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Abstract. We study online profit-maximizing auctions for digital goods
with adversarial bid selection and uniformly random arrivals. Our goal is
to design auctions that are constant competitive with F (2); in this sense
our model lies at the intersection of prior-free mechanism design and
secretary problems. We first give a generic reduction that transforms
any offline auction to an online one, with only a loss of a factor of 2
in the competitive ratio; we then present some natural auctions, both
randomized and deterministic, and study their competitive ratio; our
analysis reveals some interesting connections of one of these auctions
with RSOP, which we further investigate in our final section.

1 Introduction

The design of mechanisms that maximize the auctioneer’s profit is a
well-studied question in mechanism design. Most of the relevant litera-
ture assumes a prior on the distribution of bidders’ values and aims at
maximizing the expected profit [16]; the question of designing a prof-
itable auction with no assumptions about the bids’ distribution has only
recently been addressed during the past decade. In prior-free mechanism
design [10] we assume that bids are picked by an adversary and we want
to design auctions that are profitable for any such input bid sequence.
To analyze such auctions, prior-free mechanism design adopts the model
of competitive analysis and compares the profit of every auction to some
well-behaved benchmark.

Most of the work in prior-free mechanism design assumes that the bids
are known in advance [10, 8, 13, 14]. Since almost all auctions today are
happening online it makes sense to consider the online setting, where
bidders arrive one at a time with a random order. In this setting, the
design of a profitable, truthful auction reduces to making the “right”
offer to every arriving bidder, using bids of previous bidders as the only
information. We call such auctions Online Sampling Auctions.

This model bears a lot of similarities with the secretary model: the ad-
versary picks the values of the elements, which are then presented in
(uniformly) random order, and we are called to design an algorithm that
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maximizes the probability of picking the largest element. There is an ex-
tensive literature about online auctions and generalized secretary prob-
lems (for a survey see [3]). The online auctions studied there are social-
welfare maximizing auctions, and the overall focus is on the competitive
analysis. Given an online algorithm one can turn it into a truthful mech-
anism very easily (at least when people cannot misreport their arrival
times) by simply charging every bidder its threshold value; this of course
makes the profit of such auctions very hard to analyze. Our approach is
the opposite one: in order to design online profit-maximizing auctions,
we start with the truthful offline setting of prior-free mechanism design,
and turn it into an online setting. This way we ensure our auctions are
both truthful and constant-competitive with the profit-benchmark.
The work closer in spirit to ours is [11]. This paper studies limited-supply
online auctions, where an auctioneer has k items to sell and bidders arrive
and depart dynamically; the analysis assumes worst-case input bids and
random arrivals and the main result is an online auction that is constant-
competitive for both efficiency and revenue. The profit-benchmark con-
sidered for k > 1 items, is essentially the same as the one here, namely
the optimal single price sale profit that sells at least two items, F (2).
The authors present an auction that acts in two phases, very much in
the spirit of secretary algorithms, that is 6338-competitive with respect
to this benchmark. Our auctions achieve much better competitive ratios
(below 10), and are arguably simpler to analyze; however in our model
we do not address the issue of possible arrival times misreports.
Online auctions for digital goods have also been studied before in [5, 7, 6,
4]. Their model is different from ours in that they do not assume random
arrivals. Most of the algorithms presented in these papers are based on
techniques from machine learning, and their performance depends on h,
the ratio of the highest to the lowest bid. Our auctions are arguably more
natural, and in most cases achieve better competitive ratios; however in
our model auctions heavily rely on learning the actual values of past bids,
and not just whether a bidder accepted or rejected the offer (as opposed
to some of the auctions in [6]).
Finally, in an earlier work, Lavi and Nisan study worst case social-
efficiency and profitability of online auctions for a different setting (not
digital goods), taking the off-line Vickrey auction as a benchmark [15].

