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Abstract

Our paper investigates normative abstractions for the way drivers pursue parking space and respond

to pricing policies about public and private parking facilities. The drivers are viewed as strategic agents

who make rational decisions while attempting to minimize the cost of the acquired parking spots, under

deterministic or probabilistic information for the overall parking demand. We propose auction-based

systems for realizing centralized parking allocation schemes, whereby drivers bid for public parking space

and a central authority coordinates the parking assignments and payments. These are compared against

the conventional uncoordinated parking search practice under fixed parking service cost, formulated as

a resource selection game instance. Inline with intuition, the auctioning system increases the revenue of

the public parking operator exploiting the drivers’ differentiated interest in parking. Less intuitively, the

centralized mechanism does not necessarily induce higher cost for the drivers; instead, by eliminating

the cruising cost, it emerges as the preferable option under various combinations of parking demand and

pricing policies.
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I. INTRODUCTION

The high demand for parking space in city centers has always been a challenge in the process of

city planning. The city authorities draw on both public and private parking facilities and more recently

deploy parking assistance systems [1] [2], to respond to the parking needs of the car volumes that daily
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visit popular in-city destinations. Under the conventional parking search practice, drivers choose between

the cheap but scarce on-street parking spots and the more expensive option of private parking space. In

fact, drivers selfishly pursue to minimize the cost of access to parking facilities. However, the intuitive

decision to head for the cheaper or free-of-cost on-street parking space, combined with the scarcity of

public parking capacity in urban curbside of typical center areas, give rise to tragedy of commons effects

and highlight the game-theoretic dynamics behind the parking spot selection problem.

In earlier work [3], we have formulated and studied the game that arises from the conventional parking

search behavior under a fixed parking cost model. The drivers in search for parking space are viewed as

rational strategic agents that choose either to compete for the cheaper but scarce on-street parking spots

or head for the more expensive private parking lot. In the first case, they run the risk of failing to get

a spot and having to a posteriori take the more expensive alternative, this time suffering the additional

cruising cost in terms of time and fuel consumption. Drawing on real charging schemes, we have derived

the equilibria strategies of the drivers and assessed their (in)efficiency via game-theoretic measures such

as the social cost and Price of Anarchy. We summarize these results in Section II of this paper.

In this paper, we ask whether and how much can centralized parking assistance systems combined with

more aggressive pricing schemes improve the outcome for both the on-street parking space operator and

the drivers. More specifically, in Section III we propose different auction mechanisms for the assignment

of on-street parking space. In fact, auction mechanisms have been used under various concepts in different

disciplines. In network science, research efforts on node transactions devise auction-based schemes

to address the challenge of resource (energy, bandwidth and storage space) sharing among multiple

networking users [4]. Our paper approaches the process of parking space selection in urban environments

as a network resource allocation problem. Indeed, the auctioning of parking spots is a promising key-

idea that has only recently started to gain interest [5] [6]. The number of available auctioned spots is

announced to the drivers, who submit their bids for them, expressing what are they willing to pay for a

parking spot in that particular occasion with complete or probabilistic information for the overall parking

needs. As central mechanisms, auctions determine who gets a parking spot and at what cost, saving

the additional expenses of cruising in the non-assisted, uncoordinated parking search, while unleashing

the conventional buying rules in public parking operation. Indeed, the analytical results in Section IV

show that, as expected, auctions always raise the revenue of the public parking operator since they adapt

payments to what drivers are willing to pay for on-street parking space. Nevertheless, this does not come

necessarily at the expense of drivers, who save the cruising cost and find the auction-based system less

expensive on average, under various combinations of parking demand and pricing policies.



II. THE PARKING SPOT SELECTION GAME

In the parking spot selection game, the set of players consists of drivers who circulate within a city

area in search of parking space. The players have to decide whether to drive towards the scarce low-cost

on-street parking spots or the more expensive private parking lot. All parking spots that lie in the same

public or private area are assumed to be of the same value for the players. Thus, the decisions are made

on the two sets of parking spots rather than individual set items. The two sets jointly suffice to serve all

parking requests.

