Noemon: Adding Intelligence to the Knowledge Discovery
Process

Kalousis Alexandros, Zarkadakis George. Theoharis Theoharis

Department of Informatjcs. University of Athens
2rad00584di uoa gr, gzarki@hol gr, theothco@di uoa gr * 0
' !
Abstract. In this paper an architecture is proposcd that supports the
sclection of task, modcl and algorithm in the knowledge discovery
process by utilising artificial intctligence techniques. The proposed
system acts as an assistant to the analyst by suggesting possible
sclections. It improves its data mining performance by obscrving the
analysis scquences applied by the analyst to new data scts The system
associates data characteristics with specific sclections that lead to
positive or negative results and uscs this infornation to guide later
analysis

1 Introduction

During the last decade people have become increasingly aware of the enormous flood
of information, which is challenging our data storage ‘capabilities; it is not uncommon
nowadays to have databases containing Gigabytes or even Terabytes of data. Some
examples of such databases come from the business arca e g databases from retailing
companies, stock exchange databases, or the scientific arca e g astronomy, genctics and
much more. The amount of information contained in such véry large databases (VLDB)
far exceeds the human processing and understanding capabilities, so a need has emerged
for systems which can aid humans in processing and understanding them The goal of
such systems is to acquire useful, valid and new knowledge from data The field of
Knowledge Discovery in Databases (KDD) trics to deive this goal A delinition of the
term KDD appears in {1 ayy96]:

“Knowledge discovery in databases is the non-tiivial process of identifying valid,

novel, potentially useful, and ultimately understandable patterns in data™
A critical teim in the above definition, is “process” KDD is a process consisting of

L Prepiocessing Drata Mining]

'\clemun lnu:ﬁnrmlmn

Evaluption/
Interprefation

Base B 8
-
Selected data I’repr()ccsscd lransformcd Pattern
data data

4

Knowledge]

Fig. 1. KDD Stages

235

236

several stages, requiring a high degree of analyst-system interaction In figute | [Fayy96]
an outline of the various stages of the process is shown

The stages of KDD comprise:
Selection, where the appropriate data needed for the goal at hand must be collected This
means that the analyst might have to gather data from various sources, perhaps convert
them into a common form, and then from this data set select the ones associated with the
goal at hand
Preprocessing where some basic operations on the data take place (e.g noise and missing
field handling), so that they will be ready for use by the algorithms
Transformation, where either, the data dimensionality is reduced in order to reduce the
size of search space, or the data representation is mapped to another space where the
solution is easier to find
Data Mining where the pattern finding is performed, and
Interpretation/ Evaluation, where the findings might be converted into a more
comprehensible form, as well as evaluated using criteria that have been established at the
beginning of the process

Of course the whole KDD process is iterative. Whenever the analyst is not content
with the results of evaluation or the results of an intermediate stage, he can return at
whatever stage he wants. Additionally cases may arise when the process does not evolve
in a specific time interval but has a long duration, with new data becoming available that
must be accounted for in the knowledge discovery process

The need for systems that support this highly complicated process in an intelligent
way, relieving the user from the routinely performed tasks, is obvious. The architecture
we propose herein aims to handle the Data Mining stage of the process in an intelligent
way

In the following section a description of the Data Mining process is given, with
empbhasis on the problem we are interested in and the existing approaches. Section 3 gives
a behavioural and functional description of the proposed architecture (NOEMON), and
section 4 presents our conclusions and proposed future work

2 The Need for an Intelligent Assistant

2.1 The Data Mining Stage of the KDD Process

As discussed in the previous section, the KDD process consists of a number of stages
with the analyst having to perform various actions during the process. A description of the
Data Mining stage, the stage we are mostly interested in, is given in this section

Figure 2 presents the steps which, an analyst must follow in order to complete the
Data Mining stage. Note that one can conveniently view the various tasks, models and
algorithms involved in Data Mining on a 3 level tree architecture

Firstly, it is the Task Selection step, during which the Data Mining Task must be
established, based on the problem at hand. The analyst must decide what form of
knowledge he is looking for, which in turn will determine the data-mining task. For
example, if rules that describe known classes are needed, then we have a classification