2 Our model

We are going to study auctions of digital goods, where bidders arrive
online. Formally we have n bidders with valuations v1, . . . , vn (where we
assume v1 ≥ . . . ≥ vn) and n identical items for sale. Bidders arrive
with a random order, specified by the function π : [n] → [n], which
is a permutation on [n] = {1, . . . , n}; we assume uniform distribution
over all different permutations of the n bids and adversarial (worst-case)
choice of the values of the bids. In that sense our model is similar to the
secretary model.
As each bidder arrives, we make her a take-it-or-leave-it offer for a copy
of the item, for some price p. We want to make the offer before the bidder



declares her bid (or equivalently we do not want our offer to depend on
her declared bid) so that our auction is truthful (i.e. it is in the bidder’s
best interest to bid her true value vi); hence, from now on we shall use
b1, . . . , bn to refer to both bids and actual values of the players. Formally
we want to make the j-th bidder bπj , an offer pj = p(bπ1 , . . . , bπj−1); the
bidder will accept the offer if bπj ≥ pj and will pay pj .

Our goal is to maximize the expected profit of our auction, defined as
E
ˆPn

i=1 pj · I(bπj ≥ pj)
˜
. We are going to consider both deterministic

and randomized pricing rules p(bπ1 , . . . , bπj−1); therefore the expectation
is over all possible orderings of the input bids and –in the case of random
pricings– over the randomization in our mechanism.

We are going to use the competitive framework proposed in [10] and
compare the expected profit of our auctions to the profit of the best sin-
gle price auction that sells at least two items, namely F (2)(b1, . . . , bn) =
maxi≥2 i · bi.3 We say that an online auction is ρ-competitive if its ex-
pected profit is at least F (2)/ρ. Our goal is to design constant-competitive
auctions (i.e. auctions where ρ is a constant).

3 Online Sampling Auctions

3.1 Randomized Competitive Online Sampling Auctions

Our first result establishes the existence of constant-competitive online
sampling auctions. In fact we show the stronger result that any truth-
ful offline auction gives rise to a truthful online sampling auction, with
competitive ratio at most twice as large.

We start by noticing that any truthful (offline) auction for digital goods
has the following format: every bidder i is given a take-it-or-leave-it offer
pi which is a function of the bids of the other players f(b−i); if the
bidder accepts she pays pi otherwise nothing (this follows from Myerson’s
theorem [16]). Then we notice that every such truthful offline auction
gives rise to an online auction if we simply set the price offered to the j-
th arriving bidder to be pj = f(bπ1 , . . . , bπj−1), for the same function f ;
intuitively this means that we run the offline auction on the whole set of
revealed bids, but actually charge only the bidder that has just arrived.
Because we restrict our attention to truthful offline auctions, we know
that the price offered to pj will not depend on bj and so we can offer
the j-th bidder a price before she even reveals her bid. Our theorem now
says that the resulting online auction has at most twice the competitive
ratio of the offline auction.

Theorem 1. If we turn an offline auction with competitive ratio ρ into
an online auction, the competitive ratio of the online auction is at most
2ρ. More precisely, if bk is the price of the optimal auction, then the
competitive ratio of the online auction is at most ρ · k/(k − 1).4

3 Notice however that in general our auctions will not be single-price auctions.
4 We note that this looks very much like the 1

4
· k−1

k
approximation ratio of [8], in a

different model of course.



Proof. Consider the first t bids of the online auction. The online auction
runs the offline auction on them. The expected profit of the offline auc-
tion from the whole set of bids would be at least 1

ρ
F (2)(bπ1 , . . . , bπt); by

the random-order assumption about the input, the expected profit from
every bid is equal and, in particular, the expected gain from bπt is at
least:

1

t

1

ρ
F (2)(bπ1 , . . . , bπt)

With probability
`
t
m

´`
n−t
k−m

´
/
`
n
k

´
the first t bids have exactly m of the

highest k bids which contribute to the optimum. Also, for m ≥ 2,
F (2)(bπ1 , . . . , bπt) ≥ mbk.5 So, it follows that when m ≥ 2, with the
above probability the expected gain of the online auction from bπt is at
least:

1

t

1

ρ
mbk

So, the expected profit of the online auction is at least:
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where in the third equality we used the Chu-Vandermonde identity and
in the second-to-last equality we used the identity

Pn
j=k

`
j
k

´
=
`
n+1
k+1

´
;

the Theorem now follows. ut

We can now state our main Theorem:

Theorem 2. The competitive ratio of Online Sampling Auctions is be-
tween 4 and 6.48.

5 Notice that when m = 1, there is no decent lower bound for F (2); this is the reason
that the online auction has larger competitive ratio than the offline auction.