The collective decision making on parking space selection can be formulated as an instance of the

strategic resource selection games, whereby N players (i.e., drivers) compete against each other for a

finite number of R on-street parking spots1. More specifically, drivers who decide to compete for the

cheaper on-street public parking space undergo the risk of not being among the R winner-drivers to get a

public spot. In this case, they have to eventually resort to private parking space, only after wasting extra

time and fuel (plus patience supply) on the failed attempt. The expected cost of competing for public

parking space, wpub, is therefore a function of the number of competing drivers k, and is given by

wpub(k) = min(1, R/k)cpub,s + (1−min(1, R/k))cpub,f (1)

where cpub,s is the fixed cost of successfully competing for public parking space, whereas cpub,f =

γ · cpub,s, γ > 1, is the cost of competing, failing, and eventually paying for private parking space.

On the other hand, the cost of private parking spots is fixed

wpriv(k) = cpriv = β · cpub,s (2)

where 1 < β < γ, namely the excess cost δ · cpub,s, with δ = γ − β > 0, reflects the cruising cost in

terms of wasted time and fuel till eventually heading to the private parking space.

If σpub denotes the number of drivers that decide to compete for on-street parking space, then the

aggregate cost paid by the total drivers’ population (social cost) is given by

C(σpub) =

 cpub,s [Nβ − σpub(β − 1)] , if σpub ≤ R

cpub,s [σpubδ −R(γ − 1) + βN ] , if R < σpub ≤ N
(3)

whereas the revenue for the public parking space operator by:

R(σpub) =

 σpubcpub,s, if σpub ≤ R

Rcpub,s, if R < σpub ≤ N
(4)

In [3], we have analyzed the parking spot selection game assuming both complete and probabilistic

knowledge of the parking demand, i.e., the number of drivers seeking for parking space, as well as

1The formal definition of the parking spot selection game is given in [3].



complete uncertainty about it. Following, we outline the main results.

A. Deterministic knowledge of competition

The main finding in [3] for the strategic parking spot selection game is that, for parking demand

exceeding the supply (N > R), the number of competing drivers in the equilibria states σpub,eq =

min(N, σ0), with σ0 = R(γ−1)
δ , exceeds the optimal number R that would compete for and succeed in

getting an on-street parking spot in the ideal scenario. In other words, an expected number of σpub,eq−R

ends up wasting time, fuel, and psychological resources on needless cruising without eventually saving

the more expensive private parking fee. On the contrary, when N ≤ R, all drivers head to the area of

public parking.

The resulting social cost Cd in the game equilibria states amounts to

Cd ≡ C(N) = cpub,s [Nγ −min(N,R)(γ − 1)] , if N ≤ σ0 and Cd ≡ C(σ0) = cpub,sβN , if N > σ0 (5)

which, for N > R, exceeds the optimal cost value Cd,opt ≡ C(R) = cpub,s [R+ β(N −R)], the ratio

Cd/Cd,opt expressing the price of anarchy of the game and quantifying the penalty of lack of coordination

across the drivers. On the other hand, the revenue Rd for the public parking space operator becomes

Rd ≡ R(N) = min(N,R)cpub,s, if N ≤ σ0 and Rd ≡ R(σ0) = Rcpub,s, if N > σ0 (6)

B. Probabilistic knowledge of competition

Instead of knowing exactly the number of competing vehicles, i.e., a fairly strong and unrealistic

assumption, the drivers may share common probabilistic knowledge about the overall parking demand,

originated by multimode systems that advertise relevant information. Specifically, the assumption is that

everyone has a rough knowledge of the average probability pact with which each user is “active”, in

search for a parking spot. Therefore, while the overall population of vehicles is constant, N , the number

of active vehicles, Nact varies stochastically. The prior probability distribution function p(n,N) of active

vehicles is given by

p(n,N)
.
= Pr(Nact = n) = B(n;N, pact) =

(
N

n

)
pnact(1− pact)

N−n (7)

Each vehicle that searches for a parking spot, maintains an estimate p(n,N−1) of the probability that

there are n other competing vehicles. It then pursues to minimize the expected cost, given the cost

functions (1) and (2), over all possible values of n in [0, N − 1]2. The analysis on the equilibrium and

optimal conditions results in conclusions similar to those in the strategic game, yet now we account for

2In [3], we investigate this particular game formulation of the problem under the term “Bayesian parking spot selection game”.



the expected number of players Npact instead of the deterministic knowledge of the total number of

players in Section II-A.

