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ationsUniversity of AthensPanepistimiopolis, 157 84 Athens, Gree
efg
hristo,takisg�di.uoa.grAbstra
t. In this paper, we deal with the 
rew assignment problem,whi
h is a subproblem of the airline 
rew s
heduling problem. The aimof the 
rew assignment problem is the optimal allo
ation of a given setof 
rew pairings to 
rew members, in a way that a set of 
onstraintsis satis�ed. The optimality 
riterion we employ in this work requiresthe 
ight time fair distribution among all 
rew members. This problemhas been traditionally ta
kled with Operations Resear
h te
hniques. Inre
ent years, the Constraint Logi
 Programming paradigm has been su
-
essfully used for solving hard 
ombinatorial optimization problems. Wepropose a formulation of the 
rew assignment problem as a 
onstraintsatisfa
tion problem and we use a bran
h-and-bound te
hnique 
ombinedwith some heuristi
s in order to �nd qui
kly a solution identi
al, or atleast very 
lose, to the optimal.1 Introdu
tionThere is a very broad 
lass of problems whi
h fall under the general areas ofplanning, s
heduling and resour
e allo
ation and whi
h are diÆ
ult to modeland even more diÆ
ult to solve. The solution of su
h a problem 
onsists ofan appropriate assignment of values to the variables that model the problem'sdomain in su
h a way that various 
onstraints are respe
ted. These problemsare often referred to as 
ombinatorial sear
h problems, in the sense that whatwe have to sear
h for is a feasible 
ombination of values for the in
orporatedvariables.In a 
ombinatorial sear
h problem, someone might look for one, some or allfeasible solutions. Depending on the solution density of the sear
h spa
e, �ndingone or a few solutions might equally be a quite easy or an extremely diÆ
ult task.On the other hand, �nding all feasible solutions might be out of the question, oreven out of usefulness, in 
ase there is a huge number of them. However, whatis a
tually required in most 
ases is to �nd an optimal solution a

ording toa given obje
tive fun
tion. Then, we are talking about optimization problems,whi
h is the kind of problems that the Operations Resear
h (OR) 
ommunity isatta
king for many years now.



Combinatorial sear
h problems have attra
ted the attention of Arti�
ial In-telligen
e (AI) resear
hers as well, who have developed a variety of methods andheuristi
s to deal with them. However, a major 
ontribution of the AI 
ommu-nity to the area is the idea of an a
tive exploitation of 
onstraints, in the sensethat they may be used to prune in
onsistent values of the involved variables, be-fore getting to the point of 
hoosing values for these variables. The e�e
t of thispruning may be propagated then, through another 
onstraint, to the possiblevalues of other variables, leading in this way to a data-driven form of ensuring
onsisten
y. The overall result may be a signi�
ant redu
tion of the sear
h spa
e,depending, of 
ourse, on the nature of the involved 
onstraints. This method issupported by the 
onstraint programming paradigm [13, 19℄, that has emergedand heavily been exploited during the last de
ade, in order to deal with realworld 
ombinatorial sear
h problems. Initially, the 
onstraint programming ideaarose as an extension of logi
 programming and the Prolog language, giving birthto 
onstraint logi
 programming [11, 18℄. However, nowadays, the 
onstraint pro-gramming philosophy has been transferred to other programming paradigms aswell, su
h as obje
t-oriented programming, et
.S
heduling 
ying 
rews of airline 
ompanies is a 
ombinatorial problem,whi
h is extremely hard, given the 
omplexity of the 
onstraints that have to besatis�ed and the huge sear
h spa
e that has to be explored [6℄. The problem isoften ta
kled by breaking it down into the 
rew pairing and the 
rew assignmentsubproblems, whi
h are still hard problems. The 
rew pairing subproblem hasbeen studied extensively and ta
kled with OR te
hniques [10, 1, 20℄, geneti
 algo-rithms [14℄, neural networks [4, 12℄, 
onstraint programming [15℄ et
. Mu
h workhas been done also for the 
rew assignment problem, where pure OR methodshave been applied [2, 16, 5℄ or hybrid methods that 
ombine OR and 
onstraintprogramming [8, 3, 17, 21, 7℄.In this paper, we dis
uss the 
rew assignment problem and we propose aformulation of it as a 
onstraint satisfa
tion problem that may be solved by aspe
i�
 