Proof. The upper bound is given by the online version of the (offline)
auction presented in [12] which achieves a competitive ratio of 3.24.
For the lower bound, consider the case where the input chosen by the
adversary consists of two bids: if the price offered to the second bidder
is strictly greater than the first bid the adversary will pick two identical
bids and the online auction will have zero profit. If the auction’s offer to
the second bidder is less than or equal to the first bid the adversary will
pick as input the bids h+ ε, h (for sufficiently large ε), in which case the
optimal profit is 2h but the auction has expected profit at most h/2. ut

At this point we note that the above Theorem greatly improves over the
previously known bounds due to [11]. A natural question to ask now is
whether we can bridge the gap between the lower and the upper bound.
To this end we first study the competitive ratio that can be achieved by
the online version of the Sampling Cost Sharing auction (SCS); this auc-
tion partitions bidders uniformly into two parts and extracts the optimal
single price sale profit of each side from the other (if possible, otherwise
it extracts no profit) [10]. We have the following:

Corollary 1. The competitive ratio of the online version of SCS is at
most 8. In the special case in which the optimal single-price auction for
the whole set of bids sells the item to at least 5 buyers, the competitive
ratio is at most 4.

Proof. Using Theorem 1 and the bound on the competitive ratio of SCS
proved in [10] we get that the online version of SCS will have competitive

ratio at most k
k−1

“
1
2
−
`
k−1
bk/2c

´
2−k

”−1

, which is less than 4 for k ≥ 5. ut

Notice that the worst-case inputs for this auction are when the optimal
single price bk is large, i.e. k is small. In the following section we show
that this is not the case for all auctions.

3.2 A Deterministic Online Sampling Auction: BPSFr

The two online auctions considered in the previous section are random-
ized, like their offline counterparts. In this section we shift our focus on
deterministic online sampling auctions. For the offline setting the follow-
ing theorem from [10] wipes out all hope for such an auction.

Theorem 3 ([10]). We say an auction is symmetric if its outcome is
independent of the order of the bids. It then holds that no symmetric,
deterministic, truthful auction is constant-competitive against F (2).

There exist asymmetric, deterministic auctions with constant competi-
tive ratio, but most of them result from derandomization of randomized
ones and are unnatural [1]. In the online setting where order matters
anyway, we can hope to design a constant competitive and deterministic
(truthful) auction, that is also natural.
To this end we define the Best-Price-So-Far auction: BPSFr is the (fam-
ily of) auction(s) which offer as price the bid among the highest r



of the previous bids which maximizes the single price sale profit of
past requests. We are going to focus our attention on two representa-
tives of this family, BPSF1 and BPSF∞, henceforth denoted by BPSF.
BPSF1 is an interesting auction which offers as price the maximum re-
vealed bid. BPSF is an auction that offers the j-th bidder the price
pj = p(bπ1 , . . . , bπj−1) = arg maxi≤j−1 i · bπi .

Theorem 4. The expected profit of BPSF1 is exactly
Pn
i=2

1
i
bi. Fur-

thermore, if bk is the price of the optimal auction, then the competitive
ratio of BPSF1 is k

Hk−1
where Hk = 1 + 1/2 + · · · + 1/k is the k-th

harmonic number, and this is tight.

Proof. Notice that bj is going to be offered as price exactly when bj
appears before b1,. . . ,bj−1. Every such bid is accepted if there is a higher
bid after bj appears. Thus bj is going to be accepted at some point when
j ≥ 2. The probability that bj appears before b1,. . . ,bj−1 is exactly 1/j.
It follows that the expected profit of BPSF1 is

Pn
i=2

1
i
bi.

For the second fact, simply observe that when bk is the price of the
optimal auction, the online profit is at least

Pk
i=2

1
i
bi ≥

Pk
i=2

1
i
bk =

(Hk − 1)bk. Since the optimal profit is kbk, the claim follows.
Finally, it is easy to verify that the above bound is tight for any set of n
identical bids. ut

Corollary 2. Let bk, be the optimal single price for the whole set of bids.
If k ≤ 5 then the competitive ratio of BPSF1 is at most 4.