W

15

task: if data are scarched fin unknown classes we have a clustering task; if dependencies
between attiibutes are searched for we have dependency derivation task
Let us suppose that the analyst wishes to perform the classification task Then during
the AModel Sclection step, from the various existing models that can accomplish the
chosen task, the one that better fits with the data morphology zmd the analyst
?)c analyst is the
understandability of the results, he can choose a decision tree model or a rule model

. _ . .
requirements, must be selected. For example, if the main concern of

The next step is Algorithm Selection. The algorithm that provides the best fit of the
chosen model to the data is sclected, by considering the data morphology. For example if
the analyst had chosen decision tree modelling and the classes’ boundaries are orthogonal
to the axes he can select the ¢4 5 algorithm [Quin93] 1f the classes’ boundaries are not
orthogonal to the axes he can select OC [Murt®4] or LMDT [Brod95] If the data contain
noise or missing values then an algorithm that can handle these situations must be
selected

‘The next step might be the conversion of data in a form that the selected algorithm can
handle (Data Preparation), e g discretization of continuous attributes in casc the
algorithm handles only categorical attributes: fit the model to the data by applying the
algorithm (Paramcter Fitting), evaluate the resulls (Evaluation) and if he considers they
need refinement, return to a previous step of the process or else exit

2.2 State of the art

There ate today a variety of systems offering various models and algorithms (known
as multi strategy learning systems) for petrforming the data mining part of the KDD
process, ¢ g MLC#H+ [Koha96), Explora [Klos93) and DBMiner [Han96] The basic
motivation in providing multiple models and algorithms stems from the nced for the
system to serve different learning goals (i e. find different forms of knowledge from the
data) and to be able to handle data of various morphologies It has been shown
experimentally that each algorithm a selective superiority, ie it is best for some but not
all tasks [Brod93], [Wolp92], [Scha94] Most systems that comprise a variety of models
and algorithms provide little or no guidance as to which one to choose, based on the
problem and the data-at-hand. The analyst must consider a variety of factors before
deciding which model or algorithm to apply A good description of the various factors
implicated in the model and algorithm selection for the classification task can be found in
[Brod97] .

The architecture we propose provides support for the first three selection steps ie
Task Selection, Model Selection and Algorithm Selection. There have been efforts to
cope with this problem mainly fiom the machine learning community. In [Gord95] a
framework is proposed for handling the bias selection problem (representational bias and
procedural or algorithmic bias), that corresponds to model and algorithm selection
Rendell [Rend87] proposes a similar approach that dynamically selects a representational
model and an algorithm to apply for mode! generation, based on data characteristics. They
have implemented a system to test that model called VBMS. Provost [Prov95] proposed a
model for selecting inductive bias of various categories. They built a system called SBS

T

=

I

238

Task Selection

={ Model Selection * |

+
-;1[Algorithm Selection * l

- Algorithm
, Application

| Data Preparation

!

[Parameter litting l

r

|?va|ulalim! l

Y

Fig. 2. A description of the steps which an analyst must perform in order to
complcte the Data Mining stage of thc KDD process. The asterisk (*)
represents the points where NOEMON will provide assistance to the analyst,

that performed inductive bias selection as a search in the bias space; the main problem of
the approach is the high computational expense of the search. In [Brod93] a system called
MCS (Model Class Selection) was developed, using rules derived from experts for the
automatic selection of a model. The main disadvantage of this approach is that the system
can not easily incorporate new models and methods, since the rules were created after
thorough experimentation by experts and inserted manually in the system In [Gama95] a
model was built for automatic selection of the best classification algorithm, based on data
morphology. Various algorithms were tested on a number of databases and attempts weie
made to correlate the results of each algorithm with the characteristics of the data In
[Scha93] cross validation was used in order to select the best algorithm Good results
were exhibited but the method is computationally intensive. Another system called AIDE
[Aman97] came from the area of exploratory data analysis. In AIDE planning techniques
were used in order to provide exploratory data analysis, with strategic abilities, ie

guidance to the analyst for the selection of the appropriate next step. The disadvantage of
this approach is the difficulty involved in incorporating new models or algorithms, since
an expert must create new plans in order to handle them

