
4
5
6
7
8
9

10
11
12

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier
 | (expr)

8181

Example code
 Goal symbol:

 Top-level expression

main()
 /* Match goal --> expr */
 tok = nextToken();
 if (expr() && tok == EOF)
 then proceed to next step;
 else return false;

expr()
 /* Match expr --> term expr2 */
 if (term() && expr2());
 return true;
 else return false;

8282

Example code
 Match expr2

expr2()
 /* Match expr2 --> + term expr2 */
 /* Match expr2 --> - term expr2 */

 if (tok == ‘+’ or tok == ‘-’)
 tok = nextToken();
 if (term())
 then if (expr2())
 return true;
 else return false;

 /* Match expr2 --> empty */
 return true;

Check FIRST and
FOLLOW sets to

distinguish

8383

Example code
factor()
 /* Match factor --> (expr) */
 if (tok == ‘(‘)
 tok = nextToken();
 if (expr() && tok == ‘)’)
 return true;
 else
 syntax error: expecting)
 return false

 /* Match factor --> num */
 if (tok is a num)
 return true

 /* Match factor --> id */
 if (tok is an id)
 return true;

8484

Top-down parsing
 So far:

 Gives us a yes or no answer
 Is that all we want?
 We want to build the parse tree
 How?

 Add actions to matching routines
 Create a node for each production
 How do we assemble the tree?

8585

Building a parse tree
 Notice:

 Recursive calls match the shape of the tree

 Idea: use a stack
 Each routine:

 Pops off the children it needs
 Creates its own node
 Pushes that node back on the stack

main
 expr
 term
 factor
 expr2
 term

8686

Building a parse tree
 With stack operations

expr()
 /* Match expr --> term expr2 */
 if (term() && expr2())
 expr2_node = pop();
 term_node = pop();
 expr_node = new exprNode(term_node,
 expr2_node)
 push(expr_node);
 return true;
 else return false;

8787

Generating (automatically)
a top-down parser

 Two pieces:
 Select the right RHS
 Satisfy each part

 First piece:
 FIRST+() for each rule
 Mapping:

 NT   → rule#

 Look familiar? Automata?

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

8888

Generating (automatically)
a top-down parser

 Second piece
 Keep track of progress
 Like a depth-first search
 Use a stack

 Idea:
 Push Goal on stack
 Pop stack:

 Match terminal symbol, or
 Apply NT mapping, push RHS

on stack

Production rule

1
2
3
4
5
6
7
8
9

10
11

goal → expr
expr → term expr2
expr2 → + term expr2
 | - term expr2
 | e
term → factor term2
term2 → * factor term2
 | / factor term2
 | e
factor → number
 | identifier

This will be clearer once we see the algorithm

8989

Table-driven approach
 Encode mapping in a table

 Row for each non-terminal
 Column for each terminal symbol

 Table[NT, symbol] = rule#

 if symbol  FIRST+(NT -> rhs(#))

+,- *, / id, num

expr2 term expr2 error error

term2 e factor term2 error

factor error error (do nothing)

9090

Code

 Missing else’s for error conditions

push the start symbol, G, onto Stack
top  top of Stack
loop forever
 if top = EOF and token = EOF then break & report success
 if top is a terminal then
 if top matches token then
 pop Stack // recognized top
 token  next_token()
 else // top is a non-terminal
 if TABLE[top,token] is A B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 // in that order
 top  top of Stack

	Compilers
	Next step
	Parsing
	Study of parsing
	Specifying syntax with a grammar
	Context-free grammar
	Language L(G)
	Expressions
	Language of expressions
	Derivations
	Left vs right derivations
	Derivations and parse trees
	Example (I)
	Abstract syntax tree
	Example (II)
	Derivations (2)
	Derivations and semantics
	Adding precedence
	Expression example
	With precedence
	Another issue
	Another issue (2)
	Ambiguous grammars
	If-then-else
	If-then-else ambiguity
	Removing ambiguity
	Ambiguity
	Parsing (2)
	Two approaches
	Grammars and parsers
	Top-down parsing
	Example
	Example (2)
	Backtracking
	Retrying
	Successful parse
	Other possible parses
	Left recursion
	Notation
	Eliminating left recursion
	Back to expressions
	Eliminating left recursion (2)
	Top-down parsers
	Right-recursive grammar
	Lookahead
	Top-down parsing (2)
	Top-down parsing (3)
	Top-down parsing (4)
	Top-down parsing (5)
	FOLLOW sets
	FIRST and FOLLOW more carefully
	LL(1) property
	Parsing LL(1) grammar
	Top-down parsing (6)
	FIRST and FOLLOW sets
	Computing FIRST sets
	Algorithm
	Algorithm (2)
	Algorithm (3)
	Algorithm (4)
	Example (3)
	Computing FOLLOW sets
	Example (4)
	Example (5)
	Computing FOLLOW Sets
	LL(1) property (2)
	Left factoring
	Expression example (2)
	Left factoring (2)
	Left factoring (3)
	Limits of LL(1)
	Predictive parsing
	Recursive descent
	Example code
	Example code (2)
	Example code (3)
	Top-down parsing (7)
	Building a parse tree
	Building a parse tree (2)
	Generating (automatically) a top-down parser
	Generating (automatically) a top-down parser
	Table-driven approach
	Code