III. CENTRALIZED PARKING SEARCH ASSISTANCE

Parking assistance schemes are one way to overcome the efficiency limitations that result from the

uncoordinated selfish behavior of drivers. These systems rely on wireless communication solutions for

delegating the parking space assignment task to a central server, which: a) gets informed about the status

of on-street parking spots; b) collects the requests and bids of drivers for parking space; and c) determines

who is assigned a parking spot and at what cost, and notifies the drivers. In this paper, in particular, we

propose and analyze an auction-based system for the management of the public parking space drawing

on the theory of multi-unit auctions with single-unit demand [7].

In particular, N drivers (buyers) bid in a single auction for no more than one of R spare on-street

parking spots (non-divisible, physically identical goods3). Drivers (bidders) are assumed to be symmetric:

their valuations of parking spots are i.i.d RVs continuously distributed in the same interval [vmin, vmax]

and FV (), fV () their cumulative and probability distribution functions, respectively. An intuitive choice

for this interval is [cpub,s, cpriv]. In other words, the operator of the public parking resources will typically

impose a threshold on the selling price, i.e., a reserve price, that will be no less than the on-street parking

spot price under fixed cost. Drivers, in turn, will account for this lower bound in their bidding decisions;

whether they will not be willing to pay more than what the private parking operator charges. Although

each driver is aware of the distributions that her competitors’ valuations follow, upon bidding, she can

only know the realization of her own RV. Bidders are also assumed to be risk-neutral, i.e., for valuations

they seek to maximize their profit from bidding, and free of budget constraints [7].

In general, a selling auction mechanism consists of three components: the set of bids Bi (increasing

functions of valuations) for each driver i ∈ N ; an allocation rule π : B1 × ... × BN → ∆(N ), where

∆ is the set of probability distributions over N determining who are awarded parking spots, and a

payment rule p : B1 × ...× BN → RN for the selling price of each allocated spot. Out of the variety of

options, hereafter we consider the three most thoroughly analyzed implementations, the uniform price,

discriminatory price and Vickrey auctions. All three auction formats are standard in that they assign

the parking spots to the users that submit the highest bids. Under single-item demand and symmetric

risk-neutral bidders, all three auctions are also efficient and assign the parking spots to the users that

3In [3] we also discuss the case that different parking spots bear different values for the competing drivers.



value them most4. In other words, they induce equilibria states, whereby the top-bids are submitted by

the drivers that value the parking spots most. On the other hand, whereas all three auctioning mechanisms

follow the same allocation rule, they differ in the payment rule they apply.

• Under the Uniform Price Auction (UPA) and the Vickrey Auction (VA), all parking spots are sold at

the same price, the “market-clearing price”, which is equal to the first losing bid, i.e., the (R+1)th

highest over all drivers’ bids.

• Under the Discriminatory Price Auction (DPA), the winning drivers pay an amount equal to their

individual bids.

A. Deterministic knowledge of competition

The assumption in this Section is that the drivers are aware of how many they compete against; for

instance, because the parking assistance system provides them with this information. We first define

the equilibrium bidding strategies and then discuss their efficiency from bidders’ and operator’s interim

perspective, given that the auctioned parking spots do not suffice to fulfil the entire parking demand.

Otherwise, it is trivial to show that the centralized auction’s and the distributed practice’s outcomes

coincide.

1) Uniform price and Vickrey auction: Both the single-demand UPA and VA mechanism come under

the broader category of incentive-compatible (truthful) mechanisms in that the equilibrium strategy, β(v)

for the drivers is to bid their real values v,

βUPA(v) = βV A(v) = v (8)

For N > R, the expected driver’s payment, conditional on its value v, is given by

pUPA(v) = pV A(v) = Pr(V(N−R,N−1) < v) · E[V(N−R,N−1)|V(N−R,N−1) < v]

=

∫ v

vmin

yfV(N−R,N−1)
(y)dy (9)

where V(k,n) is the kth order statistic of the n competing valuations (i.e., the kth smallest out of n

samples drawn from RVs V1, ..., Vn) with probability density function fV(k,n)
(y) = {B(k, n − k +

1)}−1{F (y)}k−1{1− F (y)}n−kfV (y), where B(·, ·) stands for the complete Beta function [8].

