
PARALLEL RAY TRACING WITH 5D ADAPTIVE SUBDIVISION

G. Simiakakis
Harokopio University

Athens, 176 71
Greece

gsimiak@hua.gr

Th. Theoharis
Department of Informatics

University of Athens
Panepistimiopolis 157 71

Greece
theotheo@di.uoa.gr

A. M. Day
School of Information Systems

University of East Anglia
Norwich NR4 7TJ

England
amd@sys.uea.ac.uk

ABSTRACT

We present strategies for parallelising ray tracing based on 5D adaptive subdivision. Our goals are to
obtain good speed-up and to efficiently balance the load between the processors while minimising the
required memory per processor inherently large in 5D subdivision. First, loosely coupled strategies are
presented, which are ideal for implementation on clusters of workstations, the most commonly used form
of parallel processing nowadays. Then we consider a tightly coupled algorithm ideal for multiprocessors
with fast interconnection network or shared memory. Finally, results on a cluster of workstations are
presented and discussed.

Keywords: ray tracing, directional subdivision, ray classification, adaptive subdivision, parallel
processing, distributed processing

1. INTRODUCTION

Ray tracing is a popular rendering method for
realistic image synthesis. It is renowned for
rendering reflections, refractions, shadows and has
many applications. One of the major research areas
in ray tracing is the acceleration of the brute-force
algorithm which is extremely slow. Many sequential
methods have been developed, including bounding
volume hierarchies [Rubin80, Kay86], spatial
subdivision [Glasn84, Fujim86, Kapla87, Devil89,
Woo92], hybrid methods [Klima97] and directional
subdivision methods [Haine86, Ohta87, Arvo87,
Speer92, Simia94]. Furthermore, several parallel
algorithms have been proposed. Some of them were
never actually implemented or were only simulated
in sequential systems, which makes their comparison
difficult. All parallel methods were based on a
bounding volume hierarchy, space subdivision
method or even the brute-force algorithm, but none
was based on directional subdivision.

Problems that were usually addressed are memory
restrictions which lead to distributing the scene
amongst the processors, and load balancing which
can be difficult to achieve because of this
distribution. The communication overhead was
sometimes ignored. As the area of parallel
processing changes, and as distributed processing
becomes more widespread, the original significance

of these problems constantly changes. Of course,
load balancing is always desired. However, memory
restrictions become increasingly relaxed while the
communication overhead becomes more significant
as the performance of processors rockets up. We
propose a parallel ray tracing algorithm based on 5D
adaptive subdivision (FAS) [Simia94] which is
suitable for distributed processing on heterogeneous
clusters of workstations.

In the next two subsections we look briefly at
previous work in parallel ray tracing and directional
methods with emphasis on FAS. In section 2 we
present the loosely coupled parallel FAS (PAFAS),
and in section 3 the tightly coupled. In section 4 we
present and discuss our results. Finally, section 5 is
dedicated to the conclusions.

1.1. Parallel ray tracing: previous work

Some of the existing methods duplicate the entire
scene to all processors, resulting in non data-flow
algorithms [Bouvi85, Narus87], each processor
executing essentially a sequential ray tracer. We
shall see the advantages and disadvantages of this
strategy in section 2. On the other hand, there are
plenty of methods which distribute the objects
amongst the processors. Of these, some use ray-flow
(rays are passed to the processors which hold the
primitives they have to be intersected with) and

some object-flow [Green90, Badou90]. The latter
use a shared virtual memory model. Objects are sent
to a processor when they are needed to perform ray-
object intersections and they do not reside in the
local memory. The efficiency of this approach
largely depends on the percentage of the scene
description that can be stored in the processors'
cache. A simpler algorithm can derive from the use
of a shared memory multiprocessor [Parke99].

The former category, which uses data oriented
parallelisation, includes BV hierarchies [Salmo88,
Caspa89] and spatial subdivision algorithms
[Clear86, Dippe84, Nemot86, Caube88, Priol89,
Isler91, Kim96], which are prone to big
communication overheads and/or load balancing
problems. The algorithm described in section 3 falls
into this category.

1.2. Directional methods and FAS

The first directional method comes from Haines and
Greenberg [Haine86]. They invented the light
buffer, a 2D directional method restricted to
speeding up shadow rays for point light sources.
They introduced the direction cube which is widely
used in directional methods to define the ray
direction. Other directional approaches were
attempted by Ohta and Maekawa [Ohta87] (for
spheres or sphere-bounded primitives), by Arvo and
Kirk [Arvo87] and by Speer [Speer92]. The latter
does not seem to provide a sufficiently good
intersection culling function for general scenes.

