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ABSTRACT
The emergence of intelligent sensing and communication
technologies fosters the generation and dissemination of huge
amounts of information that collectively enriches people’s
awareness about their environment and its resources. With
this information at hand, users then decide how to access
these resources to best serve their interests. However, situ-
ations repeatedly emerge where the users’ welfare is better
satisfied by the same finite set of resources and the unco-
ordinated access to them gives rise to tragedy of commons
effects and serious congestion problems.

In this paper, we study generic scenarios, where some non-
excludable finite resource is of interest to a population of dis-
tributed users with variable perceptions about the resource
supply and demand for it. The high-level question we ad-
dress is how efficiently the competition about the resources is
resolved under different assumptions about the way the users
make their decisions. The users are first viewed as strategic
perfectly informed software agents that make fully rational
decisions attempting to minimize the cost of accessing the
acquired resource. We then exploit insights from experimen-
tal economics and cognitive psychology to model agents of
bounded rationality who either do not possess perfect infor-
mation or cannot exploit all the available information due
to time restrictions and computational limitations. We de-
rive the operational states in which the competing influences
are balanced (i.e., equilibria) and compare them against the
Nash equilibria that emerge under full rationality and the
optimum resource assignment that could be determined by
a centralized entity. Our results provide useful insights to
the dynamics emerging from the agents’ behavior as well as
theoretical support for the practical management of limited-
capacity resources.

1. INTRODUCTION
The advances in the broader information and communi-

cation technologies (ICT) sector have dramatically changed
the role of end users and resulted in unprecedented rates
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of information generation and diffusion. The integration
of sensing devices of various sizes, scope and capabilities
with mobile communication devices, on the one hand, and
the wide proliferation of online social applications, on the
other, leverage the heterogeneity of users in terms of inter-
ests, preferences, and mobility, and enable the collection of
huge amounts of information with very different spatial and
temporal context. When shared, this information can enrich
people’s awareness about and foster more efficient manage-
ment of a broad range of resources, ranging from natural
goods such as water and electricity, to human artefacts such
as urban space and transportation networks.

Besides generating information, the end users may be ac-
tively involved in its dissemination, and even make use of
it for their own good and benefit. In this paper, we study
generic scenarios, where some non-excludable finite resource
is of interest to a population of distributed users and the in-
formation that is generated and may be shared concerns the
resource demand and supply. When the amount of resource
is large and the interested user population is small, users
can readily opt for using it. When, however, the resource’s
supply cannot satisfy the demand for it, an inherent com-
petition for the resource emerges that should be factored by
users in their decision to opt for accessing this resource or
not. The underlying assumption here is that the decision to
opt for the finite resource under high competition bears the
risk of an excess cost in case of a failure (i.e., go for the lim-
ited resource but find it unavailable). This cost captures the
impact of congestion phenomena that appear in various ICT
sectors when distributed and uncoordinated high volume de-
mand appears for some limited service. Examples include
congestion phenomena that emerge on a toll-free road that
is advertised as the best alternative to a blocked main road
due to an accident (e.g., Google Maps with Traffic Layer);
long car cruising when searching for cheap on-street parking
spots in busy urban environment (e.g., [1], [2]); or high ac-
cess delays when users associate with low-cost wireless access
points in hotspot areas (e.g., [14]).

In such settings, various critical decisions need to be taken
by the entities that are involved in the production, dis-
semination and consumption of information. Hence, the
decision to acquire and distribute the information or not,
may account for own-interest priorities, such as preserving
own resources or hiding information from potential competi-
tors. In this paper, we focus on the way the entities make
use of the accumulated knowledge. Essentially, the main
dilemma faced by the end user possessing resource informa-
tion is whether to compete or not for using these resources.



This very fundamental question is investigated in this paper
by factoring cognitive heuristics/biases in the human-driven
decision-making process. Overall, the high-level question
that we address is how efficiently the competition about the
resources is resolved under different assumptions about the
way the agents make their decisions. In essence, we are
more concerned with the comparison of the decision-making
under full and bounded rationality conditions. The key as-
sumption is that human activity takes place within a fairly
autonomic networking environment, where each agent runs
a service resource selection task and seeks to maximize her
benefit, driven by self-oriented interests and biases. As the
full rationality reference, we frame the case where the agents
(typically software engines) avail all the information they
need to reach decisions and, most importantly, are capa-
ble of exploiting all information they have at hand; whereas
users of bounded rationality either possess partial informa-
tion about the resources or they are totally aware of them
but it might be too complex in time and computational re-
sources to exploit all the available information. Typically,
decision-makers respond to these complexity constraints by
acting heuristically. At the same time, their behavior is
prone to case-sensitive biases that may lead to perceptual
variations or distortions and inaccurate/not rational judg-
ments that shape their competitiveness.

We introduce key concepts and present the assumptions
for the environment under consideration in Section 2. The
prescriptions of the full rational decision-making are defined
in 3. In Section 4, we outline and implement four different
models of bounded rationality within the particular envi-
ronment, drawing on the Cumulative Prospect Theory, the
Rosenthal and Quantal Response Equilibria concepts as well
as the heuristic reasoning. Numerical results that are ob-
tained employing these models are then presented in Section
5. The conclusions of the study are outlined in Section 6.