4In general, reserve prices introduce a positive probability that the auctioned object remains unsold and cause the efficiency
property of the mechanism. Herein, however, this event is excluded, since drivers’ bids range in [vmin, vmax].



Therefore, its unconditional (ex ante) expected payment can be written

pUPA = pV A =

∫ vmax

vmin

pUPA(v)fV (v)dv

=
R

N
E[V(N−R,N)] (10)

while the expected revenue of the public parking service provider becomes

Rc = E[RUPA] = E[RV A] = NpV A

= RE[V(N−R,N)] (11)

and is collected from the drivers with the top R bids.

On the other hand, drivers with the N − R lowest bids resort to private parking facilities, all paying

the fixed cost cpriv = vmax. Thus, the expected social cost turns out to be

Cc = E[CUPA] = E[CV A] = RE[V(N−R,N)] + (N −R)vmax (12)

For N ≤ R, it is trivial to show that,

pUPA = pV A = vmin

Rc = E[RUPA] = E[RV A] = Nvmin (13)

Cc = E[CUPA] = E[CV A] = Nvmin (14)

2) Discriminatory price auction: The Discriminatory Price auction mechanism is the multi-item coun-

terpart of the single-demand First Price auctions. Vickrey, already in [9], showed that the expected revenue

for all multi-unit auctions with single unit demand featuring the same allocation rule, is the same, a

demonstration of the revenue equivalence principle. Therefore,

pDPA(v) = pUPA(v) = pV A(v),

Rc = E[RDPA] and Cc = E[CDPA] (15)

For N > R, the equilibrium bidding strategy equals

βDPA(v) = E[V(N−R,N−1)|V(N−R,N−1) < v]

=
1

FV(N−R,N−1)
(v)

∫ v

vmin

y · fV(N−R,N−1)
(y)dy (16)



Otherwise,

βDPA(v) = vmin (17)

B. Probabilistic knowledge of competition

In this Section we relax the assumption about complete awareness of the number of bidders and

discuss how the uncertainty for the competition level affects the equilibrium bidding strategies and the

corresponding payments.

1) Uniform price and Vickrey auction: The equilibrium strategy under UPA and VA remains the same,

irrespective of drivers’ uncertainty on competition level; each user bids her true value [10],

βUPA,B(v) = βV A,B(v) = v (18)

Given the function (7), the expected payment per user, conditioned on the value v, is

pUPA,B(v) = pV A,B(v) = vmin

R−1∑
n=0

p(n,N−1) +
N−1∑
n=R

p(n,N−1)Pr(V(n−R+1,n) < v) · E[V(n−R+1,n)|V(n−R+1,n) < v]

= vmin

R−1∑
n=0

p(n,N−1) +

N−1∑
n=R

p(n,N−1)

∫ v

vmin

y · fV(n−R+1,n)
(y)dy (19)

Notice that under low parking demand (i.e., N ≤ R, for fixed N ), every driver that is deemed winning

pays the reserved price vmin, irrespective of her valuation/bid. Likewise, the expected per user payment,

revenue and social cost become

pUPA,B = pV A,B = vmin

R−1∑
n=0

p(n,N−1) +
N−1∑
n=R

p(n,N−1)
R

n+ 1
E[V(n−R+1,n+1)],

Rc,B = E[RUPA,B ] = E[RV A,B ] = vmin

R∑
n=0

p(n,N)n+R
N∑

n=R+1

p(n,N)E[V(n−R,n)] and (20)

Cc,B = E[CUPA,B ] = E[CV A,B ] = Rc,B + vmax

N∑
n=R+1

p(n,N)(n−R) (21)

2) Discriminatory price auction: By (16) and (17), for fixed N , the equilibrium bid equals the first

losing bid if N > R, or the minimum value vmin, otherwise. Thus, the revenue equivalence principle

remains valid for variable number of bidders as well. Therefore, as with fixed N , it holds that

Rc,B = E[RDPA,B] and Cc,B = E[CDPA,B] (22)



Furthermore, since the expected per user payments are equal, we get

pUPA,B(v) = pV A,B(v) = pDPA,B(v) = βDPA,B(v)

[
R−1∑
n=0

p(n,N−1) +

N−1∑
n=R

p(n,N−1)Pr(V(n−R+1,n) < v)

]
(23)

Hence, replacing the left-hand side with (19) we get βDPA,B(v).