Corollaries 1 and 2 show that if we knew in advance the number of buyers
of the optimal single-price auction, we could achieve competitive ratio 4
against F (2), thus matching the corresponding lower bound.
We saw that BPSF1 is not constant competitive; it is also easy to see
that the competitive ratio of BPSFr can only decrease for larger r; the
natural question to ask is if it will ever be constant. To this end we
examine BPSF, which is arguably a very natural online auction: BPSF
is the online version of the Deterministic Optimal Price (DOP) auction
that offers bidder j the optimal single price of the other bidders, namely
pj = p(b−j) = arg maxi 6=j i · bi. DOP is known not to be competitive
[10]; we conjecture that BPSF on the contrary is constant-competitive:

Conjecture 1. The competitive ratio of BPSF is 4.

The competitive ratio of 4 is the same as the conjectured competitive
ratio of RSOP. This is not a coincidence; in the next section we take a
closer look into the similarities of RSOP and BPSF.

4 On the competitive ratio of BPSF and RSOP

One of the simplest competitive auctions, and arguably the most stud-
ied [10, 9, 2] is the Random Sampling Optimal Price auction (RSOP). In
RSOP the bidders are uniformly partitioned into two parts, and the op-
timal single price of each part (i.e. arg max i · bi) is offered to the bidders



of the other part. RSOP is conjectured to be 4-competitive; to date the
best upper bound is 4.68 [2].
In what follows we analyze the competitive ratio of BPSF and RSOP
in more detail. We see that the analyses of the two auctions bear a lot
of similarities and we suggest a possible approach for both auctions. We
believe that our approach may be a promising direction for proving both
Conjecture 1 and that RSOP is 4-competitive as well.6

We first introduce some notation. Let B = {b1, . . . , bn} be the set of all
bids and B2 = {b2, . . . , bn}. Given a specific partition of bids b1, . . . , bn
in two parts, we use (bj1 , . . . , bjk ) to denote the side of the partition
that does not contain the highest bid b1, i.e. by writing (bj1 , . . . , bjk ) we
assume implicitly that j1 ≥ 2 and also bj1 ≥ . . . ≥ bjk . Finally let

y(bj1 , . . . , bjk ) = max{bj1 , 2bj2 , . . . , kbjk},

the optimal single price sale profit from (bj1 , . . . , bjk ) and let z(bj1 , . . . , bjk )
be the profit from offering the optimal price of (bj1 , . . . , bjk ) to the other
side.
We next show how to write the expected profits of RSOP and BPSF in
terms of z and y.
For RSOP it is straightforward; just notice that the adversary can always
pick a large enough b1 so that the profit from the side of the partition
not containing b1 will always be 0 [9]. We then have:

RSOP =
X
S⊆B2

z(S)2−n+1

For BPSF the expression is less straightforward. We have:

Lemma 1. The expected profit of BPSF is
P
S⊆B2

z(S)
`
n−1
|S|

´−1
n−1.

Proof. Let Profit(S, bi) denote the profit we get if we offer the optimal
single price for S to bid bi /∈ S. In what follows, the expectation operator
is used to denote expectation over the non-uniform distribution on the
collection of sets S ⊆ B2 induced by the random arrival order of the
bids.7 We have:

BPSF =
X
bi

ES⊆B2,bi /∈S [Profit(S, bi)]

=
1

n
·
X
bi

n−1X
k=0

ES⊆B2,|S|=k,bi /∈S [Profit(S, bi)]

=
1

n
·
X
bi

n−1X
k=0

X
S⊆B2,|S|=k,bi /∈S

Profit(S, bi)`
n−1
k

´
=

1

n
·
X
bi

X
S⊆B2,bi /∈S

Profit(S, bi)`
n−1
|S|

´
=

1

n
·
X
S⊆B2

1`
n−1
|S|

´z(S)

6 The very technical approach of [2], although coming very close, does not seem to be
able to prove the Conjecture.

7 As opposed to expectation taken over a uniformly random choice of a set S ⊆ B2.



where in the second equality we used the fact that bi will be in the k+ 1
position with probability 1/n, in the third equality we used the fact that
all orderings have the same probability and in the last equality we used
the fact that z(S) =

P
bi /∈S Profit(S, bi). ut

The next lemma establishes an interesting relation between the y values
and the optimal single price sale profit F (2).

