
Competitive Analysis of Organization

Networks

Or

Multicast Acknowledgement: How much

to wait?

Carlos Brito1, Elias Koutsoupias1,2?, and Shailesh Vaya1

1 University of California Los Angeles
fisch@cs.ucla.edu, vaya@cs.ucla.edu

2 University of Athens
elias@di.uoa.gr

Abstract. We study, from the competitive analysis perspective, the
trade off between communication cost and delay cost (or simply the send-
or-wait dilemma) on a hierarchy (rooted tree). The problem is an abstrac-
tion of the message aggregation problem on communication networks and
the organizational problem in network hierarchies. We consider the most
natural variant of the problem, the distributed asynchronous regime, and
give tight (within an additive constant) upper and lower bounds of the
competitive ratio.
We also consider the centralized version of the problem, where we com-
bine the natural rent-to-buy strategy with prediction techniques to achieve
the first constant competitive ratio algorithm for any non-trivial class of
network topologies.

1 Introduction

In [2], Papadimitriou and Schreiber introduce a model for communication in
organization networks. An organization network is modeled as a rooted tree in
which the nodes represent employees of the organization. The root node rep-
resents the leader who is also the decision-maker of the organization. Messages
arrive from external sources to the nodes, containing information about the world
outside the organization. This information must be send to the root, so that the
leader has an accurate view of the world to make decisions. Each employee can
only communicate with its immediate supervisor in the hierarchy. There is a
cost involved in the communication, which is independent of the amount of in-
formation being conveyed. For simplicity the communication is assumed to be
instantaneous, but employees may decide to hold messages, waiting for more in-
formation to arrive, in order to reduce the communication cost. However, a delay
cost is incurred for each piece of information that is being held by an employee.
? Research supported in part by NSF and the IST Program.

This cost models the penalty imposed to the organization, as a result of the
decision-maker not being up-to-date with the world view. The delay cost may
depend on many factors, but a reasonable simple model is to assume that the
delay cost is proportional to the number of messages and the elapsed time. The
apparent trade off between communication cost and delay cost is a fundamental
problem in decision-making: How much should each node wait before delivering
a message, such that, the total cost incurred by the organization is minimized?

A similar trade off appears in the Multicast Acknowledgment Aggregation
problem [1]. A multicasting protocol sends data from a sender to a group of re-
ceivers in a communication network. For efficiency, instead of sending a separate
message to each individual receiver, a single message is sent along the multi-
cast tree that spans the entire group of receivers. If the underlying network is
unreliable, packets may be dropped. A possible solution to improve the reliabil-
ity under these circumstances, is to have the receivers acknowledge (ACK) each
packet correctly received [9]. However, this mechanism can introduce a signifi-
cant communication overhead. Since the acknowledgment packets are small, a
reasonable approach is to delay their transmission and aggregate several ACKs
in the same message. This delay, however, may impact the overall performance
of the protocol. The question again becomes: How much should each node in
the network wait before delivering the ACKs such that the cost incurred by the
network is minimized?

1.1 Problem Formulation.

The two optimization problems discussed above share the following common
abstraction:

Let T be a directed rooted weighted tree, such that all the edges are directed
towards the root node of the tree. Consider an arbitrary arrival of sequence of
packets at the (leaf or internal) nodes of the tree. All the packets must be sent
to the root of T . Two costs are incurred in this process. The delay cost: when a
packet is delayed at some node of the tree a delay cost proportional to the waiting
time incurred. The communication cost: when a set of packets is delivered along
an edge a delivery cost equal to the weight of the edge (and independent of the
number of packets) is incurred. The total cost is the sum of the delay cost for
each packet plus the communication cost of all deliveries.

The associated online problem then is to try to minimize the total cost for
an unknown sequence of packet arrivals. Papadimitriou and Schreiber in [2],
consider the following hierarchy of availaibility of information to the nodes of
the network:

– The Asynchronous Regime: Each node acts in isolation of other nodes
i.e., there is no way for the nodes to coordinate amongst themselves.

– The Synchronous Regime: A global clock is provided to all the nodes
allowing them to synchronize their actions. It is easily noted that this infor-
mation is useful only if the packets can only be introduced in the network
at the beginning of a time slot.

– The Full Information Regime: Each node has complete knowledge of the
arrival of packets at all the other nodes in the tree.