IV. NUMERICAL RESULTS

In Sections II and III we have outlined the game formulations of the two main practices in managing

public (on-street) parking space and derived the equilibria behaviors they induce. Under conventional

uncoordinated search for on-street parking, drivers have the chance to pay a lower parking fee when they

succeed in getting a public on-street parking spot. However, they run the risk of paying a normalized

per-hour cruising cost δcpub,s, on top of the private parking fee, when they eventually drive to private

parking lot, after having competed without success to get an on-street parking spot. On the other hand, the

centralized auctioning of on-street parking spaces exploits the, generally variable, user need for parking

space and allows for higher payments for on-street parking space but saves the “price of anarchy”, paid

in the absence of central coordination in the first case. In this Section, we explore how different pricing

schemes and the users’ interest in parking (as captured in their valuations’ distributions) affect a) the

revenue achievable by the public parking service operator; and b) the resulting per-user expected cost of

the parking service, under the two radically different paradigms of parking space management.

For the pricing policy, we adopt values used in the municipal parking system in the city of Athens

[11]. In particular, cpub,s ≤ 2 e, and β ≤ 7, for 60-minute period. The cruising cost parameter δ is let

range in (0, 10]. On the other hand, we consider three alternatives for the distributions of the drivers’

valuations, fV (v). In all three of them, V lies within an interval [vmin, vmax] = [cpub,s, βcpub,s], yet the

mass of the distribution is spread differently over this interval (see Fig. 1):

Doubly-truncated decay exponential valuations: This instance of valuation function corresponds to

scenaria, whereby drivers are not willing to pay high for a parking spot. It could model driving in the

center during leisure hours, where the retrieval of a parking spot is less urgent. The moments of the

(N−R)th-order statistics can be computed numerically through the recurrence relations derived by Joshi

in [12].

Doubly-truncated growth exponential valuations: The mass in this valuation distribution is concentrated

towards the rightmost values of its support. Compared with the doubly-truncated decay exponential

distribution, this one can model driving in the city center during busy hours for business purposes.



Uniform valuations: This is the intermediate scenario, where the value of parking spots for individual

users may lie anywhere in [vmin, vmax] equiprobably. In this case, the expected value of the (N −R)th-

order statistic can be also computed through the mean value of the generalized Beta distribution f(v;N−

R,R+ 1), for v ∈ [vmin, vmax], that is,

E[XN−R,N ] = vmin +
N −R

N + 1
(vmax − vmin) (24)

We consider medium to high parking demand levels (up to 160 drivers) and limited public parking

supply (R = 20 spots) during the time window over which the parking requests are issued.
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Fig. 1. Probability density functions for drivers’ valuations of public parking spots, cpub,s = 1, β = 4.

A. Comparing the revenue achievable by the public parking service operator under the two parking

space management practices

Figure 2 analyzes the aggregate social cost over all drivers in the distributed (Fig. 2a) and centralized

system (Fig. 2b), into the revenue achievable by the public parking operator (Fig. 2c) and the total cost

paid by the drivers that end up in private parking facilities (Fig. 2d), against different parking demand

levels and fixed charging for private space.

Inline with intuition, the social cost increases with parking demand, irrespective of the applied parking

allocation system (see Fig. 2a, b). Yet, in the absence of central coordination, the total cost paid by the

drivers includes the actual cost of cruising in search of available on-street space5. Under the auction-

based system, the incurred social cost under the three valuation distributions is strictly ordered, as we

prove in Appendix and plot in Figure 2b. Furthermore, all bidders that are not awarded public parking

spots, end up paying the same fixed cost for private parking allocation (see Fig. 2d), irrespective of their

valuations. Thus, the revenue follows the ordering of social cost for the three cases, as Figure 2c suggests,

as well. As expected, the revenue from auctioning the public parking spots exceeds the corresponding

5The impact of different charging practices on the social cost incurred by drivers in the parking spot selection game, is
discussed in [3].