2. THE RESOURCE SELECTION TASK
We apply the general concept introduced in Section 1 to

scenarios whereby the agents make their decision indepen-
dently within a particular time window over which they start
the resource selection task. In essence, we consider settings
where N agents are called to decide between two alterna-
tive sets of resources. The first set consists of R low-cost
resources while the second one is unlimited but with more
expensive items. Those who manage to use the low-cost re-
sources pay cl,s cost units, whereas those heading directly for
the safer, but more expensive option pay cu = β · cl,s, β > 1,
cost units. However, agents that first decide to compete for
the low-cost resources but fail to acquire one suffering the
results of congestion, pay cl,f = γ · cl,s, γ > β cost units.
The excess penalty cost δ · cl,s, with δ = γ − β > 0, reflects
the “virtual” cost of wasted time till eventually being served
by the more expensive option.

In the following sections, we describe (qualitatively) the
scenario of the ideal full rational and strategic cost-minimiz-
ing engines against four scenarios, consisting in imperfect
information availability and behavioral biases, whereby the
agents’ decisions are made under bounded rationality con-
ditions. We present how these four bounded rationality ex-
pressions can be modelled in a way that enables their anal-
ysis and the quantitative assessment of their impact on the
efficiency of the resource selection task.

3. FULL RATIONAL DECISION-MAKING
In the ideal reference model of the perfectly or fully ra-

tional decision-making, the main assumption is that the
decision-maker is a software engine that in the absence of
central coordination, acts as rational strategic agent that
explicitly considers the presence of identical counter-actors
to make rational, yet selfish decisions aiming at minimiz-
ing what it will pay for a single resource. The intuitive
tendency to head for the low-cost resources, combined with
their scarcity in the considered environments, give rise to
tragedy of commons effects [13] and highlight the game-
theoretic dynamics behind the resource selection task.

Indeed, the collective full-rational decision-making can be
formulated as an instance of resource selection games, where-
by N players compete against each other for a finite number
R of common resources [3]. In [16] we have analyzed the
strategic resource selection game in the context of parking
search application whereby drivers are faced with a decision
as to whether to compete for the low-cost but scarce on-
street parking space or directly head for the typically over-
dimensioned but more expensive parking lots. An assistance
service announces information of perfect accuracy about the
demand (number of users interested in the resources/parking
spots), supply (number of low-cost resources/on-street park-
ing spots) and pricing policy, that eventually, manages to
steer drivers’ decisions. We derive the equilibrium behaviors
of the drivers and compare the costs paid at the equilibrium
against those induced by the ideal centralized system that
optimally assigns the low-cost resources and minimizes the
social cost. We quantify the efficiency of the service using
the Price of Anarchy (PoA) metric, computed as the ratio of
the two costs (i.e., worst-case equilibrium cost over optimal
cost).

In general, we show that PoA deviates from one, imply-
ing that, at equilibrium, the number of user nodes choosing
to compete for the low-cost resources exceeds their supply.
The PoA can be reduced by properly manipulating the price
differentials between the two types of resources. Notably,
our results are inline with earlier findings about congestion
pricing (i.e., imposition of a usage fee on a limited-capacity
resource set during times of high demand), in a work with
different scope and modelling approach [18]. The results of
this study will serve as a benchmark for assessing the im-
pact of different rationality levels and cognitive biases on the
efficiency of the resource selection process.

4. DEVIATIONS FROM FULL RATIONAL-
ITY

In this section we study the decision-making process under
four levels of agents’ rationality which result in difference de-
grees of responsiveness to specific price differentials between
low-cost and expensive resources. In all cases, we derive the
agents’ choices in the stable operational conditions in which
all competing influences are balanced.

4.1 Motivation
The maximization of user benefit under perfect and real-

time information about the dynamic characteristics of the
environments described in Sections 1, 2, is a clearly unre-
alistic assumption for individuals’ decision-making. In this
section, we iterate on several expressions of bounded ratio-
nality in decision-making. This is an umbrella term for dif-



ferent deviations from the fully rational paradigm: incom-
plete information about environment and other people’s be-
havior, time, computational and processing constraints, and
cognitive biases in assessing/comparing alternatives. Ex-
perimental work shows that, practically, people exhibit such
bounded rationality symptoms and rely on simple rules of
thumb (heuristic cues) to reach their decisions in various
occasions and tasks. Overall, we have identified the follow-
ing instances of bounded rationality as worth exploring and
assessing in the context of the resource selection task:

Incomplete information about the demand - The
most apparent deviation from the perfect information norm
relates to the amount of information agents have at their dis-
posal. As two distinct variations hereby, we consider prob-
abilistic (stochastic) information and full uncertainty.

The four-fold pattern of risk aversion - Particular
experimental data show that human decisions exhibit biases
of different kinds, in comparing alternatives. For instance, a
huge volume of experimental evidence confirms the fourfold
pattern of risk attitudes, namely, people’s tendency to be
risk-averse for alternatives that bring gains and risk-prone
for alternatives that cost losses, when these alternatives oc-
cur with high probability; and the opposite risk attitudes
for alternatives of low probability [25].

Own-payoff effects - This is another type of bias that
was spotted in the context of experimentation with even
simple two-person games, such as the generalized match-
ing pennies game. Theoretically, in these matching pennies
games, a change in a player’s own payoff that comes with
a particular strategy/choice, must not affect that player’s
choice probability. However, people’s interest for a particu-
lar strategy/choice is shown to increase as the corresponding
payoff gets higher values. This behavior makes choice proba-
bilities range continuously within 0 and 1 and not jump from
0 to 1 as soon as the corresponding choice gives the highest
payoff. This bias gives further credit to Simon’s early ar-
guments ([22], [23]) that humans are satisficers rather than
maximizers, i.e., that they are more likely to select better
choices than worse choices, in terms of the utility that comes
with them, but do not necessarily succeed in selecting the
very best choice.