Lemma 2. For any i ∈ [n], i ≥ 2 it holds that:X
S⊆B2: b2∈S

y(S) ≥ 2n−3 ibi

Proof. Let bi be the optimum single price for the whole set of bids, i.e.
F (2) = ibi (although our result holds for any bid bi).
We will introduce a mapping between the set of sequences X = {S ⊆
B2| b2 ∈ S & bi /∈ S} and the set Y = {S ⊆ B2| b2 /∈ S & bi ∈ S}. Given
a sequence of bids S ∈ X let t = max{j : j < i, bj ∈ S}.8 We then define
the following mapping for each bid bj ∈ S:

f(bj) =


bj+i−t : if j < i
bj : if j > i

It is easy to see that the mapping g : X −→ Y defined as g(bj1 , . . . , bjk ) =
(f(bj1), . . . , f(bjk )) is in fact a bijection. Also note that b1 ≥ . . . ≥ bn
implies that y(S) ≥ y(g(S)). Hence we have:

X
S⊆B2: b2∈S

y(S) =
X

S⊆B2: b2∈S,bi∈S

y(S) +
X

S⊆B2: b2∈S,bi /∈S

y(S)

≥
X

S⊆B2: b2∈S,bi∈S

y(S) +
X

S⊆B2: b2∈S,bi /∈S

y(g(S))

=
X

S⊆B2: b2∈S,bi∈S

y(S) +
X

S⊆B2: b2 /∈S,bi∈S

y(S)

=
X

S⊆B2: bi∈S

y(S)

= 2n−i
i−2X
j=0

 
i− 2

j

!
(j + 1) · bi

For the last equality consider all possible positions of bi in S. There can
be j bids larger than bi where j ranges from 0 to i − 2; there are

`
i−2
j

´
ways to pick these bids and 2n−i ways to pick the bids that are smaller
than bi and for this specific position the coefficient of bi is (j + 1).9

A straightforward calculation shows that
Pi−2
j=0

`
i−2
j

´
(j+1) = i2i−3, and

the claim follows. ut
8 Notice that this is a non-empty set, as it contains j = 2.
9 If bi is an arbitrary bid with i ≥ 2, rather than the optimum single price as stated

in the beginning of the proof, then the last equality should be replaced with an
inequality, and the claim still goes through.



It is now easy to see that the following claim implies that RSOP is indeed
4-competitive.

Conjecture 2. X
S⊆B2

z(S) ≥
X

S⊆B2: b2∈S

y(S)

The corresponding claim for BPSF is:

Conjecture 3.

X
S⊆B2

z(S)

 
n− 1

|S|

!−1

n−1 ≥
X

S⊆B2: b2∈S

y(S)2−n+1

We believe that Conjectures 2 and 3 both hold and that RSOP and BPSF
are both 4-competitive. We attempted to prove the Conjectures using a
number of relations between the z and y values; analytical and numerical
simulations show that one can sum up individual relations between z(S)
and y(S) for any set S of bids, like the ones presented in Appendix A,
in order to get the result.

5 Conclusion

There is a number of open questions from this work: the obvious ones
are to prove that BPSF is indeed 4-competitive and see what this proof
implies for the competitive ratio of RSOP. Proving that BPSF is constant
competitive for some other constant is also interesting, and probably
much easier. Finally, it would be interesting to see if there is a natural
online sampling auction with competitive ratio at most 4, for all values
k of the optimal single price bk.
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A Relation of z and y values

In order to prove Conjectures 2 and 3 we need a strong lemma that
captures the relation of the z and y values. In the appendix we list
three such lemmata, of increasing strength. Numerical and analytical
simulations in MAPLE12 have verified that Lemma 5 is enough to prove
Conjecture 2 (by just summing up for all subsets S ⊆ B2) for up to
n = 20 bids.

Lemma 3.

z(bj1 , . . . , bjk ) ≥ min
t=1,...,k

„
jt − t
t

«
· y(bj1 , . . . , bjk )

Proof. Let bjt be the optimal price for (bj1 , . . . , bjk ), i.e.

t · bjt = max{bj1 , 2bj2 , . . . , kbjk )



Then

z(bj1 , . . . , bjk ) = (jt − t)bjt

=
jt − t
t
· tbjt

=
jt − t
t
· y(bj1 , . . . , bjk )

≥ min
t=1,...,k

„
jt − t
t

«
· y(bj1 , . . . , bjk )

ut

Notice that the term
`
jt−t
t

´
is the same quantity as the one minimized

in the random walk of [9] and it also appears in the analysis of [2].
The following relation is stronger, in that by summing up all for all S
we immediately get

P
S⊆B2: b2∈S y(S) and some more terms, whose sum

we then need to show is positive.