Projection of a 5D beam on x-y plane
Figure 1

Five-dimensional adaptive subdivision [Simia94]
(FAS) is based on Ray Classification [Arvo97]. FAS
improves on the shortcomings of Ray Classification
reported by Speer [Speer92]. A brief description of
the algorithm follows. The three dimensions of
space together with two dimensions for the ray
direction constitute a 5D space, which is the domain
of all possible rays. A ray is defined by its origin and
direction. The origin is given in the form of a 3D
point in space, and the direction as two co-ordinates
on one of the six faces of the direction cube. With

the exception of eye rays, all rays are emitted from
the point of intersection of a ray and an object. If
there are no unbounded objects in the scene, all
these points are inside the scene bounding box, so
we can limit the spatial dimensions of the ray
domain to that box. Rays emitted outside the scene
bounding box are intersected with it. If they hit, their
origins are translated to the point of intersection
before being classified in 5D. Of course, all possible
directions have to be included in the ray domain.

The algorithm adaptively subdivides (using lazy
subdivision) the ray domain into 5D hypercubes and
associates a candidate set of objects with each
hypercube. A 5D hypercube in space is a polygonal
beam starting at an axis-aligned box and surrounded
by at most 6 infinite planes. The candidate set of a
hypercube is the set of all objects whose bounding
boxes intersect the beam. To intersect a ray with the
scene objects we have to classify it to one of the
hypercubes, and then intersect it with the objects of
the associated candidate set. Subdivision and
candidate set creation are done only on demand. The
subdivision criteria are adaptively tuned to the scene
during ray tracing. The algorithm incorporates a
number of other features such as caching, backface
culling, and candidate set truncation which improve
its efficiency further. For a more detailed description
see [Simia94].

2. LOOSELY COUPLED PAFAS:
DISTRIBUTING THE IMAGE PLAIN

A straightforward strategy to parallelise ray tracing
is to duplicate the entire scene description on all
processors and distribute the image plane between
them. A master processor sends pieces of the image
plane to the slaves, collects the returned pixels and
composes the final image [Chalm96]. The slave
process can be easily derived from the sequential
version of the ray tracer. If we suppose that the
pixels are independent of each other, there is no
need for communication between the slaves.
Problems might arise if we want to use some kind of
adaptive or progressive sampling like in [Notki97].
In this case the solution is to let the master handle
the sampling and reconstruction of the image.

The advantages of this strategy are significant:
• minimal communication overhead
• dynamic load balancing is easy (as the master

can send pieces of the image plane on demand
to the slaves)

• it is suitable for a multiprocessor as well as a
cluster of connected multi-user workstations

• deadlocks are not a problem, and even processor
crashes can be handled gracefully

• it is easy to implement, which is why it is surely
the most widely used strategy

Xmin Xmax
Ymin

Ymax

Umin

Umax

Ray (x, y, z, u, v)

X+ (primary beam axis)

However, the disadvantages should not be ignored:
• the amount of memory needed per processor can

be prohibitive in the case of very complex
scenes.

• geometrical sorting of all objects (like space
subdivision, some kinds of directional
subdivision, etc.) needs to be done on all slaves,
thus is not parallelisable. This might happen
during pre-processing or during the ray tracing
phase as is the case with FAS.

The most important restriction of this approach is
the memory per processor. If we have enough
memory per processor for the scenes that we want to
render, this strategy is the best. If not, it is simply
not applicable. Of course, the required memory
depends on the sequential acceleration method that
is going to be used. Apart from the geometric and
other properties of the objects we need to store the
data structures used by the acceleration method.
These can be significantly large in the case of spatial
subdivision and much more in the case of directional
subdivision.

In the case of spatial subdivision the same grid or
octree is created on each slave. The significance of
the cost of creating this subdivision compared to the
ray tracing time, depends on the scene and the
number of processors. For a large number of
processors it might be that the pre-processing time
becomes comparable with the actual ray tracing
time.

The key to efficiency in parallelising FAS is that
subdivision is done on demand. Only the parts of the
hyper-trees that are needed to trace the rays
allocated to a particular slave will be created on that
slave. Thus different parts of the trees will be
created on different slaves, and consequently and
most importantly not all tree paths that were needed
in the sequential FAS will be needed on each slave.
Obviously the parts of the hyper-trees created on a
slave will not be disjoint from the parts created on
the other slaves. Minimising the amount of overlap
is important in order to improve the speed-up, and
this is essentially what we will attempt in the rest of
this paper.

According to the principle of ray coherence, rays
that are close to each other (have similar origins and
directions) are likely to classify to the same leaf of
the 5D hyper-trees, and more importantly rays that
differ significantly in origin or direction are very
unlikely to classify to the same leaf. The principle
can be extended to whole ray trees, so that
neighbouring pixels will require similar sets of
leaves, whereas faraway pixels require almost
disjoint sets. This principle holds for the leaves of
the hyper-trees, but gradually weakens for higher

levels in the trees, which is why the 5D trees on
different slaves cannot be completely disjoint.
It is obvious that the required memory and the
workload on a slave are connected properties. The
more rays a slave has to trace, the more 5D beams it
will need to generate. Of course, the relationship
between the two is not constant since some beams
might be used for many more rays than others. The
tuning of the subdivision parameters is done locally
on each slave according to its own statistics, so that
it is possible for different slaves to create hyper-trees
of different depths. This way the algorithm can adapt
the subdivision better to the scene than sequential
FAS can. In the strategies that follow we address the
workload balance, and monitor how the memory
requirements change with an increasing number of
processors.