onstraint logi
 programming system, the language Prolog IV, developedby the Fren
h 
ompany Prologia.2 The Airline Crew Assignment ProblemThe 
rew assignment problem for airlines refers to the allo
ation of 
o
kpit and
abin 
rew members to pairings during a prede�ned rostering period, usually onemonth. A pairing is a sequen
e of 
ight legs; it starts from the home base andends at the home base and it is 
onstru
ted in su
h a way that labour regulationsare respe
ted. A pairing may span from one to few days long. The set of 
ightlegs in a day 
onstitute a duty. A 
rew assignment system is responsible forallo
ating 
rew members to pre
onstru
ted pairings that 
over all 
ight legs ofan airline 
ompany for a given rostering period. A system of this kind has toguarantee that no regulation is violated (a
tually, among the ones that 
annotbe 
he
ked at the pairing 
onstru
tion phase).



The full 
rew assignment pro
ess is usually performed separately for the 
abinand 
o
kpit 
rew, sin
e their duty is governed by di�erent 
onstraints and regu-lations. Co
kpit 
rew assignment 
an sometimes be broken into smaller indepen-dent subproblems 
orresponding to di�erent 
eets and groups of 
rew membersof the same rank (e.g. 
aptains, �rst oÆ
ers and 
ight engineers). However, thisis not always possible, if there exist 
onstraints (e.g. 
rew 
omposition ones)that relate di�erent ranks to ea
h other, or even if verti
al 
onstraints are to besatis�ed. A verti
al 
onstraint is one that relates roster attributes of di�erent
rew members.Apart from ensuring the validity of all rules and regulations, a 
rew assign-ment system must follow a spe
i�
 assignment methodology as well. Three mainmethodologies exist:Fair Assignment: The workload is allo
ated to 
rew members in a fair way.Flight time, days o�, stand-by duties, early/late 
ights and any other worka�e
ting attributes are being distributed evenly.Bid Lines: Anonymous s
hedules for the whole rostering period (lines of work)are 
onstru
ted and published, so that the 
rew members bid on them andthe system assigns them a

ording to the bids (usually, respe
ting the se-niority 
riterion).Preferential Bidding: The 
rew members express general and spe
i�
 prefer-en
es (e.g. avoiding early 
ights, wishing to 
y the OA202 
ight next Tues-day, et
.) and the system tries to award su
h kind of bids, either by followinga dire
t assignment methodology keeping in mind the expressed preferen
esor by generating personalized lines of work and, then, attempting to �nd asubset of them that 
overs all pairings and satis�es the 
rews as mu
h aspossible.In the 
ontext of this paper, we are dealing with the 
rew assignment problemof a spe
i�
 airline, namely Olympi
 Airways. In the next paragraph, a very shortpresentation of the rules and regulations at Olympi
 Airways is given.2.1 Rules and Regulations of Olympi
 AirwaysCrew s
heduling in Olympi
 Airways is governed by a set of rules and regulationsthat have to be obeyed in order for a 
ight s
hedule to be legal. A 
ompletereferen
e of these regulations falls outside the s
ope of this paper, so a subsetof them has been sele
ted, in order to demonstrate the modelling of 
onstraints.Some required de�nitions are the following:Duty time: Any 
ontinuous period during whi
h a 
rew member is required to
arry out daily tasks at the 
ompany's behest.Flight time of a duty: The period of the duty time that the 
rew member ison air.Days o�: Periods available for leisure and relaxation, no part of whi
h shallform part of duty time. A time interval 
ontains N days o� if it is longerthan N � 24 + 16 hours and 
ontains N 
alendar days.