Clearly, for the Acknowledgment Aggregation Problem the most appropriate
regime is the first one. However, the other two regimes are reasonable abstrac-
tions for send-or-wait situations. The hardest to defend is clearly the Full In-
formation regime which essentially assumes a centralized online algorithm: How
can we assume a central entity when the communication cost is part of the prob-
lem? However, there are two distinct types of information here; the centralized
algorithm doesn’t need to know the nature of the information at the various
nodes, only the size of it. For example, it is one thing to interrupt your super-
visor to deliver a piece of information, and a completely different thing to let
someone else (the centralized online algorithm or her secretary) know that you
have something valuable to discuss with her.

1.2 Related Work.

The special case when the network has only two nodes was analyzed by Dooly,
Goldman and Scott, [3]. The authors show that a simple algorithm based on a
rent-to-buy strategy [7] has an optimal competitive ratio 2.

For shallow trees of depth 2 and Poisson arrival process on packets upper
bounds are proved for all three regimes in [2]. Also, simulation experiment results
are provided to compare the efficiency of the algorithms in the three regimes.

In [1], Khanna, Naor, Raz consider the problem for general trees for both
Full Information Regime and Synchronous Regime. For the first case, they an-
alyze a natural algorithm based on rent-to-buy strategy. Then, the algorithm
is shown to be O(logα)-competitive where α is the sum of costs assigned to
all the edges in the network. For the analysis of the Synchronous Regime, it is
assumed that all the events in the problem, i.e., packet arrivals and deliveries,
must wait at least one unit of time upon arrival before it can be delivered. These
restrictions are made for both the online and offline algorithms. An oblivious
algorithm for this model is provided, where nodes do not have knowledge about
the topology, or their particular location in the network and is shown to be
O(h · logα)-competitive, where h is the height of the tree.

1.3 Overview of our Results.

In this paper we study the problem for both the Asynchronous and Full Infor-
mation Regimes.

For Asynchronous Regime we express our bounds in terms of a quantity
χ∗(T) which precisely captures the intricacies of the problem for an distributed
asynchronous system. As we show in Appendix A, when all edge costs are 1,
χ∗(T) is Θ(height of T), but in the general case, it can take any value between 1
and the cost of the most expensive path in T . Using χ∗(T) we give almost tight
upper and lower bounds. More precisely we show that the competitive ratio is
between χ∗(T) and χ∗(T) + 1. We can further tighten the result for the case of

memoryless distributive algorithm: in this case the competitive ratio is between
χ∗(T)+ χ∗(T)

χ∗(T)+1 and χ∗(T)+1. Previously, the lower bounds in this regime were
known only for the trivial case of two nodes, by [3].

Using Interleaving lemma we can prove a lower bound of X∗(τ) + 1 on the
competitive ratio of an arbitrary distributed asycnchronous algorithm. Depend-
ing on the topology of the tree, this ratio can be far from a constant. For example,
for a serial network, with h nodes in a series, with weight one assigned to each
edge of the network, there exists a lower bound of Ω(h) on the competitive ratio
of the distributed algorithm. We wonder whether the dependence of the compet-
itive ratio on the topology of the network is because of the lack of coordination
amongst the nodes in the network i.e., distributed nature of the problem or be-
cause of lack of temporal information about the arrival of packets in the network
i.e., the online nature of the problem. Suppose, there is a centralized agency that
receives information about the arrival of packets in the entire network. Further,
assume that this agency can also make decisions and coordinate the delivery of
packets in the network. A study of competitive ratio of the optimization prob-
lem under consideration with an assumption of a centralized control i.e., full
information regime, may provide an insight into where the trade-off really lies.
Infact, both [2], [1] studied the centralized as well as the distributed version of
the optimization problem. However, the results in [2], [1] are not tight enough
to understand the trade-off.

We consider a serial network with n nodes. For this network we show a
constant competitive ratio algorithm indeed exists if there is a centralized co-
ordination mechanism available to the nodes in the network. Considering this
result in consonance with the linear (in terms of number of nodes in the network)
lower bound on the competitive ratio of the distributed version of the problem
we can see that the important trade off is because of the lack of coordination
between the nodes in the network i.e., the distributed nature of the problem
rather then the lack of availability of future arrival times of the packets.

Almost, all the results on this problem [2], [1], including ours for the dis-
tributed version of the problem have been based on the classical rent-to-buy
strategy, [7]. We also consider the rent-to-buy strategy for the full information
regime, however an interleaving sequence is easily constructed for which this
strategy does not obtain any significant advantage even if the centralized coor-
dination mechanism is available. However, if the rent-to-buy strategy is combined
with prediction techniques then a constant competitive ratio algorithm indeed
exists for the serial network.