30 40 50 60 70 80
0

50

100

150

200

250

300

350

Number of drivers, N

S
oc

ia
l c

os
t

 

 

δ=1
δ=2
δ=3

30 40 50 60 70 80
0

50

100

150

200

250

300

350

Number of drivers, N

S
oc

ia
l c

os
t

 

 

Uniform
DT−Decay Exponential
DT−Growth Exponential

30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Number of drivers, N

R
ev

en
ue

 

 

Auction:Uniform
Auction:DT−Decay Exponential
Auction:DT−Growth Exponential
Parking spot selection game

30 40 50 60 70 80
0

50

100

150

200

250

300

Number of drivers, N

S
oc

ia
l c

os
t−

R
ev

en
ue

 

 

Parking game,δ=1
Parking game,δ=2
Parking game,δ=3
Parking auction

a. b. c. d.

Fig. 2. Decomposition of the social cost in the distributed (a, c, d) and the centralized system (b, c, d), under different pricing
schemes with cpub,s = 1, β = 4, δ ∈ {1, 2, 3}, and various probability distributions for drivers’ valuations.
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Fig. 3. Revenue accruing to the operator of the public parking space with cpub,s = 1, β = 4, δ ∈ {1, 3}, under different
scenaria with respect to the users’ interest in parking as well as users’ awareness of the overall parking demand.
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Fig. 4. Cost incurred by drivers who end up in private parking space, under cpub,s = 1, β = 4, δ ∈ {1, 3}, and different
scenaria with respect to the users’ interest in parking as well as users’ awareness of the overall parking demand.

gains under fixed parking service cost. Overall, despite the similar social cost results for both practices,

in the distributed scheme the excess cost (in terms of fuel and time) due to the lack of coordination

is wasted on cruising, whereas in the centralized system the excess cost from bidding over the fixed

minimum cost cpub,s, is collected by the operator.

By Figures 2, 3 and 4, scenaria with different probabilistic knowledge of the parking demand (i.e., bi-

nomial distribution with different pact parameter), are equivalent to settings whereby Npact drivers

complete for parking space, all possessing deterministic knowledge of the competition. Notice that when

the expected number of drivers is less than the public parking supply the two practices for parking

space management coincide. Overall, drivers’ (seller’s) preference over the two approaches is indifferent

between availing (revealing) the first moment of the probability distribution of active vehicles or the



probability distribution per se.

B. Comparing drivers’ welfare under the two parking space management practices

The drivers’ welfare is quantified by the expected cost they end up paying for parking space. Hence,

their preference for the distributed or centralized parking assignment practices is determined by the

difference

∆ =
1

N
(Cd − Cc) (25)

between the expected per driver cost Cd/N under the distributed parking spot assignment and its

counterpart Cc/N under the centralized allocation. For ∆ > 0 (∆ < 0), this difference expresses

the excess cost that drivers pay in the conventional (auction-based) compared to the auction-based

(conventional) parking assignment paradigm. Drivers are indifferent over the two paradigms for ∆ = 0.

Thus, by (5) and (25), for N ≤ σ0, the two options considered equivalent when

∆ =
1

N
[cpub,s[Nγ −R(γ − 1)]− Cc] = 0 (26)

or for δ ≤ R(β−1)
N−R ,

δ =
1

N −R

[
Cc

cpub,s
+R(β − 1)−Nβ

]
(27)

Therefore, the tie is possible as the cruising cost decreases with parking demand (see Fig. 5d).

Additionally, the higher the social cost the auctioning process induces, the more the cruising between the

area of public and private parking should cost to counterbalance the higher payments of drivers under

the auction-based system. Indeed, as we show in the Appendix, the valuation distribution induces the

ordering

Cg
c ≥ Cu

c ≥ Cd
c (28)

where Cg
c , Cu

c , C
d
c stand for the resulting social cost under growth exponential, uniform and decay

exponential valuations, respectively. This causal relation between valuations and cruising cost parameter

is clearly seen in Figure 5d.