A subset of the rules taken into a

ount by Olympi
 Airways is the following:1. At most one duty interse
ts with any 
alendar day.2. In ea
h gliding window of N 
onse
utive days, the total duty time has to beless than H hours, in the following 
ases:{ N = 7 and H = 40{ N = 30 and H = 1603. (for 
o
kpit only) In ea
h gliding window of N 
onse
utive days, the total
ight time has to be less than H hours, in the following 
ases:{ N = 7 and H = 32{ N = 30 and H = 804. In ea
h gliding window of N 
onse
utive days, D days o� are required, inthe following 
ases:{ N = 7 and D = 2{ N = 30 and D = 9As far as the assignment methodology is 
on
erned, Olympi
 Airways followsthe fair assignment option, having the total 
ight time of a 
rew member as ameasure of the equal workload allo
ation.3 Constraint Logi
 ProgrammingConstraint Logi
 Programming (CLP) refers to a 
lass of programming lan-guages that support a hybrid s
heme 
ombining the features of traditional logi
programming and the eÆ
ien
y of 
onstraint solving. CLP pro�ts from all advan-tages of logi
 programming, su
h as de
larativeness and non-determinism, whileover
oming limitations due to the ineÆ
ien
y in exploring the sear
h spa
e of
ombinatorial problems.Constraint logi
 programming is based on the idea that a myriad of real-world
ombinatorial sear
h problems from many di�erent 
ontexts 
an be modelled asConstraint Satisfa
tion Problems or CSP's. In a CSP, there is a set V of variables,ea
h of whi
h is asso
iated with a domain, the set of values the variable 
anpossibly assume.A 
onstraint 
j applies to a subset V
j of the variables in V . If the size of V
j isn and ea
h variable has a domain of size m, then the set SV
j of di�erent possibleassignments of values to the variables in V
j 
ontains mn elements. A 
onstraintdivides this set of possible assignments into 
onsistent and in
onsistent ones.In
onsistent assignments do not respe
t the 
onstraint and are not a

eptable.In a CSP, there is a set C of 
onstraints, ea
h of whi
h applies to a possiblydi�erent subset of the variables in V . A solution S is every assignment of val-ues to variables whi
h respe
ts all 
onstraints. In other words, in order for anassignment S to be a solution, for every 
onstraint 
j in C, the assignments inS to the variables in V
j should be 
onsistent.Given a CSP, the goal 
ould be to �nd one solution, all solutions or even anoptimal solution a

ording to a given obje
tive fun
tion. Constraint propagation



is the me
hanism whi
h 
ontrols the intera
tion of the 
onstraints. Ea
h 
on-straint 
an dedu
e ne
essary 
onditions on the domains of its variables. When-ever a variable's domain is altered, the 
onstraint propagation will trigger allrelevant to this variable 
onstraints, in order to dete
t further 
onsequen
es.The stru
ture of a CLP program is the following:solve(List):-domain_initialization(List),
onstrain(List),enumerating(List).The argument List is a list of domain variables representing the problemsolution. In the domain initialization step, ea
h variable of the list is re-stri
ted to an initial domain. In the 
onstrain step, 
onstraints dealing withthe problem are imposed upon the list's domain variables. In the enumeratingstep, ea
h domain variable gets a value in a random or systemati
 way. Ea
htime a value is assigned to a variable, the propagation me
hanism is triggeredand the 
onstraint solver prunes variable domains, in order to satisfy the set of
onstraints. At the end of the enumerating step, either ea
h variable is restri
tedto a single value (feasible solution) or failure is returned.Prolog IV, the su

essor of Prolog III, is a 
ompiled 
onstraint logi
 pro-gramming language.1 It allows the programmer to pro
ess a wide variety of 
on-straints, des
ribing relations over real and rational numbers, integers, booleansand lists in a sound and uni�ed framework. The Prolog IV 
onstraint solvingte
hniques are based on exa
t and approximation methods.4 Modelling the ProblemIn this se
tion, we intend to present our modelling of the 
rew assignment prob-lem. We follow the general idea for modelling problems using CLP. Firstly, wede�ne variables and the 
orresponding domains. Then, we introdu
e some 
on-straints, in order to restri
t the problem's sear
h spa
e. Finally, we dis
uss op-timization issues.4.1 De
laration of Domain VariablesAs we have already mentioned, the 
rew assignment problem takes as its inputdata a set of pairings. In the �rst step, we transform the input data into a set ofProlog IV fa
ts, the pairing fa
ts. Ea
h of these fa
ts has the form pairing(Id,Sd, Ed, Dt, Ft, S day, E day), where{ Id refers to the pairing's identi�
ation{ Sd, Ed refer to the pairing's departure and arrival dates{ Dt, Ft refer to the duty time and 
ight time of the pairing1 http://prologianet.univ-mrs.fr/Us/prolog4.html