The constant competitive algorithm for the full information regime for shal-
low networks requires a sophisticated prediction technique. Due to shortage of
space we just state the algorithm on the shallow network topology and refer the
reader to full version of the paper for detailed proof of competitiveness.

2 Basic Definitions and Notation

We are given a directed rooted tree T with root r. Each edge e in T has an
associated cost ce. If pi is the path between node ni and the root of T , then let
weight(pi) denote the sum of the costs associated to each edge in pi.

Let Ψ = {p1, . . . , pn} be a set of paths and Ψt be the subtree formed by the
edges that appear in one of the paths pi, pi ∈ Ψ .

Similarly, let τ 1 be a subtree of T . Define τp be the set of paths from the
nodes in τ to the root of the tree T . Now, extend the definition of the function
cost so that weight(τ) denotes the sum of the weights of the edges in the subtree
τ . Let |τ | denote the number of nodes in subtree τ .

A local online algorithm Θi controls the deliveries performed by a node ni

based only on the internal state of ni. Let ρ = 〈α1, . . . , αl〉 be an arrival sequence
to node ni, where αi gives the number of packets in the ith message of ρ. Then,
the total cost incurred by Θi to handle the packets in ρ is given by:

k · ci +
l∑

j=1

dj · αj

where k is the number of distinct deliveries performed by Θi, ci is the cost
associated with the outgoing edge of ni, and dj is the amount of delay incurred
by the αj packets before they are delivered by Θi.

We say that a local online algorithm Θi is memoryless if it resets itself after
each transmission (whenever its memory is empty).

We define a distributed online strategy Σ to be a collection of local online
algorithms assigned to the nodes in the network. For a given arrival process ρ,
the cost incurred by Σ to handle the packets in ρ is given by the sum of the
costs incurred by each of the local online algorithms executed by the nodes of
the network. A distributed online strategy Σ is memoryless if all the local online
algorithms assigned to the nodes are memoryless.

A centralized online algorithm A controls the delivery performed by every
node in the network based on the knowledge of the internal state of each node.

Definition: Let Ψ be a set of paths and Ψt be the tree formed by the edges
included in this path. Define, the function

χ(Ψt) =

∑
pi∈Ψ weight(pi)
weight(Ψt)

For χ∗ we consider all possible subtrees of the tree.
Definition: Let ST be the set of all subtrees of T , then the function χ∗ is

defined for T as:
χ∗(T) = max

τ∈ST
χ(τ)

1 Whenever not mentioned explicitly, the root of a subtree τ of T is the same as the
root of T

3 A cruel adversary for the Asynchronous Regime

In this section, we prove an important lemma, called the Interleaving Lemma
which is the main ingredient for proving the lower bound on the competitive
ratio of any deterministic algorithm for asynchronous regime.

The Interleaving Lemma basically states that, for any reasonable distributed
online strategy, there exists a cruel adversary which can always devise a sequence
of packet arrivals that forces every intermediate node in the network to make a
separate delivery for each message that it gets from each of its children. However,
an offline algorithm is able to handle the same arrivals with minimal delivery cost
(one message per link of the network) and negligible delay cost. This implies that
delaying cannot be used, in an effective way, to merge messages from distinct
nodes, and so the deliveries end up being interleaved on the network.

Fig. 1. Interleaving on a subtree

The intuition behind the interleaving lemma is appropriately exposed by the
figure 4. The subtree τ , formed by the nodes {n1, n2, n6, n7, n11, n12, n13}, is used
for interleaving. The adversary provides m6,m5,m3,m4,m2,m1,m0 packets to
the nodes n1, n2, n6, n7, n11, n12, n13 respectively. m is a large integer. Since, we
are considering distributed paradigm, no node has any knowledge about the
status of other nodes. If the nodes are implementing a memoryless strategy it
can be seen that the 1) a separate delivery is made for the packets waiting
at each of the nodes 2) the order in which the nodes make the deliveries are
n1, n2, n6, n7, n11, n12, n13. The total cost paid by any online algorithm is atleast
weight(τp). The adversary though is cruel and delivers all the messages at once,
thus incurring a much smaller cost of weight(τ). His advantage over the online
algorithm becomes weight(τp)

weight(τ) = χ(τ).

3.1 The Interleaving Lemma.

Now, we shall develop the intuition described above into a rigorous claim, the
Interleaving Lemma. First, we shall capture the behavior of an arbitrary deter-
ministic algorithm formally.