239

Having examined the various paradigms one may distinguish systems that support the
selection of a model/algorithm into three categorics based, on the autonomy they exhibit:

o [ully automated systems where the system selects itself the method to apply. Gama
[Gama95] is following this approacp. but with poor results Broodley [Brod93} and
Provost [Prov95] are also following the samie approach 2 .

o Mixed-Initiative systems where analyst and system cooperate in order {o select the
appropriate method AIDE follows this approach

o Ulser guided systems where the system provides a selection of models and algorithms
and the user has the responsibility of selecting the appropriate one in each case
In our proposal, we believe that a system functioning not completely autonomously

but in close collaboration with the analyst, is the best approach in order to add

inteltigence in the KDD process Such a system would exploit the merits of intelligent
decision-support preserving user action integrity

Let us bricfly examine what such a system would do During Task Selection, the
system should provide hints as to what task is more promising, based on data

characteristics During Model Selection the system should help the analyst select a

specific type of model; for example if the analyst cliose to perform classification he could

use several types of models such as decision trees, nearest neighbours, neural nets etc

Finally during Algorithm Selection, the system should help the user select the appropriate

algorithm for model generation For example, if the analyst chose a decision tree model

there is a variety of methods for building it (c4 5, OC1, ID3, LMDT etc). The one that
best fits the data should be selected Finally the system should allow easy incorporation of
new models and algorithms, without the need of reprogramming

3 Architecture description

We propose a mixed initiative system which will act as an assistant to the whole
process, by being partially autonomous and -at the same time- respond to user guidance
throughout the process For instance a high level command from the user should trigger
the system to make learncd suggestions on which strategy to follow, which method to
select in order to implement the chosen strategy, which should be the next steps to apply,
based on the current results, and so on The system should also be able to adapt the course

Learning | PMoblem solving
gomponent - component
— - -

7

N >,
=

K rm;in'd[-v
Base

Fig. 3. High level description of the architecture

T

240

of its action based on the user’s guidance, as well as previous “user history™, i e. averaged
user behaviour patterns from previous sessions. In actual fact the system will be able to
learn from the user, by observing how he reacts in specific cases, and take similar actions
when similar cases arise (learn by example)

The proposed architecture has two components: the learning component and the
problem-solving component (figure 3). The problem-solving component performs the
actual data analysis and applies models and algorithms in cooperation with the analyst,
using knowledge from a knowledge base. The learning component observes the problen-
solving component, where analyst and system interact performing the data analysis, and
composes new rules. The learning component is therefore used to improve the
performance of the problem-solving component

In the following subsections a description of our system will be given based on the
framework that was proposed by Plaza [Plaz93], in order to describe systems that
integrate learning into their architecture. Two levels of description will be given:

o Behavioural description: a description of what the system does, i.e. how the system
behaves when we observe its operation.

o Functional description: this is the actual architecture of the system, and corresponds
to a description of ow the system does what it does. An explanation is given as to
how the system achieves its goals through its knowledge and methods, by means of
the specific functions it executes,

3.1 Behavioural description
The system’s behavioural description is given in figure 4, by means of a state

transition diagram. Boxes represent the various states of the system, arrows represent

state transitions and comments on arrows state the event that causes a transition

At each state there is high interaction between analyst and system. Whatever decisions

the system takes are presented to the analyst for approval. He can accept the system’s

suggestions, ask for an alternative or guide the system explicitly. At each of the three
selection states (Task Selection, Model Selection and Algorithm Selection) the analyst
can perform the following actions:

1) Ask for suggestion: The analyst allows the system to suggest the next step of the
analysis. The system comes up with a suggestion and presents it to him. He then has
the following options:

a) Alternative: The system’s suggestion does not satisfly him, so he asks for an
alternative. The system proposes one, which is again subjected to the analyst for
approval.

b) Accept: The analyst approves system’s suggestion and the system proceeds to the
next state

¢) Go back: The analyst is not satisfied with the current state of analysis and
commands the system to go back to a previous state and repeat the process.