{ S day, E day refer to the departure and arrival 
alendar days of the pairingLet M be the number of dis
rete pairings and N be the number of 
rewmembers. We intend to assign ea
h pairing to a 
rew member, so we 
reate alist X List of size M .X List = [X1; X2; : : : ; XM ℄ with Xi 2 [1; N ℄; Xi 2 NIf Xi is equal to j, then pairing i is assigned to 
rew member j. The enumerationof ea
h domain variable whi
h belongs in the X List 
orresponds to a solutionof the problem. Another very useful list, whi
h intera
ts with the X List, is theC List.C List = [C1; C2; : : : ; CN ℄; Ci = [Ci1; Ci2; : : : ; CiM ℄; Cij 2 f0; 1gIf Cij = 1 then pairing j is assigned to 
rew member i. These two lists 
omprisethe 
ore of the program. The existen
e of both may look redundant, but it
ontributes to the 
exible handling of the 
onstraints.4.2 Constraints De�nitionsIn this se
tion, we dis
uss some 
onstraints of the problem. The 
onstraints de
-laration is an extremely important point that a�e
ts both memory requirementsand exe
ution time. The nature of the problem 
onstraints is dual. Ea
h 
on-straint whi
h 
ould be de
lared as pairing-oriented 
ould equivalently be de
laredas 
rew-oriented, but with di�erent e�e
ts on program's eÆ
ien
y. So, in thisway, it is possible to sele
t either X List or C List for modelling a 
onstraint,depending on the a
hieved eÆ
ien
y from ea
h option.Some of the 
onstraints that apply to the 
rew assignment problem we dealwith follow:1. We need to bind, in some way, the domain variables of X List with theseof C List, so as possible redu
tions of the domain (probably due to propa-gation) of the �rst will a�e
t the domain of the se
ond and vi
e versa. Thisprogramming tri
k provides us the dual 
exibility for 
onstraints handling.The 
onstraints whi
h have to be stated are the following:Xi = j ) Cji = 1 ^ Cki = 0 8k : k 6= jXi 6= j ) Cji = 0Cij = 1) Cik = 0 ^Xj = i 8k : k 6= jCij = 0) Xj 6= iThis set of 
onstraints 
an be elegantly imposed using Prolog IV booleanrelations. Cij = 1 iff Xj = i



2. Pairings whi
h overlap in time should not be assigned to the same 
rewmember. This 
onstraint is set upon the variables of X List. Firstly, welo
ate all pairs (Pi; Pj) whi
h are overlapped in time. So:8i; j i 6= j and overlapped(Pi; Pj)) Xi 6= Xj ; i; j = 1; 2; : : :MThis 
onstraint ensures that Xi and Xj will not take the same value, so Piand Pj will not be assigned to the same 
rew member.3. Another example is part of the day-o� rule mentioned in a previous se
tion.For ea
h 
rew member Ci, we de�ne a list Di. Ea
h element of this list Dijfor j = 1; 2; : : : ; 30 
orresponds to a 
alendar day and its domain is f0,1g.Dij = 1 if 
rew member i has a pairing assignment on day j, otherwiseDij = 0. A 
onstraint that has to be satis�ed is:k+6Xi=k Dji � 5; k = 1; : : : ; 24; 8j = 1; : : : ; N4. Another set of 
onstraints refer to rules that apply to gliding time windowsover the whole rostering period. These 
onstraints are a
tivated ea
h timea pairing assignment takes pla
e. Let pairing j be assigned to 
rew memberi. Let also S7+ and S7� the subsets of pairings whi
h overlap with the timeintervals of 7 days before the start time and 7 days after the end time of thejust assigned pairing. Xj:Pj2S7+Cij �Dtj � 40hXj:Pj2S7�Cij �Dtj � 40hAn important note on this set of 
onstraints is that a time interval of Ndays does not 
orrespond to an interval of N 
alendar days, whi
h a�e
tsthe level of easiness of its implementation.4.3 OptimizationAs we have already mentioned, the obje
tive of the problem is not only to �nd afeasible solution, but the optimal one. The optimality 
riterion is the 
ight timefairness among 
rew members.Obje
tive Fun
tion. The obje
tive fun
tion should measure the 
ight timefairness 
riterion. A possible obje
tive fun
tion 
ould be the following:Z = NXi=1 jFi � Fav j