A deterministic online algorithm Θ, keeps an internal state s based on which
it makes decisions. The following two functions capture the behavior of a deter-
ministic algorithm Θi, assigned to node ni, at some specific instants of time, and
are sufficient to prove our results.

– Ti(α, s) gives the amount of time Θi delays the next delivery if α packets
arrive when Θi is in state s, and no further arrival occurs;

– Si(α, s) gives the state of Θi after the next delivery, if α packets arrive when
Θi is in state s, and no further arrival occurs.

We say that a state s0 of Θi is vulnerable if one of the following holds:

1. there exists a sequence ρ = 〈α1, . . . , αk〉, such that, for j = 1, . . . , k, Ti(αj , sj−1) =
0, where sj = Si(αj , sj−1), for arbitrarily large k;

2. ∃ε > 0 such that ∀α0 ∃α > α0 : Ti(α, s0) ≥ ε

Lemma 1. Let Σ be an online strategy that assigns algorithm Θi to node ni.
If Θi has a vulnerable state s0, which an adversary can force Θi to reach with
finitely many packet arrivals, then the competitive ratio of Σ is unbounded.

Proof. We construct a sequence ρ of packet arrivals to ni consisting of two parts.
The first part is a sequence that forces Θi into state s0. Let C∗ denote the cost
incurred by Σ to handle the first part of ρ.

Now, assume that state s0 satisfies condition (1) above. Then, the second
part of ρ is just a sequence of messages 〈α1, . . . , αk〉, for arbitrarily large k. The
messages in ρ arrive arbitrarily close to each other, but the values αi are chosen
such that Θi performs k separate deliveries. For each of these deliveries, Σ must
pay at least the cost of the outgoing link of ni, say c. Then, Σ incurs cost at
least C∗ + k · c to handle the arrival sequence ρ.

Consider an offline algorithm that has the same behavior as Θi for the first
part of ρ, but collects all packets in the second part and makes a single delivery.
The delay cost incurred with the second part of ρ is negligible, and the delivery
cost is just weight(pi). Hence, the competitive ratio of Σ is at least

C∗ + k · c
C∗ + weight(pi)

which can be made arbitrarily large by appropriate choice of k.
Now, assume that s0 satisfies condition (2) of a vulnerable state. Then, the

second part of ρ is just a message with β packets, for arbitrarily large β. Since
Θi delays the delivery of the β packets for a fixed time ε > 0, the total cost
incurred by Σ with ρ is at least C∗ + β · ε. An offline algorithm that has the
same behavior as Θi for the first part of ρ, and delivers packets β as soon as
they arrive, witnesses that Σ has competitive ratio at least

C∗ + β · ε
C∗ + weight(pi)

which is unbounded, since β is arbitrary and ε fixed.

Lemma 2 (Interleaving Lemma). Let Σ be a deterministic distributed online
strategy. Then, one of the following must hold:

1. Σ has unbounded competitive ratio; or,
2. there exist arrival sequences 〈β(i)

1 , . . . , β
(i)
li
〉, one for each node ni, such that

all packets in all sequences arrive in an arbitrarily small interval; but, for
i 6= j, packets from β

(i)
li

and β
(j)
lj

are never merged into the same message.

Proof. We may assume that the algorithms assigned by Σ to the nodes in the
network do not have reachable vulnerable states, otherwise (1) holds and the
lemma follows.

Let ni and nj be two nodes in the network such that ni is not on the path
from nj to root. Let Θi and Θj be the algorithms assigned by Σ to ni and nj ,
respectively.

Since Θi has no vulnerable state, we can find a sequence of arrivals 〈β(i)
1 , . . . , β

(i)
li
〉,

such that Θi delivers β
(i)
1 , . . . , β

(i)
li−1 immediately, but delays the delivery of β

(i)
li

by some positive interval ∆t. Similarly, we can find a sequence 〈β(j)
1 , . . . , β

(j)
lj
〉

that implies the same behavior for Θj .
Now, since no algorithm assigned to the nodes on the path from nj to root

has a vulnerable state, we can choose β
(j)
lj

large enough so that the packets
arrived at nj reach the root in less than ∆t units of time, that is, before Θi

delivers packets β
(i)
li

. Thus, packets from β
(i)
li

and β
(j)
lj

are never delivered in the
same message.