Cognitive heuristics - Cognitive science suggests that
people draw inferences (i.e., predict probabilities of an un-
certain event, assess the relevance or value of incoming infor-
mation etc.), exploiting heuristic principles. The cognitive
heuristics could be defined as fast, frugal, adaptive strate-
gies that allow humans (organisms, in general) to reduce
complex decision tasks of predicting, assessing, computing
to simpler reasoning processes. In the salient of heuristic-
based decision theory, notions such as recognition, priority,
availability, fluency, familiarity, accessibility, representative-
ness and adjustment - and - anchoring stand out. One of
the simplest and well - studied heuristic is the recognition
heuristic [9]. It is applied as follows: “If there are N al-
ternatives, then rank all n recognized alternatives higher
on the criterion under consideration than the N − n un-
recognized ones”. The order at which different reasons are
examined to make a final decision is defined by the prior-
ity heuristic [6]. The availability heuristic is stated as “a
graded distinction among items in memory, measured by
the order or speed with which they come to mind or the
number of instances of categories one can generate”. Cog-
nitive researchers have conceptualized a distinct version of

availability heuristic, named as fluency heuristic. In partic-
ular, the authors in [21] give the definition: “a strategy that
artfully probes memory for encapsulated frequency informa-
tion that can veridically reflect statistical regularities in the
world”. What is more, “the degree of knowledge a person
has of a task or object” is termed as familiarity [12]. The
accessibility heuristic [17] argues that “feeling - of - knowing
judgments are based on the amount and intensity of par-
tial information that rememberers retrieve when they can-
not recall a target answer”. Following the representativeness
heuristic, people answer probabilistic questions by evaluat-
ing the degree to which a given event/object resembles/is
highly representative of another one. When people adjust a
given initial value to yield a numerical prediction, they de-
vise the adjustment - and - anchoring heuristic. Tversky and
Kahneman in [26] discuss biases to which some of the above-
mentioned heuristics could lead, digging people’s responses
that are in favor of or against a specific set of alternative
choices.

In the following sections, all these effects are incorporated
in distinct decision-making analytical models. We account
for symmetric scenarios whereby the entire population ex-
hibits the same instance of bounded rationality and the
knowledge of this deviation from full rationality is common
among individuals. In a more advanced modelling effort [7],
the “cognitive hierarchy” approach assumes a distribution
of cognitive steps of iterated reasoning, where the zero-step
agents just randomize over their strategy space while higher-
step agents take account of the intelligence and complexity
of others’ reasoning.

4.2 Bayesian and pre-Bayesian models
Practically, within a dynamic and complex environment,

perfectly accurate information about the resource demand
is hard to obtain. For instance, the resource operator may,
depending on the network and information sensing infras-
tructure at her disposal, provide the competing agents with
different amounts of information about the demand for re-
sources; for example, historical statistical data about the
utilization of the low-cost resources. Thus, in this case, the
information is impaired in accuracy since it contains only
some estimates on the parameters of the environment.

In the same vein, in [15], we assume a more realistic real-
ization of the parking assistance service where drivers have
only knowledge constraints, while they satisfy all other cri-
teria of full rationality, i.e., they are selfish agents who are
capable of defining their actions in order to minimize the
cost of occupying a parking spot. That is, no computational
or time constraints deteriorate the quality of their decisions.
However, they either share common probabilistic informa-
tion about the overall parking demand or are totally uncer-
tain about it1. From a modelling point of view, we extend
the game formulation for the full rationality case (ref. Sec-
tion 3) to accommodate the two expressions of uncertainty.
In particular, we formulate this type of bounded rationality
drawing on Bayesian and pre-Bayesian models and prescrip-
tions of the classical Game Theory.

In the Bayesian model of the game, the agents determine
their actions on the basis of private information, their types.

1Since the supply of parking space is static information that
can be broadcast to the drivers or be known through offline
media (website, news), the assumption is that drivers have
knowledge of the parking capacity.



The type in this game is a binary variable indicating whether
an agent is in search of resources (active player). Every
agent knows her own type, yet she ignores the real state at
a particular moment in time, as expressed by the types of
the other players, and, hence, she cannot deterministically
reason out the actions being played. Instead, she draws on
common prior probabilistic information about the activity
of agents to derive estimates about the expected cost of her
actions. Thus, now, the agents try to minimize the expected
cost, instead of the pure cost that comes with a strategy, and
play/act accordingly. Similarly to the full rationality case,
we derive our conclusions drawing on the equilibrium states.
In particular, we end up with the Bayesian Nash equilibrium,
whereby no agent can further lower her expected cost by
unilaterally changing her strategy.

In the worst-case scenario (strictly incomplete informa-
tion/full uncertainty), the agents may avail some knowledge
about the upper limit of the potential competitors for the
resources (i.e., drivers in search of on-street parking space or
spots in parking lots), yet their actual number is not known,
not even probabilistically. This time, we see the resulting
agents’ interactions as an instance of pre-Bayesian games
and build the discussion in terms of safety-level equilibria;
namely, operational states whereby every player minimizes
over her strategy set the worst-case (maximum) expected
cost she may suffer over all possible types and actions of
her competitors. Interestingly enough, we show less-is-more
phenomena under uncertainty, whereby more information
does not necessarily improve the efficiency of service delivery
but, even worse, may hamstring users’ efforts to minimize
the cost incurred by them.