Fi is the 
ight time of 
rew member i. This fun
tion does not represent suÆ-
iently the optimality 
riterion, be
ause it does not \punish" large divergen
esfrom the average 
ight time Fav . The obje
tive fun
tion that we use for mini-mization is the following: Z = NXi=1(Fi � Fav)2Enumeration. A set of 
onstraints typi
ally redu
es a variable's domain, butsometimes uni�es it with a single value. Enumeration takes pla
e in the labelingphase of a 
onstraint logi
 program. A general s
heme of a predi
ate whi
himplements enumeration of a list L of �nite domain variables is the following:my_enum(L):-stop_
ondition(L),!.my_enum(L):-variable_sele
tion(L, X),value_sele
tion(X, M),my_enum(L).The predi
ate stop 
ondition/1 su

eeds if every domain variable is uni-�ed to a single value. The predi
ate variable sele
tion(L, X) sele
ts the nextvariable X of L that is going to be assigned a value from its domain. The variablesele
tion phase is a key point of the sear
h. Di�erent sele
tion strategies a�e
tthe eÆ
ien
y of the assignment and obje
tive fun
tion's value. The variable se-le
tion strategy that we used is the following: Sele
t the variable that 
orrespondsto the pairing with the largest 
ight time. The predi
ate value sele
tion(X,M) assigns to domain variable X the value M. The sele
tion of the value is im-portant. The sele
tion strategy that we used is the following: Sele
t the valuethat 
orresponds to the 
rew member with the smallest 
urrent 
ight time. Thesegreedy heuristi
s work good enough with this problem, as it is proved by ex-tensive experimentation. The intuition behind them is that we want to get ridearly of the large pairings that are diÆ
ult to manipulate, while small ones aremore 
exible. The whole enumeration pro
edure is pa
ked inside an iterativebran
h-and-bound pro
ess, whi
h whenever �nds a solution with some 
ost, letC, iterates and starts sear
hing from the beginning trying to �nd a solution with
ost better than C.5 Experimental ResultsIn this se
tion, we present the results of our work. The implementation was basedon the modelling of the previous se
tion. The rules that were implemented arethose presented in se
tion 2.1. We ran our experiments on a dual Sun Ultra450Mhz SPARC workstation with 2 GB main memory. The trial runs had as



input a real world dataset of 475 pairings and 33 
rew members of Olympi
 Air-ways. The memory requirements of the program are 400 MB. Experiments were
arried out with datasets of other sizes as well. Although the quality of solu-tions was not a�e
ted, it was proved that both the exe
ution time and memoryrequirements had a quadrati
 relation to the size of the input data.
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Fig. 1. A bar graph whi
h depi
ts the assignment of the �rst solutionThe bar 
hart in Fig. 1 depi
ts the �rst feasible solution found by bran
h-and-bound in 145 se
onds of CPU time. Ea
h bar depi
ts the 
ight time ofa single 
rew member. The average 
ight time whi
h would 
orrespond to theideal assignment, without taking into 
onsideration the set of 
onstraints, is 3140minutes. As a matter of fa
t, an assignment like this is rather improbable to exist(the average is a rational number) even if there were no 
onstraints at all. Theaverage of the absolute deviations of data points from their average value that
orresponds in our �rst solution is 54. Similar experiments for other datasets giveeviden
e that it is preferable to a

ept the �rst solution, than a further one, withrespe
t to the exe
ution time. This is be
ause the level of quality improvement ofa solution de
reases 
onsiderably in time. So, what su
h an appli
ation provides?The idea is to �nd qui
kly a slightly worse solution rather than �nd a better oneby waiting for a large amount of time.6 Con
lusionsIn this paper, we dis
ussed the 
rew assignment problem, a subproblem of the
rew s
heduling problem fa
ed by airline 
ompanies. We proposed a formulation



of it as a 
onstraint satisfa
tion problem and we dis
ussed the way we ta
kledit in a 
onstraint logi
 programming environment, namely the language PrologIV. The results we obtained on real world datasets were very satisfa
tory bothin quality of the solution and the exe
ution time. However, there is room forimprovements, sin
e the approa
h 
onsumes big amounts of memory, leading tothe requirement of very strong ma
hines in 
ase 
onsiderably larger datasets aregiven to the system.Referen
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