To obtain the set of arrival sequences described in (2), we just enumerate
the nodes in a bottom-up way, and choose appropriate sequences of arrivals
according to the method above. Thus, if ni appears before nj in the enumeration,
all packets arrived at nj reach the root before ni delivers the packets β

(i)
li

.

4 Lower Bounds for Asynchronous Regime

The next result follows directly from the Interleaving Lemma:

Theorem 1. The competitive ratio of any distributed online strategy Σ on a
tree T is at least χ∗(T).

Proof. Let τ be the subtree of T such that χ(τ) = χ∗(T). Interleaving on this
subtree using the interleaving sequence given by gives the desired bound.

4.1 Memoryless Algorithms.

For memoryless strategies we shall show a simple result called Waiting Lemma
to obtain a slightly higher lower bound. The Waiting Lemma shows that some
minimal amount of delay is still required, otherwise the competitive ratio of
the distributed online strategy can become unbounded. Waiting Lemma applies
only to memoryless strategies, while the Interleaving Lemma holds for every
deterministic distributed online strategy.

Lemma 3 (Waiting Lemma). Let Σ be a memoryless distributed online strat-
egy. Let ε > 0. Assume that there exists a path pj from node nj to root such
that:

1. weight(pj) = d;

2. ∀α0 ∃α > α0 such that if α packets arrive at nj and all nodes in pj are
empty, then the α packets reach the root before Σ accumulates delay cost ε.

Then, the competitive ratio of Σ is at least d/ε.

Proof. Consider a sequence of packet arrivals ρ = 〈α0, . . . , αk〉 satisfying:

1. for i = 1, . . . , k, if αi packets arrive at nj , then they reach the root before Σ
accumulates waiting cost ε;

2. (αi−1)2 ≤ αi, i = 2, . . . , k;
3. the αi packets arrive immediatelly after packets αi−1 reach the root.

The online strategy Σ performs a separate delivery for each arrival in ρ, at
a cost of at least k · d.

Now, consider an offline algorithm which waits until all packets in ρ arrive,
and then makes a single delivery. The sequence ρ was defined such that the wait-
ing cost incurred by this algorithm is approximately k · ε. Thus, the competitive
ratio of Σ is at least kd

k·ε+d = d
ε+d/k . Since k is arbitrary, the result follows.

Theorem 2. The competitive ratio of a memoryless distributed online strategy
Σ on a tree T is at least χ∗(T) + χ∗(T)

χ∗(T)+1 .

Proof. Let ni be an arbitrary node of T , and let pi denote the path from ni

to root. Then, we may assume that there exists αi > 0 such that, if α >
αi packets arrive at ni and all the nodes in pi are empty, then Σ accumu-
lates delay cost at least weight(pi)

χ∗(T)+1 before the packets reach the root. If this is
not the case, then lemma 3 gives that the competitive ratio of Σ is at least
weight(pi)/

(
weight(pi)
(χ∗(T)+1)

)
= χ∗(T) + 1, and the result follows.

Now, let α∗ = maxi{αi}. Let τ be a subtree of T such that χ∗(T) = χ(τ).
Let ρ be a sequence of arrivals to the nodes of τ given by the Interleaving
Lemma 2 , such that each arrival includes at least α∗ packets. Then, Σ pays∑

ni∈τ weight(pi) to deliver the packets, and incurs cost at least
∑

ni∈τ
weight(pi)
(χ∗(T)+1)

by delaying the packets. On the other hand, an offline algorithm that deliv-
ers all the packets immediately as they arrive, incurs negligible delay cost plus
weight(τ) for delivery. Hence, Σ has competitive ratio at least χ(T) + χ(T)

χ∗(T)+1 .

5 Upper Bounds for Asynchronous Regime

To obtain an upper bound for distributed online strategies, we first define the
following generic online algorithm for a node of the tree:

Online Algorithm Schema k-wait: A node ni implements algorithm k-
wait if it delays the delivery of packets arriving from the external source until
it accumulates k units of delay cost. At this point, ni delivers all its packets.
Packets arrived from other nodes in the network are delivered immediately upon
arrival, incurring no delay cost.
2 For memoryless strategies, an Interleaving sequence can be composed with just a

single message per node

Theorem 3. The online distributed strategy Σ that assigns algorithm
(

weight(pi)
χ∗(T)

)
-

wait to each node ni of an arbitrary tree T , has competitive ratio at most
χ∗(T) + 1.

Proof. Consider an arbitrary sequence of packet arrivals, and fix an optimal
algorithm O for such arrival process. Let D = 〈δ1, δ2, . . . , δl〉 be the sequence of
delivery events generated by O under these arrivals.