For years, the main approaches to collective decision-making,
whereby the decisions of one agent affect the gain/cost expe-
rienced by others, draw on Expected Utility Theory (EUT).
Agents are considered as strategic and fully rational, namely,
they can compute the expected utility of all possible action
profiles exploiting all available information about their own
and the others’ utilities (i.e., the expected utility of one’s
action equals the sum of her utilities for all possible oppo-
nents’ actions times the probabilities of their occurrence).
In such setting, the classical solution concept of the game is
embodied by the Nash Equilibrium (NE), the action profile
that no agent would like to unilaterally deviate from. Essen-
tially, the NE captures the agents’ best responses in terms
of expected utility maximization.

However, experimental data suggest that human decisions
reflect certain limitations, that is, they exhibit biases of dif-
ferent kinds in comparing alternatives and maximizing their
welfare in terms of the expected utility that comes with an
alternative (ref. Section 4.1). To accommodate the em-
pirical findings, researchers from economics, sociology and
cognitive psychology, have tried either to expand/adapt the
Expected Utility framework or completely depart from it
and devise alternative theories as to how decision alterna-
tives are assessed and decisions are eventually taken.

In the following sections we first give the general analytical
framework of the decision-making model and then its appli-
cation to the resource selection task as outlined in Section
2.

4.3 Cumulative Prospect Theory
Tversky and Kahneman in [25] proposed the Cumulative

Prospect Theory (CPT) framework to explain, among oth-
ers, why people buy lottery tickets and insurance policies
at the same time or the fourfold pattern of risk attitude
(ref. Section 4.1). According to EUT, if X denotes the
set of possible outcomes of a lottery, its expected utility
equals the sum of the outcomes’ utilities, U(x), x ∈ X,
times the probabilities of their occurrence, pr(x), that is,
EU =

∑
x∈X pr(x)U(x). In CPT, the desirability of the

alternatives-lotteries (now termed prospects) is still given
by a weighted sum of prospect utilities, only now both com-
ponents of the EUT (i.e., outcomes and probabilities) are
modified. However, agents are still maximizers, i.e., they
try to maximize the expected utilities of their prospects.

The CPT value for prospect X is given by

CPTX =
k∑
i=1

π−i u(xi) +
n∑

i=k+1

π+
i u(xi) (1)

where x1 ≤ ... ≤ xk are negative outcomes/losses and
xk+1 ≤ ... ≤ xn positive outcomes/gains.

In particular, the decision weights π−i , π
+
i are functions of

the cumulative probabilities of obtaining an outcome x or
anything better (for positive outcomes) or worse (negative
outcomes) than x. They are defined as follows:

π−1 = w−(pr1)

π−i = w−(pr1 + ...+ pri)− w−(pr1 + ...+ pri−1), (2)

2 ≤ i ≤ k

π+
n = w+(prn)

π+
i = w+(pri + ...+ prn)− w+(pri+1 + ...+ prn), (3)

k + 1 ≤ i ≤ n− 1

In [25], the authors propose concrete functions for both
weighting and utility functions,

u(xi) =

{
xai , if xi ≥ 0
−λ(−xi)b, if xi < 0

(4)

w+(p) = pc/ [pc + (1− p)c]1/c (5)

w−(p) = pd/
[
pd + (1− p)d

]1/d
(6)

w+(0) = w−(0) = 0 (7)

w+(1) = w−(1) = 1 (8)

Both functions are consistent with experimental evidence
on risk preferences. Indeed, empirical measurements reveal
a particular pattern of behavior, termed as loss aversion and
diminishing sensitivity. Loss aversion refers to the fact that
people tend to be more sensitive to decreases than to in-
creases in their wealth (i.e., a loss of 80 is felt more that
a gain of 80); whereas diminishing sensitivity (appeared in
both the value and the weighting function) argues that peo-
ple are more sensitive to extreme outcomes and less in in-
termediate ones.

The parameter λ ≥ 1 measures the degree of loss aversion,
while the parameters a, b ≤ 1 the degree of diminishing sen-
sitivity. The curvature of the weighting function as well as
the point where it crosses the 45◦ line are modulated by the
parameters c and d. Tversky and Kahneman estimated the
parametric values that best fit their experimental data at
λ = 2.25, a = b = 0.88, c = 0.61, d = 0.69.



4.3.1 Applying Cumulative Prospect Theory to the
resource selection task

In the uncoordinated resource selection problem, the de-
cisions are made on two alternatives/prospects: the low-
cost, limited-capacity resource set, on one side and the more
expensive but unlimited resource set, on the other side.
In addition, both prospects consist only of negative out-
comes/costs.

The CPT value for the low-cost prospect is given by

CPTl =

N∑
n=1

π−n u(gl(n)) (9)

where gl(k), with gl(1) ≤ ... ≤ gl(N), is the expected cost
for an agent that plays the action “low-cost/limited-capacity
resource set”. It is a function of the number of agents k
taking this action, and is given by

gl(k) = min(1, R/k)cl,s + (1−min(1, R/k))cl,f (10)

The decision weights and utility functions are defined by
(2)-(8). The possible n ≤ N outcomes, for the number n of
agents choosing the low-cost resources, occur with probabil-
ity pr(n) that follows the Binomial probability distribution
B(n;N, pCPTl ), with parameters the total number of agents,
N , and the probability to compete for the low-cost resources,
pCPTl .