2) Specify a selection: The analyst selects a specific task, model or algorithm. The
system accepts that selection and continues to the next state.

24

The last state of the transition-state diagram is Algorithm Exccution Here the selected
algorithm is applied and a model is generated. The analyst evaluates the results and has
the following options:

a) Accept: The analyst is satisfied with the results of the algorithm and the process ends

successfully here. K .
b) Go hack: The evaluation results are poor, indicating a peor selection of movial or task

(e.g patterns of the form we seck caiinot be found in our data) or algorithm. The

analyst can return 1o a previous selection state

—

< i —— B| Task Selection]2
. T _
§ Accept Tas_li] e Accept Task-N _;
- o
C Alternative Alternative &
e : + - l ¥ "
& Maodel Selection | | Model Selection h: dis
o= - s a
g T ; T :
=B ' L
I Accept Model-1 ~ Alternative Alternative Accepl Model-1
¥ RS S
"[Algorithm Selection _‘ Algoril.fun Selection I‘ |
¥ 11 [T1 %
& Accept Accept E
cg 1..Q Algorithm -Q Algorithm-1 1. M 2
S| - 3 3 G
18 [Algotithm Execution ‘ ulgorilhnl Execution
Accept Accepl

| | Process |

Fig. 4. State Transition Diagram of NOEMON depicting the behavioral description of the systcm

The system keeps & log of all interactions with the analyst, at every state of the
process. This log is in fact a graph that describes the sequence of events and actions that
took place. The graph is used by the learning component in order to improve the system'’s
performance, as described in the following section

3.2 Functional Description
The system architecture, which implements the behavioural description given in the
previous section, is presented here. Figure S shows the major components of the system

r
-

242

The system receives the user requirements and at the same time extracts some
characteristic measures from the data This information is then used to sclect a task,
model and algorithm that appears most promising; the KB rules are applied for this
purpose The selection is then presented to the analyst, who can either approve or reject it
as was shown in the previous section. The functional components of the system are
described bellow

3.2.1 HCI (Human Computer Interaction)
This component handles all system-analyst interactions It gathers the analyst's

requirements for the DM process and its results (e g process speed, result accuracy,
comprehensibility of the final model) These, along with data characteristics gathered
from the CE (Characteristics Extraction) component, will be used in the various
selections At each selection state, it presents to the analyst the system’s suggestion for
the next analysis step. The results of those interactions are sent to the DEC (DECision)
component. HCI presents the results of algorithm application to the analyst, who
evaluates them and interactively indicates whether he is satisfied with the results or not
This information is passed on to the DEC component,

3.2.2 DEC (DECision)
The DEC component performs the actual problem solving Its main function is the

selection of the next step in the analysis process. DEC sends next step suggestions (o the
analyst via HCL If the analyst approves a suggestion the analysis proceeds to the next
level, or if we are at the algorithm selection level, the actual algorithm is executed This is
done by sending a message to the Algorithms component, which is then responsible for
the actual algorithm execution.

In making suggestions, the DEC component uses two kinds of input. One is analyst
input, describing the analyst’s requirements. The other input comes from data itself and
consists of measures that describe the nature of the data. These measures are:

Attribute nature (continuous, ordinal, nominal)

Number of attributes

Size of sample

Ratio of the above two quantities

Number of classes (on classification task)

Form of class variable (on classification task)

Noise

Attribute correlation

Dependency Indications

Statistical, Informational and Entropy measures. .

DEC searches the KB in order to find the rules that best match the input at hand. It
may be the case that more than one rule applies to the current situation DEC chooses the
rule with the greater belief value; the other rules are stored, in case the analyst rejects that
selection or decides at some later step of the analysis to return and get an alternative
suggestion