For each delivery δi, let τi denote the subtree consisting of the nodes included
in δi.

Fix a delivery δi and a node nj ∈ τi. Let pj be the path from nj to root.
Denote by αij

the set of packets delivered by δi that arrived at nj .
Let wij

denote the delay cost accumulated by O with packets αij
. Then, the

total cost incurred by O with the packets in delivery δi is given by

weight(τi) +
∑

j

wij

Now, we estimate the cost incurred by Σ to handle the same packets. Since
node nj only performs a delivery when the delay cost accumulated by its packets

reach weight(pj)/χ∗(T), the packets αij
can be distributed in at most

⌈
wij

weight(pj)/χ∗(T)

⌉
distinct deliveries. For each of these deliveries Σ pays

weight(pj) + weight(pj)/χ∗(T) = weight(pj)
(

χ∗(T) + 1
χ∗(T)

)
Thus, the total cost incurred by Σ with the packets in delivery δi is at most:∑

nj∈τi

[
wij

weight(pj)/χ∗(T) + 1
]
·
[
weight(pj) ·

(
χ∗(T)+1

χ∗(T)

)]
So, the ratio between the costs of Σ and O for the packets in di is at most:

(
χ∗(T) + 1

χ∗(T)

)
·

∑
j

[
wij

·χ∗(T)

weight(pj)
+ 1

]
· weight(pj)

weight(τi) +
∑

j wij

≤
(

χ∗(T) + 1
χ∗(T)

)
·

[∑
j wij · χ∗(T)∑

j wij

+

∑
j weight(pj)
weight(τi)

]
But observing that the second term inside the brackets is χ(τi) ≤ χ∗(T), we

get that the entire expression is smaller than or equal to χ∗(T) + 1. Since δi is
an arbitrary delivery, the result follows.

6 Full Information Regime

In this section we explore competitive algorithms for special topoligies when
centralized coordination is available to the nodes of the network.

We first consider the serial network topology as demonstrated by figure 2.
For this network, we show that a standard application of rent-to-buy technique
doesn’t give a constant competitive algorithm. Next, we show that by paying
an extra cost by delivering packets for a larger segment of the network provides
an insurance to the online algorithm that it can use in future to balance the
offline algorithm. Another way to view this approach is predicting the behavior
of the offline algorithm based on the current state of the network. For the serial
network, the application of the prediction technique is straight forward and
limited by the peculiarity of the network topology. Shallow networks, 3, requires
a not so straightforward prediction of the behavior of the offline algorithm. For
shallow networks, we compute deadlines uptill which the nodes in the network
can wait on the packets.

Fig. 2. A Serial Network

6.1 Rent-to-buy strategy is not constant competitive.

The rent-to-buy strategy applied to the serial network, 2 is as follows: When the
delay cost incurred for a set of packets in some segment of the network is equal
to the delivery cost for delivering the packets of that segment, then deliver the
packets.

Consider the following sequence of arrivals of packets in the network: node 0 is
given mh packets, node 1 is given mh−1 packets, node h is given m0 = 1 packets,
where m is a very large number at time t. The online algorithm that applies the
rent-to-buy strategy for this arrival sequence makes a separate delivery for each
set of packets waiting at nodes 0, 1, 2, . . . , h, thereby incurring a delivery cost of
h(h+1)

2 . The adversary delivers all the packets at once incurring a total cost of
h. This makes the online algorithm at least h+1

2 competitive.

6.2 Serial networks

We use look ahead along with rent-to-buy to design an effecient algorithm for this
topology. The online algorithm still makes a delivery whenever the delay cost
accumulated on a subtree τ reaches weight(t). But now, the algorithm looks
ahead and includes packets on some other nodes as well as part of the delivery.
The extra cost paid by the online algorithm is just a multiple of the cost that
would have been paid if the delivery was based only on the rent-to-buy strategy.

Let us introduce a few notations.

We extend the domain for which we have defined the function weight so far.
Let S be some subset of nodes. Then, weight(S) denote the sum of the outgoing
edges from these nodes.

Let wj be the delay cost accumulated at some node nj with α packets. Let
cj be the weight of the outgoing link from nj . Define, triggering-time(nj) to
be the time in future when the delay cost accumulated by the packets currently
waiting at nj reaches cj i.e.,

triggering − time(nj) = t0 + (c− w)/α

Assume that at some time the delay accumulated in a subtree t reaches
weight(t) and a delivery is triggered. Let triggering-tree(t) be the subtree for
which the delay accumulated in the subtree t is equal to the weight of the edges
in the tree t. Let delivery-tree(δ) denote the subtree for which the packets
waiting at the nodes in the subtree are delivered in delivery δ.