The CPT value for the certain prospect“expensive/unlim-
ited resource set” is given by (4) and equals

CPTu = u(cu) (11)

It is possible to extend the equilibrium concept inline with
the principles of CPT. Namely, under an equilibrium state,
no agent has the incentive to deviate from this unilaterally
because by changing her decision, she will only find herself
with more expected cost. Thus, the symmetric mixed-action
equilibrium strategy pCPT = (pCPTl , pCPTu ), pCPTu = 1 −
pCPTl , is derived when equalizing the CPT values of the two
prospects, CPTl = CPTu.

4.4 Rosenthal and Quantal Response Equilib-
ria and their application to the resource
selection task

Both casual empiricism as well as experimental work sug-
gested systematic deviations from the prescriptions of EUT
and hence, classical Game Theory (Nash Equilibrium pre-
dictions). In Section 4.1 we briefly present the own-payoff
effects that constitute the most common pattern of devi-
ations from Nash predictions in matching pennies games.
Triggered by this kind of observations, Rosenthal in [20]
and, later, McKelvey and Palfrey in [19], propose alterna-
tive solution concepts to the Nash equilibrium. The under-
lying idea in both proposals is that “individuals are more
likely to select better choices than worse choices, but do
not necessarily succeed in selecting the very best choice”.
Rosenthal argued that “the difference in probabilities with
which two actions x and y are played is proportional to the
difference of the corresponding expected gains (costs)”. For
the actions “low-cost/limited-capacity resource set” and “ex-
pensive/unlimited resource set”, the Rosenthal equilibrium
strategy pRE = (pREl , pREu ), pREu = 1 − pREl is given as a
fixed-point solution of the equation

pREl − pREu = −t(c(l, pRE)− c(u, pRE)) (12)

where c(l, p) and c(u, p) are the expected costs for choos-
ing “low-cost/limited-capacity resource set” and “expensive/
unlimited resource set”, when all other agents play the mixed-
action p = (pl, pu), namely,

c(l, p) =

N−1∑
n=0

gl(n+ 1)B(n;N − 1, pl) (13)

and

c(u, p) = cu (14)

The degree of freedom t ∈ [0,∞]2 quantifies the rationality
of agents, here seen as a synonym of the knowledge they
possess and, primarily, their capacity to assess the difference
in the utilities between two outcomes. Thus, the model’s
solution converges to the Nash equilibrium as parameter t
goes to infinity.

In a similar view of people’s rationality, McKelvey and
Palfrey have shown that these “own-payoff effects”, i.e., peo-
ple’s inability to play always the strategy that maximizes
(minimizes) the expected utility (cost), can be explained by
introducing some randomness into the decision-making pro-
cess. Actually, one can think this kind of randomness and,
ultimately, these inaccurate/not rational judgments with re-
spect to cost minimization, as reflecting the effects of esti-
mation/computational errors, individual’s mood, perceptual
variations or cognitive biases. McKelvey and Palfrey im-
plement these effects into a new equilibrium concept, the
Quantal Response equilibrium. For instance, if the ran-
domness follows an exponential distribution (i.e., logistic er-
rors, iid mistakes with an extreme value distribution, smaller
mistakes are more likely to occur than more serious ones),
the response function/probability to play the action “low-
cost/limited-capacity resource set” in this equilibrium state

pQRE = (pQREl , pQREu ), pQREu = 1−pQREl is given using (13)
and (14) by,

pQREl =
e−tc(l,p

QRE)

e−tc(l,pQRE) + e−tc(u,pQRE)
(15)

Likewise, the free parameter t plays the same role, ab-
stracting the rationality level.

Addressing human behavior in real-life choice problems by
using alternative equilibrium solutions emerges as a typical
approach for analytical investigations. In a similar study
in [8], a capacity-constrained supplier divides the limited
supply among prospective retailers. The latter are assigned
quantities proportional to their orders, so they have an in-
centive to inflate their orders to secure more favorable allo-
cated quantities (when facing capacity constraints). They
choose their orders strategically but not always perfectly ra-
tionally; the optimization of individual payoffs is prone to
errors inline with the quantal response model. Other stud-
ies, take explicitly into account similar deviations from per-
fect rationality in attackers’ behavior to improve security
systems. In [27], the defender has a limited number of re-
sources to protect a set of targets (i.e., flights) and selects

2In the Rosenthal equilibrium the rationality parameter t
is subject to the constraint that the resulting probabilities
range in [0,1].



the optimal mixed strategy, which describes the probability
that each target will be protected by a resource. The at-
tacker chooses a target to attack after observing this mixed
strategy. This context can be encountered in selective check-
ing applications where the (human) adversaries monitor and
exploit the checking patterns to launch an attack on a single
target.

4.5 Heuristic decision-making and its appli-
cation to the resource selection task

A criticism against analytic models of bounded rational-
ity, such as the CPT or the alternative equilibria concepts,
is that they do not describe the processes (cognitive, neu-
ral, or hormonal) underlying a decision but just predict it.
Furthermore, they give no insight as to how should the corre-
sponding models be parameterized each time. On the other
hand, models that rely on cognitive heuristics constitute
more radical approaches to the decision-making task that
originate from the cognitive psychology domain and specify
the underlying cognitive processes while they make quanti-
tative predictions. Indeed, heuristic decision-making reflects
better Simon’s early arguments in [22], [23] that humans are
satisficers rather than maximizers.