On the contrary, when N > σ0, from (5) and (25) we have that

∆ =
1

N
[cpub,sNβ − Cc] (29)

=
1

N
[cpub,sNβ − [Rc + (N −R)βcpub,s]]

=
R

N
[βcpub,s − E[VN−R,N ]] > 0

since the per-spot expected payment E[VN−R,N ] is strictly smaller than the cost of private parking



space. Therefore, for N > σ0, drivers are always better off with the centralized auctioning process.

In what follows, we iterate on the impact of the number of drivers, N , and the cost parameters cpub,s

(public parking cost), β (private parking cost) and δ (cruising cost), on the expected per user cost taking

as reference the most randomized, i.e., uniformly distributed, valuations. In the Appendix we show that

∆u(N, β, δ;R) =

 cpub,s
(N−R)

N

[
δ − (β − 1) R

N+1

]
, if N ≤ σ0

cpub,s(β − 1) R(R+1)
N(N+1) , if N > σ0

(30)

Impact of number of drivers: For given public parking supply and charging parameters, if N >

σ0, drivers always prefer the centralized system (i.e., ∆u > 0). However, the difference ∆u is strictly

decreasing with N since
ϑ∆u

ϑN
= −cpub,s(β − 1)

R(R+ 1)(2N + 1)

[N(N + 1)]2
< 0 (31)

Hence, as Figure 5 shows, drivers become indifferent between the two alternatives under high competition,

irrespective of the applied charging scheme.

On the contrary, under lower parking demand (N ≤ σ0), no scheme dominates over the other. Drivers

end up paying less on average under the auction-based scheme if δ > R(β−1)
N+1 ; otherwise, it is the

conventional non-assisted parking search practice that becomes favorable. In particular, for all realistic

values of the cruising cost δ (δ < R(β − 1)), ∆u obtains a minimum at

N0 =
τ +

√
τ(β − 1)(R+ 1)

β − 1 + δ
, (32)

where τ = R(β − 1)− δ, which increases with β and decreases with δ since

ϑN0

ϑβ
=

δ(R+ 1) +
√
τ(β − 1)(R+ 1)

(β − 1 + δ)2

[
1

2

[2R(β − 1)− δ](β − 1 + δ)

τ(β − 1)
− 1

]
> 0 (33)

and
ϑN0

ϑδ
=

(β − 1)(−R− 1)−
√
τ(β − 1)(R+ 1)

(β − 1 + δ)2

[
1 +

1

2

β − 1 + δ

τ

]
< 0 (34)

On a last note, the analysis of the convexity of ∆u function with N , expressed via

ϑ2∆u

ϑN2
=

 cpub,s
2R
N3

[
−(β−1)
(N+1)3

[
N3 −R− 3RN(N + 1)

]
− δ

]
, if N ≤ σ0

cpub,s
2R(β−1)

[N(N+1)]3 [1 + 3N(N + 1)] > 0, if N > σ0

(35)

shows that although it starts convex, turns concave, and finishes convex, as Figure 5 illustrates, as well.

Impact of cruising, public and private parking costs: Firstly, as Figure 5 and (30) suggest, the

shape of ∆u function is primarily determined by the relation between the number of drivers N and the

number σ0 =
R(γ−1)

δ . Indeed, the turning point at N = σ0 is shifted to the left as (a) the public parking

capacity decreases; or (b) the cruising cost increases; or (c) the cost of private parking space drops.



For given public parking demand and supply, the centralized auctioning system presents a cheaper

alternative to the drivers as a) the distance between public and private parking facilities grows and/or

the fuel prices increase, thus inflating the cruising cost; or b) the private parking cost gets higher, thus

motivating more drivers to compete for the scare on-street parking space and increasing the “price of

anarchy” of the uncoordinated parking practice, under high parking demand. However, under medium

parking demand, any increase in private cost, raises the payments in the auction system at the expense

of drivers’ welfare and hence, reduces the advantage of saving the cruising cost (see Fig. 5a, c). Finally,

when the public parking operator increases the public cost, he allows for higher variation in the difference

between drivers’ welfare under the two systems, as Figure 5b illustrates, as well. Analytically, ∆ increases

as the cruising cost parameter increases, while the distance between public and private parking area

remains close,

ϑ∆u

ϑδ
=

 cpub,s
(N−R)