Consider the following algorithm,

Algorithm A:

– Wait until the delay cost accumulated
on a segment of the serial network,
triggering−tree(t), is equal to its delivery
cost.

– Choose the segment for delivery,
delivery − tree(δi), as the maxi-
mal weight segment that includes
triggering − tree(t), such that the total
weight of the delivery− tree(δi) is atmost
twice the weight of triggering − tree(t).

Theorem 4. Algorithm A has competitive ratio at most 8 on any serial network.

Proof. Let δ1, δ2, δ3, . . . , δk−1, δk be the sequence of deliveries made by A. We
shall prove that at all instants of time t, the competitive ratio of A is maintained.

First, we bound the total cost incurred by A in delivery δi,

Lemma 4. The total cost incurred by A on packets delivered in delivery δth
i ,

cost(A, δi) is at most 4 ∗ weight(triggering − tree(δi)).

Next, we bound the corresponding cost paid by the offline algorithm for the
packets delivered in δi,

Lemma 5. The total cost incurred by O on packets delivered in delivery δth
i ,

cost(O, δ〉) is at least triggering−tree(δi)
2 .

The proof of lemma shall appear in the full version of the paper.
Let wait(A, t) and wait(O, t) be the cost incurred by the online and offline

algorithm, respectively, for packets not yet delivered. The ratio of the total cost
paid by the online algorithm and the total cost paid by the offline algorithm at
any time t (≥ δi) is

wait(A,t)+
∑

i cost(A,δi)

wait(O,t)+
∑

i cost(O,δi)

From 4 and 6.2, we have that cost(A,δi)
cost(O,δi)

≤ 8. Also, it follows from easy ob-
servation that the total waiting cost paid by the online algorithm wait(A, t) for
packets waiting in the network of A is ≤ 4 ∗ wait(O, t).

Thus, algorithm A is 8 competitive.

Fig. 3. A Shallow Network

6.3 Shallow Networks.

Figure 3 describes the structure of shallow networks. Consider the following
algorithm for shallow networks,

Algorithm B:

– Wait until the delay cost accumulated on
a subtree triggering− tree(δi) is equal to
its delivery cost;

– Choose the delivery − tree(δi) as follows:
The smallest set of leaf nodes which are
not part of triggering − tree(t) are se-
lected in increasing order of triggering
times, such that the total cost of the de-
livery tree is at least equal to the weight
of the triggering tree.

Algorithm B has a competitive ratio of at most 8. The proof of competitivity
is very technical and shall appear in the full version of the paper.

7 Open Problems

Our (almost) tight lower bound for the Asynchronous Regime is based on the
Interleaving Lemma. However, the proof of the lemma relies on the capacity
of the adversary to create messages with unbounded number of packets, which
in turn makes synchronization among the nodes infeasible. But for both the

message aggregation problem and the organizational problem, it is a reasonable
assumption that the adversary has limited such capacity —because of fixed queue
lengths or bounded arrival rate. It would be an interesting extension of this work
to tackle these problems. Randomization should also be explored towards the
same goal.

Resolving the competitive ratio of the Full Information Regime on arbitrary
topologies is an outstanding open problem. The conjecture is that there exists
an algorithm with constant competitive ratio independent of the topology ([1]
give a competitive algorithm but its ratio depends on the topology). Our ideas
of combining rent-to-buy strategies with prediction can be potentially useful for
arbitrary topologies.

Acknowledgments

We would like to thank Joseph Naor and Christos Papadimitriou for helpful
discussions.

References

1. Sanjeev Khanna, Joseph(Seffi) Naor, and Dan Raz Control Message Aggregation in Group
Communication Protocols∗ International Colloquium on Automata Languages and Program-
ming, 2002

2. C. H. Papadimitriou, Edouard Servan-Schreiber Optimizing communication in organizations
Presented at workshop on Complexity in Economic Games in Aix-en-Provence, 1999 To ap-
pear in an edited book on the economics of information. http://www.cs.berkeley.edu/ chris-
tos/deadlines.ps

3. D. R. Dooly, S. A. Goldman and S. D. Scott On-line analysis of the TCP acknowledgement
delay problem Journal of the ACM,48:243-273, 2001