Todd et al. in [24] list and discuss a number of simple
heuristic approaches for a particular instance of the resource
selection task, namely, the parking search in the simple con-
text of a long dead-end street, with two one-directional lanes
leading to (approach lane) and away from (return lane) a
destination and a parking strip between the two lanes. One
of the simplest example is the “fixed-distance” heuristic that
ignores all spaces in the approach lane until the car reaches
D places from the destination and then takes the first va-
cancy (in the approach or the return lane). If none leaves
his/her parking place before the last arrival and the first va-
cancy is not detected during the trip in the approach lane,
the driver pays an extra cost that penalizes the travel along
the return lane. Overall, all these heuristics rely on related
rules for search that have been suggested from other do-
mains (i.e., psychology, economics) and criteria that have
been identified as important for drivers such as the parking
fee, parking time limits, distance from drivers’ travel desti-
nation, accessibility and security level [11], [10].

In an effort to get the satisficing notion in our resource
selection setting, we came up with a simple kind of heuristic
rule in competitive resource selection tasks, arguing that in-
stead of computing/comparing the expected costs of choices,
individuals estimate the probability to get one of the “popu-
lar” resources and play according to this. In essence, as com-
mon sense suggests, agents appear overconfident under low
demand for the scarce low-cost resources and underconfident
otherwise. Similar to equilibrium solutions in Section 4.4, we
define the equilibrium heuristic strategy pHE = (pHEl , pHEu ),
pHEu = 1− pHEl , by the fixed-point equation

pHEl =

R−1∑
n=0

B(n;N − 1, pHEl ) (16)

where B(n;N−1, pHEl ) is the Binomial probability distri-
bution with parameters N − 1 and pHEl , for n agents com-
peting for the low-cost resources.

5. NUMERICAL RESULTS

Table 1: Sensitivity analysis of the CPT parameter
b: N = 100, R = 50, β = 4, γ = 8

b value 0.616 0.704 0.792 0.88 0.968
(−30%) (−20%) (−10%) (0%) (+10%)

pCPTl 0.8837 0.8836 0.8835 0.8834 0.8834

Table 2: Sensitivity analysis of the CPT parameter
d: N = 100, R = 50, β = 4, γ = 8

d value 0.552 0.621 0.69 0.7590 0.828
(−20%) (−10%) (0%) (+10%) (+20%)

pCPTl 0.8934 0.8876 0.8834 0.8805 0.8786

In Sections 3 and 4, we iterate on decision-making models
for full rational agents and individuals that exhibit system-
atically deviations from the full rational behavior and show
how the agents resolve in distributed manner the problem
of coordinating, that is, which partition of agents will gain
the low-cost resources and which will pay the service more
expensively. In this section, we consider the resource selec-
tion task described in Section 2 and plot the derived agents’
choices along with the associated per-user costs incurred in
the equilibrium states of the system, under different charg-
ing schemes for the two resource sets. The average per-user
cost in the symmetric case where every agent performs the
mixed-action p = (pl, pu) is given by (13) and (14), as follows

C(p) = plc(l, p) + puc(u, p) (17)

Ultimately, we compare the Cumulative Prospect The-
ory decision-making model, the Rosenthal and Quantal Re-
sponse equilibria as well as the heuristic reasoning against
what the full rational decision-making yields ([16], Theo-
rem 2). Interested readers are referred to [15] for a similar
discussion on the Bayesian and pre-Bayesian models in the
context of the parking search application.

In addition, we plot the different types of equilibria against
the optimal/ideal centralized resource allocation, where the
full information processing and decision-making tasks lie
with a central entity. Agents issue their requests to a cen-
tral server, which monitors the limited-capacity resource
set, possesses precise information about its availability, and
assigns it so that the overall cost paid by agents is mini-
mized. Thus, in an environment with R low-cost resources,
whereby such an ideal centralized system serves the requests
of N(≥ R) agents, exactly R (N − R) agents would be di-
rected to the low-cost (resp. more expensive) option and no
one would pay the excess penalty cost.

For the numerical results, usage of the limited resources
costs cl,s = 1 unit whereas the cost of the more expensive
resources β and the excess penalty cost parameter δ range
in [3, 12] and [1, 16] units, respectively.

5.1 Cumulative Prospect Theory
Although the CPT model was originally suggested to ra-

tionalize empirical findings in financial lottery experiments,
it has been successfully exploited to accommodate data sets
for different decision-making models. In [5], the authors
review empirical estimates of prospect theory under differ-
ent (parametric) assumptions, incentives, tasks and sam-
ples. In a transportation paradigm more similar to our



Table 3: Sensitivity analysis of the CPT parameter
λ: N = 100, R = 50, β = 4, γ = 8

λ value 1.8 2.025 2.25 2.475 2.7
(−20%) (−10%) (0%) (+10%) (+20%)

pCPTl 0.8834 0.8834 0.8834 0.8834 0.8834

setting, Avineri et al. in [4] first conduct a route-choice
stated-preference experiment and then explain the results
parametrizing their route choice model with values similar
to the ones that Tversky and Kahneman found for their
archetypal model in [25]. In the absence of proper experi-
ment measurements on the particular resource selection par-
adigm that could validate this theory, it is not suggested that
the parameter set b = 0.88, d = 0.69, λ = 2.25, as was in-
troduced in Section 4.3, reflects the actual agents’ choices.
Thus, we use the default parametric values to explore the
existence (or not) of the same risk attitudes towards losses
in the particular environment (ref. Section 2) and conduct
a sensitivity analysis on the parameters b, d, λ in the end of
the section to address these concerns.