213

3.2.3 CE (Characteristics Extraction)

This component is respensible fr the extraction of measutements that deseribe the
data morphology These measurements are calcutated when the analyst specifies the pait
of the database on which he wants the analysis to take place The results are sent to the
DEC component where they will be uded as described above The measurenjents that are

computed are mentioned in the DEC component description {
I'nsk Selection T‘l
Rules Hel —
2 ———
o el
Model ot { Learning —1Problem Solving i
Selection 3 ! Component : DEC [Component H
. = : o - '
Rules 8] T o e i
2 | B £ i
: =1 —1 @ !
Algorithm sl 5 B 1% ;
Selection Pl :
Rules i
Het Human Computer Interaction
DEC DICision
EER Characteristics Extraction
Alporithms Algorithms Library :

Fig. 5. Functional Description of the System

3.2.4 Algorithms Library
This is responsible for the execution of the algorithms. It receives instructions from

the DEC component as to which algorithm to exccute on what data It executes the
algorithin and sends the results to the HCI for user evaluation

3.2.5 Learning Component
This companent is responsible for improving the performance of the problem solving

part It continuouslys observes system-analyst interaction and attempts to introduce new
rules which will lead to more successful analysis. or rules that recognise when a certain
kind of analysis will not be successful. It consists of two parts. An agent called Observer
that gathers data from system-analyst interactions and a component called Learner that is
responsible for knowledge acquisition fiom the information that the Observer gathers
3251 Observer

As mentioned above this component is actually an agent that aeates a log of system
events I records all analyst-system interactions, all the suggestions that the system

«. presents to the analyst and his seactions to those supgestions It notes when the paths

b

Sl 2 is e #

" Rt

&P

244

Task Selection

Q' : l\ L\ Madel Selection
e
O/O U Algorithin Selection
Fig. 6. An examplc of a graph depicting analyst-systcm interaction. The descendants
of a node are all the possible sclections. The children of a node are sorted by their
degree of belief. The left child of a node is thercforc the system’s suggestion

Armrows indicate the path that the analysis follows Dotted lincs indicale new
sclections, specified by the analyst

taken lead to failure and how the analyst overcomes this situation. It also notes the paths
that lead to successful analysis. All this information is recorded using graph data
structures

The graph consists of three levels, each one corresponding to a selection state The
nodes of each level are the system’s suggestions and the alternatives. If the analyst makes
a selection which is not one of the system proposed options, a new node is added to the
graph (dotted edges) At any point in the analysis, the path followed so far is indicated by
arrow headed edges. When a node is selected, links are created to descendant nodes,
which describe all possible alternatives at the next level. Arrow headed edges from nodes
to nodes of a previous level indicate backtracking
3.2.5.2 Learner

The Learner uses the graph constructed by the observer, in order to find situations that
lead to successful analysis (corresponding to positive examples), but also situations that
lead to failures (negative examples). It must be noted here that the existence of failures is
as important as the existence of successes. Based on this, the learner updates the rules of
the KB

When certain decisions are made on regular basis, under specific analyst requirements
and data characteristics, rules can be created to associate those characteristics with the
decisions taken If the application of a rules leads to successful analysis its belief value is
increased. Situations where the analyst selects a different next step from the one the
system proposes are also exploited; in this case the belief value of the rule that the system
proposed remains the same, and a new rule is created describing the action taken The
only case that the belief value of a rule is decreased is when its application produces
different results than the ones expected (i.e failure instead of success of analysis). The
degree of belief of a rule is actually the percentage of times that the rule was successflully
used, (i e #successful applications / #total applications)

3.2.6 Knowledge Base (KB)
KB provides the information for the successful guidance of the analysis process. The

rules it contains can be divided into three categories: Task Selection, Model Selection and

v

Algorithm Selection rules:

phase

cach category is applicable to the conesponding analysis

T'ask Selcction 1ules use data indicators {cg attribute correlation, attribute
(lcpcndcnclcs indications) to suggest a task

Rule
Rule
Rule

Rule

Rule
Rule

Rule

Rule

Rule

Rule

Rule

TASK SELECTION LEVEL

MODEL SELECTION LEVEL

ALGORITHM SELECTION LEVEL.