4. E. Bortnikov and R. Cohen Schemes for scheduling of control messages by heirarchical pro-
tocols IEEE INFOCOM’98, March 1998

5. C. Papadimitriou Computational aspects of organizational theory In ESA’96
6. Sandy Irani, Sandeep Shukla, Rajesh Gupta Online Strategies for Dynamic Power Manage-

ment in Systems with Multiple Power Saving States Accepted for presentation at the Design
Automation and Test Conference (DATE 2002)

7. Anna R. Karlin, Claire Kenyon, Dana Randall Dynamic TCP acknowledgement and other
stories about e/(e-1) Symposium on Theory of Computing, 2001

8. B. R. Badrinath and P. Sudame Gathercast: The design and implementation of a pro-
grammable aggregation for the internet. Submitted for publication, 1999.

9. Reliable multicast protocols. http://www.tascnets.com/mist/doc/mcpCompare.html
10. M. Hofmann A generic concept for large-scale multicast In B. Plattner, editor, International

Zurich Seminar on Digital Communication, number 1044, pages 95-106. Springer Verlag, Febu-
rary 1996.

11. Daniel D. Sleator and Robert E. Tarjan Amortized efficiency of list update and paging rules

Communications of the ACM, 28(2):202-208, February 1985.

A The χ∗ Number of a Tree

In this section we define and characterize a combinatorial quantity, χ∗(T), for
a directed rooted tree T . Except the definition of function χ, the results in this
section are not necessary to understand the rest of the paper and may be skipped
for a first reading.

Definition: Let Ψ be a set of paths and Ψt be the tree formed by the edges
included in this path. Define, the function

χ(Ψt) =

∑
pi∈Ψ weight(pi)
weight(Ψt)

For χ∗ we consider all possible subtrees of the tree.
Definition: Let ST be the set of all subtrees of T , then the function χ∗ is

defined for T as:
χ∗(T) = max

τ∈ST
χ(τ)

It may be worth mentioning that for every rooted tree T , there exists a
subtree τ of T such that χ∗(T) = χ(τ). Thus, the problem of computing χ∗(T)
reduces to the one of finding a subtree τ with χ∗(T) = χ(τ). Next, we will
characterize a subtree τ of T such that χ(τ) = χ∗(T).

We shall prove the following theorem.

Theorem 5. Let T be an arbitrary tree, and let p be the path of T with maximum
cost. Then, χ∗(T) ≤ weight(p).

First, we shall show the following result,

Lemma 6. Let τ be a subtree of T . Let nk be a node of τ and let d = weight(pk),
where pk is the path from nk to the root of T . Let t be a subtree of T rooted at
node nk such that τ ∩ t = {nk}. Then, the following are equivalent:

1. χ(τ) < χ(t) + d · (|t|−1)
weight(t)

2. χ(τ) < χ(τ ∪ t)

Proof. We can express χ(τ ∪ t) as

χ(τ ∪ t) = χ(τ)·weight(τ)+χ(t)·weight(t)+d·(|t|−1)
weight(τ)+weight(t)

= χ(τ) + weight(t)
weight(τ)+weight(t) ·

[(
χ(t) + d·(|t|−1)

weight(t)

)
− χ(τ)

]
since weight(τ) and weight(t) are positive, we get that (1) holds if and only if
(2) holds.

Theorem 6. Let τ be a subtree of T . Then, χ∗(T) = χ(τ) if and only if the
following condition hold:

If nk is a node of τ , d = weight(pk), where pk is the path from nk to the root
of T , and t is a subtree of T with root nk, then

1. if τ ∩ t = {nk}, then χ(τ) ≥ χ(t) + d · (|t|−1)
weight(t)

2. if τ ∩ t = t, then χ(τ) ≤ χ(t) + d · (|t|−1)
weight(t)

Proof. Follows from lemma 6.

Proof of Theorem 5 Let τ be a subtree such that χ∗(T) = χ(τ). Let pk be a
path from leaf node nk ∈ τ to root. Let nj be the parent of nk. Let c be the cost
of link nj → nj . Let t be the subtree rooted ar nj with nk as only leaf node.
Theorem 6 gives:

χ(τ) ≤ χ(t) + (weight(pk)−c)(|t|−1)
c

= weight(pk)/c

since weight(pk) ≤ weight(p) and c ≥ 1, the result follows. 2

The semantic of the above theorem can be translated to construct a simple
polynomial time algorithm for computing the χ∗ value of a tree. It has been
omitted from this version of the paper due to lack of space.