Motivated by the simple experiments on preferences about
positive and negative prospects that, eventually, reveal the
four-fold pattern of risk attitude [25], we iterate on the most
interesting case studies for the cost differentials between
the certain prospect (i.e., cu for the expensive/unlimited
resource set) and the best or worst outcome of the risky
one (i.e., cl,s or cl,f for the low-cost/limited-capacity re-
source set). As Figures 1a, 1b suggest, when the agents
have the opportunity to experience a marginally or signifi-
cantly lower charging cost at low or high risk, respectively,
their biased risk-seeking behavior turns to be full rational,
and thus, minimizes the expected cost over others’ prefer-
ences. On the contrary, in the face of a highly risky op-
tion reflected in significant extra penalty cost (Fig. 1c),
the risk attitude under the two types of rationality starts
to differ, yet both suggest being more conservative. For in-
stance, when N = 100 agents compete for R = 50 low-cost
resources, the expected utility maximization framework re-

sults in the Nash equilibrium pNEl = R(γ−1)
δN

= 0.59, with

expected cost values c(l, pNE) = c(u, pNE) = cu whereas the
CPT suggests playing with pCPTl = 0.61 that equalizes the
relevant values CPTl = CPTu = −7.62. Under the pre-
scriptions of CPT, at the mixed-action pNE = (0.59, 0.41),
the cumulative prospect values become CPTl = −6.74 and
CPTu = −7.62 which leads to a risk-prone behavior, in-
line with the theory for losses: an agent may decrease the
prospect cost by switching her decision from the certain
more expensive resource set to the risky low-cost one. On
the other hand, at the mixed-action pCPT the expected costs
for the two options differ, namely, c(l, pCPT ) = 4.49 and
c(u, pCPT ) = cu = 4.

Overall and as Figure 2 implies, both the full rational and
the biased practice are more risk-seeking than they should
be, increasing the actual per-user cost (or equivalently, the
social cost) over the optimal levels. As a result, being prone
to biased behaviors cannot score better than acting full ra-
tionally3.

3In [16], we investigate the game-theoretic equilibrium
strategies and the resulting Price of Anarchy metric, which
compares the induced social cost at equilibrium states

The sensitivity of these results to the particular CPT
parametric values b = 0.88, d = 0.69, λ = 2.25, can be
drawn from Tables 1, 2 and 3, respectively. The CPT model
evolves to the expected utility maximization one that gives
pNEl = 0.875, as the parameters go to one. In general, al-
though we admit that the ultimate validation of our analyt-
ical results would come out of real, yet costly and difficult
experimentation with in-field measurements, the effect of the
parameters is shown to be limited.

5.2 Rosenthal and Quantal Response Equilib-
ria

Within the typical game-theoretic setting, the agents’ ex-
pected costs from different strategies are determined by their
beliefs about others’ preferences. Eventually, these beliefs
may generate choice probabilities according to a particular
response function that is not necessarily best, inline with
the expected utility maximization norms. Yet under this
kind of response functions, such as those in the form of (12)
or (15), the resulting - Rosenthal and Quantal Response -
equilibria impose the requirement that the beliefs match the
equilibrium choice probabilities, as in the Nash equilibrium
solutions.

Figure 3 plots these two alternative types of equilibrium
strategies and the resulting per-user costs when individu-
als cannot always choose the actions that best satisfy their
preferences, that is when the rationality parameter t is 3.
First, the implementation of bounded rationality increases
randomness into agents’ choices and hence, draws choice
probabilities towards 0.5. As a result, when competition
exceeds the capacity of the low-cost resources, computa-
tional limitations lead to more conservative actions compar-
ing to the Nash equilibrium competing probabilities when

N < 2R(γ−1)
δ

and less, otherwise. Second, the more differ-
ent the - expected - costs of the two options are, the less the
Rosenthal and Quantal Response equilibrium differ from the
Nash one, since the identification of the best action becomes
easier. Thus, we notice almost no or limited difference when
the risk to compete for a very small benefit is high due to
the significant extra penalty cost δ (Fig. 3c) or the high
demand for the resources (Fig. 3a, N > 300). The same
reason underlies the differences between the Rosenthal and
the Quantal Response equilibrium. Essentially, the three
types of equilibrium form a three-level hierarchy with re-
spect to their capacity to identify the less costly resource
option, with the Quantal Response equilibrium at the bot-
tom level and the Nash one at the top level.

Since the per-user cost is minimized at lower competing
probabilities, the inaccurate but frugal computation of the
best action saves not only time and computational resources

but also, usage cost when N < 2R(γ−1)
δ

(Fig. 3b).
The impact of computational limitations becomes more

sharp at even lower values of the rationality parameter. In
Figure 4, we plot the probability of competing for the low-
cost resources and the resulting per-user cost, when t = 0.2.
Again higher differences in behavior are observed in settings
where it is not clear which of the two resource options costs
less. This is the case of Figure 4a, where the choices are
decided almost randomly. On the other hand, when the risk
is high when choosing the limited resources, as in Figure 4c,

against the optimal one, to quantify the inefficiency of equi-
libria for a wide range of charging schemes.
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a. β = 3, γ = 4 b. β = 12, γ = 20 c. β = 4, γ = 20

Figure 1: Probability of competing in CPT equilibrium, for R = 50, under different charging schemes.
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a. β = 3, γ = 4 b. β = 12, γ = 20 c. β = 4, γ = 20

Figure 2: Per-user cost in CPT equilibrium, for R = 50, under different charging schemes.

even that low rationality level generates decisions similar to
the full rational ones.