If correlation between variables

Suggest REGRESSION

[dependecy_indication Suggest DEPENDENCY DERIVATION
Ifuser asks prediction of variable X and X continuous

Suggest REGRESSION

Else Suggest CLASSIFICATION

- If user knows the classes

Suggest CLASSIFICATION

Else suggest CLUSTERING

: Ilinstances linear scparable suggest a linear fit
“Ifnum_of instances <« 2*num_of attiibutes

Suggest DESICION_TREES or NE ARFSI NEIG
Else

Suggest LINEAR FIT

- Ifirellevant attributes

Suggest DESICION TREES

1f concept_form continuous
Suggest LINEAR REGRESSION
- I understandability

Suggest DECISION_TREES

“If num_of instances < K and
prototypes per class > 5 5 sugpest X algo
Il cost < K and entropy_of _attributes < L. suggest S algo

Fig. 7. Exanples of Knowledge Base rules

Muodel Selection rules deseribe which madels are associated with the sclected task and

which are the most promising in the current situation based on data morphology, user
requirements and other paranicters

Finally, Algorithm Selection rules associate algorithms with specific models and
describe the situations (data morphology and user requirements) under which a specific

algorithm is better than others which implement the selected model. In figure 7 we can
see how such a KB would look like.

246

Each rule is associated with a degree of belief that derives from the percentage of
times that the rule performed correctly. This degree of belief changes as the analyst uses
the system and the system improves its knowledge, increasing when the rule is
successfully applied and decreasing when it is unsuccessfully applied

A question that naturally arises is how the initial form of the KB is created, so that the
analyst will not have to wait for the system to be trained; moreover, by what means one
may initially acquire knowledge associated with new models and algorithms. The goal
here is to reduce as much as possible the need for an expert who will insert the rules
manually to the KB of the system. Some of the initial rules will be entered in the KB by
the system developers However, a non-expert user should be able to insert new models or
algorithms without difficulties. Let us now see how new rules may be generated (figure

L

Task Selection |;||{'[_I,_.._
Rules | WS

Maodlel Selection
Rules

Knowledge Base

Algorithm 4_ Yl
[;‘\In{\uthumJ

Selection Rules
ey

Test Data Bases

Fig. 8. Functional description of Rule Generator

Task Selection nules are inserted during the development phase. As new tasks will not
be inserted anymore (i.e. they are fixed), the analyst need not be concerned with this type
of rule

A new Model Selection rule is inserted along with every model introduced to the
system, associating the model with a specific task. At the beginning, the system will not
be able to efficiently handle the new model, but this will change in the course of time,
once the system builds new rules that guide the model’s application

W

247

Similarly, a new Algorithm Selection rule is inserted for every algorithm introduced
to the system, associating the algorithm with a specific model The Rule Generator
component of the system will build a set of initial rules that will guide the application of
the specific algorithm based on the_work of Gama [Gama95]. The system will have at its
disposal a collection of test databases, each one having characteristic dhta morphiology.
The new algorithm will be applied to those databases and the results will be evaluated by
the system Using the morphology of the test databases and the evaluation results, the
system produces the initial set of rules, which will associate the data morphology with the
algorithm performance. Of course, this set of rules will be refined in the course of time, as
the algorithm is applied to new data sets and new knowledge becomes available It must
be noted here that the selection of the test databases is crucial for the construction of the
rules that will initially guide the application of the new algorithms. In order for the system
to be able to propose analysis steps for various data morphologies the set of test data
bases must contain as many diverse morphologies as possible. That way the rules
produced for each new algorithm will be more general

The analyst can also form his own sct of test data bases, from data bases used in past
analysis sequences: the rule generator performs the initial training on this test set. Apart
from that, he can guide the training of the system by presenting it with past analysis cases,
taking care to present not only successful but also unsuccessful ones
4 Conclusions

This paper presented “Noemon”, an architecture for the support of task, model and
algotithm selection in the KDD process Previous approaches with similar goals are either
static (ie they can not incorporate new models or algorithms unless they were
reprogramimed), or, in the case of dynamic approaches, they either exhibit poor results or
are computationally intensive We propose an architecture that can incorporate new
models and algorithms and learn to use them efficiently in the course of time, by
observing the cases where the new models and algorithms seem to peiform best However
it must be noted that this architecture learns to handle better the data morphologies that
the analyst works more often with 1t also tends to adapt to the analyst's personal
preferences