Lemma 4.

z(bj1 , . . . , bjk ) ≥ y(bj1 , . . . , bjk )−max

„
0, max
t=2,...,k


2t− jt
t− 1

ff«
·y(bj2 , . . . , bjk )

Proof. Let bjt be the optimal price for (bj1 , . . . , bjk ), i.e.

t · bjt = max{bj1 , 2bj2 , . . . , kbjk )

Then

z(bj1 , . . . , bjk ) = (jt − t)bjt
= tbjt − (2t− jt)bjt

= tbjt −
2t− jt
t− 1

(t− 1)bjt

= y(bj1 , . . . , bjk )− 2t− jt
t− 1

(t− 1)bjt

≥ y(bj1 , . . . , bjk )−max

„
0, max
t=2,...,k


2t− jt
t− 1

ff«
· y(bj2 , . . . , bjk )

where we need 2t−jt
t−1

to be positive for the inequalities to work correctly,

which is why we take max
“

0,maxt=2,...,k

n
2t−jt
t−1

o”
. ut

In order to optimally handle the negative terms showing up in the RHS
of Lemma 4 we used the following, more elaborate bound.

Lemma 5. Let (bj1 , . . . , bjk ) be a set of at least 2 bids and λ a real in
[0, j1 − 1]. We can bound z(bj1 , . . . , bjk ) with

z(bj1 , . . . , bjk ) ≥ λy(bj1 , . . . , bjk ) + µy(bj2 , . . . , bjk ), (1)

where µ is defined by

µ =

(
k
k−1

mint=1,...,k{ jt−t−λtt
}}, when mint=2,...,k{jt − t− λt} ≥ 0

mint=2,...,k{ jt−t−λtt−1
}, otherwise



Proof. Assume that

y(bj1 , . . . , bjk ) = t · bjt
y(bj2 , . . . , bjk ) = (s− 1) · bjs

From these we get that tbjt ≥ sbjs and (s − 1)bjs ≥ (t − 1)bjt . Notice
that the latter holds even when t = 1.
Assume that minr=2,...,k{jr − r− λr} ≥ 0. We will show that inequality
(1) is satisfied for µ = k

k−1
minr=1,...,k{ jr−r−λrr

}}. We will use the fact
that µ is nonnegative and the inequality tbjt ≥ sbjs . Indeed we have,

λy(bj1 , . . . , bjk ) + µy(bj2 , . . . , bjk ) = λtbjt + µ(s− 1)bjs

≤ λtbjt + µ(s− 1)
t

s
bjt

≤ λtbjt + µ(k − 1)
t

k
bjt

≤ λtbjt +
k

k − 1

jt − t− λt
t

(k − 1)
t

k
bjt

= (jt − t)bjt
= z(bj1 , . . . , bjk )

Now we consider the case of minr=2,...,k{jr − r − λr} < 0. Assume first
that t ≥ 2. We will now show that inequality (1) is satisfied for µ =
minr=2,...,k{ jr−r−λrr−1

}}. We will use the fact that µ is now negative and
the inequality (t− 1)bjt ≤ (s− 1)bjs . Indeed we have,

λy(bj1 , . . . , bjk ) + µy(bj2 , . . . , bjk ) = λtbjt + µ(s− 1)bjs

≤ λtbjt + µ(t− 1)bjt

≤ λtbjt +
jt − t− λt
t− 1

(t− 1)bjt

= (jt − t)bjt
= z(bj1 , . . . , bjk )

The case t = 1 must be handled separately because t− 1 appears in the
denominator in the above. When t = 1 we have that

z(bj1 , . . . , bjk ) = (j1 − 1)bj1

= λbj1 + (j1 − 1− λ)bj1

≥ λy(bj1 , . . . , bjk )

≥ λy(bj1 , . . . , bjk ) + µy(bj2 , . . . , bjk ).

Notice that we used the fact that λ ≤ j1 − 1 and that µ ≤ 0. ut