Interestingly, when β = 3, γ = 4 and N < 2R(γ−1)
δ

, the
decrease in competing probability that comes with imperfect
rationality, draws the per-user cost to near-optimal levels
(Fig. 4b). However, when the penalty cost is high, any -
limited - increase in competitiveness due to inaccurate cost
discrimination causes significant overhead (Fig. 4d).

As a last note, Figure 5 illustrates the impact of the ratio-
nality parameter t on the equilibrium choice probabilities.
Starting with a difference δprob,t∼0 = pQRE,REl − pNEl =

1/2− R(γ−1)
δN

under a pure stochastic decision-making model,
the bounded rational reasoning approximates the full ratio-
nal practice, as t goes to infinity. When N ∼ (N − 1), as
in our setting, this difference in competing probability can
be translated in gains (less cost) or losses (more cost) in the
ultimate per-user cost, by (17), as follows:

δcost,t = C(pQRE,RE)− C(pNE)

≈ δprob,t · δcl,s, if R/((N − 1)(pNEl + δprob,t)) < 1

≈ cl,s(p
NE
l + δprob,t −R/(N − 1))−

cl,f (p
NE
l −R/(N − 1))− δprob,tcpl, o/w

5.3 Heuristic decision-making
Typically, under time and processing limitations, the fast

and frugal reasoning approaches emerge as the only solu-
tion. In fact, the cognitive heuristics operate as adaptive
strategies that allow agents to turn complex decision tasks of
predicting others’ preferences, assessing corresponding util-
ities or costs, determining best or better actions, to simpler
decision-making tasks. Within a highly competitive environ-
ment and in the face of a penalty cost (δcl,s), the heuristic
reasoning just estimates the competition levels (i.e., accord-
ing to (16)) and plays according to this. At equilibrium,
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Figure 5: Difference between the probability of com-
peting in the Quantal Response, Rosenthal equi-
libria and that in Nash equilibrium (left) and the
resulting per-user cost difference (right), for R =
50, N = 180, under fixed charging scheme β = 3, γ = 4
and t = [0.1, 100] (from imperfect to perfect rational-
ity).

the beliefs that formulate the competition level match the
actual choice probabilities, as in Section 5.2.

Interestingly, this trivial modelling approach leads to near-
optimal results. Unlike CPT or the alternative equilibrium
solutions, it does not take into account the charging costs.
Yet, this reasoning mode expresses a pessimistic attitude
that takes for granted the failure in a possible competition
with competitors that outnumber the resources. As a result,
it implicitly seeks to avoid the tragedy of common effects and
hence, eventually, yields a socially beneficial solution.

6. CONCLUSIONS
In this study, we consider environments where the tragedy

of commons effects emerge on a limited-capacity set of in-
expensive resources. Agents choose independently to either
compete for these resources running the risk of failing the
competition and having to take an unlimited, yet more ex-
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a. β = 3, γ = 4 b. β = 3, γ = 4 c. β = 4, γ = 20 d. β = 4, γ = 20

Figure 3: Probability of competing in the Quantal Response and Rosenthal equilibria and the resulting
per-user cost, for R = 50, t = 3.
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a. β = 3, γ = 4 b. β = 3, γ = 4 c. β = 4, γ = 20 d. β = 4, γ = 20

Figure 4: Probability of competing in the Quantal Response and Rosenthal equilibria and the resulting
per-user cost, for R = 50, t = 0.2.
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Figure 6: Probability of competing in heuristic equi-
librium (left) and the resulting per-user cost (right),
for R = 50, under fixed charging scheme β = 3, γ = 4.

pensive option after paying a penalty cost, or prefer from
the beginning the more secure but expensive option. In their
decisions, they consult (or not) information about the com-
petition level (i.e., demand), the supply (i.e., capacity) and
the employed pricing policy on the resources. This content
might be available through ad-hoc/opportunistic interaction
or broadcast from the resource operators, through informa-
tion assistance systems.

Drawing insights from cognitive science, we assess how
cognitive heuristics/biases affect the efficiency of real-life re-
source selection applications, yet without assessing the ex-
act relevance of the heuristics/biases in particular applica-
tion paradigms. Bayesian and pre-Bayesian variants of the
strategic resource selection game are investigated to express
incompleteness in agents’ knowledge, while people’s biased
behavior within the particular competitive environment is
captured via the Cumulative Prospect Theory framework.
We view the two resource alternatives, in particular, as pro-
spects and verify numerically the agents’ risk-prone atti-
tude under particular charging schemes on the resources.

Alternative equilibria solutions (Rosenthal and Quantal Re-
sponse) model the impact of people’s time-processing limita-
tions on their decisions, inline with Simon’s argument that
humans are satisficers rather than maximizers. We tune
the rationality parameter in the Rosenthal and Quantal Re-
sponse equilibria, to model agents of different rationality lev-
els and thus, different degrees of responsiveness to various
cost differentials between the two resource options, rang-
ing from pure guessing to perfectly rational reasoning (Nash
equilibrium). We identify environments where the impaired
reasoning, as expressed by the two alterative equilibrium
concepts, leads to less costly choices compared to the Nash
solutions. In the more radical approach, the agents decide
heuristically based on the estimated probability to win the
competition for the low-cost resources. Interestingly and un-
like the other models, the heuristic decision-making results
in near-optimal per-user/social cost, albeit far from what the
perfect rationality yields. Starting from these results, our
intention is to explore scenarios with a richer mix of agent
behaviors, catering for various expressions of rationality that
interact with each other. This takes us to more advanced
models such as the “cognitive hierarchy” in [7] with different
distributions for the complexity level of agents’ reasoning.
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