N > 0, if δ ≤ R(β−1)
N−R

0, if δ > R(β−1)
N−R

(36)

or the private cost increases (drops), while remains comparable to (much more expensive than) its public

counterpart,

ϑ∆u

ϑβ

 cpub,s
−R(N−R)
N(N+1) < 0, if β ≥ 1 + δ(N−R)

R

cpub,s
R(R+1)
N(N+1) > 0, if β < 1 + δ(N−R)

R

(37)

or the public parking gets more expensive (cheaper), while the distance between public and private parking

is significant (close),

ϑ∆u

ϑcpub,s


(N−R)

N

[
δ − (β − 1) R

N+1

]
≥ 0, if R(β−1)

N+1 ≤ δ ≤ R(β−1)
N−R

(β−1)R(R+1)
N(N+1) > 0, if δ > R(β−1)

N−R

< 0, otherwise

(38)
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Fig. 5. Difference between the expected cost per driver in the parking game and that in the auction with uniform valuations,
under various pricing schemes (a,b,c) and different charging policies that zero the excess cost ∆ (d).



V. CONCLUSIONS

In this paper, we analytically and systematically explore the dynamics behind different game formu-

lations of the parking spot allocation problem. Equilibrium behaviors under various auction settings,

differing in their pricing rules and the levels of uncertainty bidders experience about the parking demand,

are compared against those under the uncoordinated distributed parking spot assignment scheme, with

respect to the cost that incurs to the users and the revenue accruing to the operator of the public parking

space. Our analytical results show that, when the public parking service provider seeks to maximize

his revenue, profits from auctioning the public parking resources, exploiting drivers’ interest in on-street

parking. Less intuitively, we locate specific contexts (i.e., charging policy and competition intensity) in

which drivers serve their self-interest also under the centralized market system.
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APPENDIX

A. Difference ∆ of the expected per driver costs under the two parking space management practices

By (5), (12) and (24), with [vmin, vmax] = [cpub,s, βcpub,s], for N ≤ σ0, the excess cost is

∆u =
1

N
(Cd − Cc,u)

=
cpub,s
N

[Nγ −R(γ − 1)]− cpub,s
N

[
R+ (β − 1)

R(N −R)

N + 1
+ β(N −R)

]
=

cpub,s
N

[
Nγ −Rγ − (β − 1)

R(N −R)

N + 1
−Nβ +Rβ

]
= cpub,s

(N −R)

N

[
δ − (β − 1)

R

N + 1

]
(39)

while for N > σ0,

∆u =
1

N
(Cd − Cc,u)

=
cpub,s
N

Nβ − cpub,s
N

[
R+ (β − 1)

R(N −R)

N + 1
+ β(N −R)

]
= cpub,s(β − 1)

R(R+ 1)

N(N + 1)
(40)

B. Expected payments and revenue under the three valuation functions

Under the auction-based parking space allocation mechanism, there is a strict ordering of the drivers’

expected payments (hence, the revenues of the public parking space operators as well) under the three

valuation functions.

Cg
c ≥ Cu

c ≥ Cd
c (41)

Equivalently, we want to derive a similar relationship for the (N − R)th order statistics of the three

evaluation functions.

The proof proceeds in three steps. Firstly, we note that there are first-order stochastic dominance

relationships between the three cumulative distribution functions in Figure 1, that is

F g
V (v) ≺ Fu

V (v) ≺ F d
V (v) (42)

as can be readily seen in Figure 6.

Then, we need to recall that the cumulative distribution function of the (N − R)th order statistic is

written [8]

F(N−R,N)(x) =

∫ F (x)

0

N !

R!(N −R− 1)!
tN−R−1(1− t)Rdt (43)
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Fig. 6. Stochasting ordering of the three valuation functions FV (v), (vmin = 1, vmax = 7).

Therefore, the first-order dominance relationships in the drivers’ valuations (42) is inherited by their

(N −R)th order statistics.

F g
(N−R,N)(x) ≺ Fu

(N−R,N)(x) ≺ F d
(N−R,N)(x) (44)

Finally, (41) emerges directly when relating the expected values of the valuations to their cumulative

distribution functions through

E[X(N−R,N)] =

∫ ∞

0
[1− F(N−R,N)(x)]dx (45)

a general relation concerning nonnegative RVs [13].