Future work on “Noemon™ will include the implementation of the automatic creation
of the initial rules that guide the application of a newly inserted mode! or algorithm, as
well as the implementation of the Learning Component. We will first focus our effort to
models and algorithms that are used for the classification task. We plan to develop a
matrix-laced structure of co-operating intelligent agents that will support the functionality
described above

Acknowledgements
The authors would like to acknowledge financial support from the Greek General Secretariat for
Rescarch & Technology (ITIENEA 28)

248

References

[Aman97) Amant RS, Cohen P R, 1997 Interaction With a Mixed Initiative System
for Exploratory Data Analysis In proceedings of the Third International
Conference on Intelligent User Interfaces, pp 15-22

[Brod93] Brodley C. E, Utgoff P. E, 1993 Addressing the selective superiority problem
Automatic algorithm/mode! class selection In proceedings of the Tenth
International Conference on Machine Learning, Amherst, pp 17-24

[Brod95] Brodley C. E, Utgoff P. E, 1995 Multivariate Decision Trees Machine
Learning vol. 19

[Brod97) Brodley C., Smyth P, 1997 Applying Classification Algorithms in Practice To
appear in Statistics and Computing

[Fayy96] Fayyad UM, Piatetsky-Shapiro G, Smyth P, 1996. From Data Mining to
Knowledge Discovery: An Overview In Advances in Knowledge Discovery
and Data Mining, pp 1-34. (eds) Fayyad UM, Piatetsky-Shapiro G, Smyth P
Uthurusamy. AAALI Press/MIT Press

[Gama95) Gama J., Brazdil P., 1995. Characterization of Classification Algorithms In
proceedings of Progress in Al, 7th Portugese Conference in Al, EPIA 95 pp 83-
102. (eds) Pinto Fereira C., Mamede N, Springer Verlag

[Gord95]) Gordon F.G., deslardin M, 1995, Evaluation and Selection of Biases in
Machine Learning. Machine Learning 20: 5-22

[Han96] Han J., Fu Y., Wang W, Chiang J., Gong W, Koperski K., Li D, Lu Y, Rajan
A., Stefanovic N, Xia B, Zaiane O .R. 1996, DBMiner: A System for Mining
Knowledge in Large Relational Databases. In proceedings of International
Conference on Data Mining and Knowledge Discovery (KDD 96), pp 250-255,
Portland, Oregon

[Klos93] Klosgen W., 1993. Problems for KDD and their treatment in Statistics
Interpreter Explora. In International Journal of Intelligent Systems 7(7):649-
673

[Koha96] Kohavi R, 1996 Data Mining using MLC++ a Machine Learning Library in
C++. In Tools with Al 1996

[Murt94] Murthy S. K, Kasif S, Salzberg S., 1994. A system form Induction of Obllique
Decision Trees. Journal of Artificial Intelligence Research 2:1-32

[P1az93] Plaza E, Aamodt A, Ram A, van de Velde W, van Someren M. 1993
Integrated Learning Architectures In Lecture Notes In Al, pp 429-441
Springer 667

[Prov95] Provost F. J., Buchanan B, G, 1995 Inductive Policy: The pragmatics of bias
sclection Machine Learning 20:35-61

[Quin93] Quinlan J. R, 1993. C4.5 Programs For Machine Learning. Morgan Kaufiman

[Rend87] Rendell L., Seshu R, Tcheng D, 1987 Layered Concept Learning and
Dynamically Variable Bias Management. In proceedings of the Tenth
International Joint Conference on Artificial Intelligence "87, pp 308-314.

[Scha93] Schaffer C., 1993. Selecting a classification method by cross-validation
Machine Learning 13:135-143

249

[Scha94] Schaffer €. 1999 A conservation law for gencralization performance In
proceedings of the Eleventh International Conference on Machine Learning, pp
198-202 Morgan Kaufinan Publishers, San Matco, CA

[Wolp92] Wolpert S, 1992 On the connection between ir'1 sample testing and
generalization error (‘mnplc;\ Systems 6:47-94 "