2.1. Scan lines in round robin

The easiest way to subdivide the image plane is to
divide the number of scan lines by the number of
slaves and send this number of scan lines to each
slave. In order to experiment with static load
balancing on a cluster of dedicated workstations, we
implemented a version where a scan line S is sent to
slave n if and only if S mod N = n where N is the
total number of slaves. This way the image plane
coherence is compromised to achieve static load
balancing.

2.2. Using image coherence: bands of scan lines

Using the image distribution in section 2.1. with a
spatial subdivision based ray tracer would be good
enough, since little attempt to take advantage of
image or ray coherence would be made. The only
improvements that are necessary are dynamic load
balancing and the control of the task granularity
depending on the number of processors. However,
ignoring the ray coherence in the case of FAS will
lead to a significant overlap in the hyper-trees on
different slaves. These trees require memory to be
stored and take time to be created, so we have to
investigate how to minimise the overlap by
distributing the image plane differently.

Sending equally-sized bands of adjacent scan lines
to each slave will take more advantage of ray
coherence, but will cause havoc with the load
balancing. So instead we are going to encourage
slaves to render adjacent scan lines, unless the load
becomes unbalanced, in which case we allow them
to render other scan lines as well. The following
strategy works well with a number of slaves at least
one order of magnitude less that the number of scan
lines. Each slave is initially allocated two adjacent
scan lines. These initial `small bands' are spaced out
evenly over the image, with the first slave getting
the two first scan lines and the last slave getting the

last two scan lines. When a slave has finished
rendering the first scan line it sends it to the master
together with a request for more work. The master
keeps track of the bands already sent and assigns to
the slave the two scan lines that have not already
been allocated and that are the closest to the ones
already rendered by that slave.

If the scene is completely uniform each slave will
end up rendering a band of adjacent scan lines, but
usually scan lines around the more complex areas of
the scene (quite often around the centre) will be
rendered by various slaves. A disadvantage of this
approach is that the most complicated areas will be
rendered last. This might lead to a long delay for the
last two scan lines from one slave while all the
others have finished. The advantages of this strategy
are the dynamic load balancing and its ability to take
advantage of ray coherence in order to reduce the
amount of hyper-tree duplication.

2.3. Distributing blocks of pixels

A scan line is a region with a relatively long border
(2p+2 for p horizontal pixels) and containing a
relatively small area (just p). It is possible that by
using rectangular blocks to split up the image we
will make better use of image coherence and thus of
ray coherence. A rectangular block of r by s pixels
has a border of length 2(r+s) and an area of r*s. Of
course, rendering a number of adjacent scan lines or
blocks on the same slave eliminates their ‘internal
borders’ which reduces the difference between the
two methods in the case when the load is quite
balanced. However if we manage to keep the regions
made up of blocks compact, the gain will be
significant when the load is unevenly balanced.

The block distribution is done in the following way.

The master subdivides the image into n2 blocks and
selects a starting block for each slave as we shall
describe later. It then sends the starting blocks to the
slaves and waits for the results. When a result
arrives from a slave, it is sent another non-rendered
block which is close to the slave's starting block.
This can be done by checking a table of block
indicators in a ring-like pattern with the starting
block as the centre. In fig. 2 we see the first few
rings of the pattern we used. The maximum needed
diameter of the pattern has to be √2 to include the
whole image starting from any block, but in practice
a much smaller region will be needed when many
slaves are available.

48 44 36 29 35 43 47
40 24 20 13 19 23 39
32 16 8 5 7 15 31
26 10 2 1 3 11 27
30 14 6 4 9 17 33
38 22 18 12 21 25 41
46 42 34 28 37 45 49

The block tiling pattern. The numbers indicate
the order in which the blocks are rendered

(with the starting block in the center)
Figure 2

To reduce the number of messages, and thus the
communication overhead, more than one block can
be grouped together in one message. The slave
returns the results when it has finished all but the
last block, thus reducing its idle time. The grouping
can be bigger at the beginning but has to be reduced
towards the end-phase of the rendering to make sure
that we do not wait for the few slaves that received
too much work too late (dynamic control of task
granularity).

----------------////////////////
---------------/////////////////
---------------/////////////////
----------------////////////////
----2-----------///////////1////
----------------////////////////
----------------////////////////
----------------////////////////
----------------////////////////
---------------/////////////////
---------------/////////////////
----------------////////////////
---------------/////////////////
---------------/////////////////
----------------////////////////
----------------////////////////
--------------//////////////////
-----------//////###############
----------//////################
--++++++--//////################
++++++++++++///#################
++++++++++++//##################
++++++++++++-/##################
++++++++++++####################
+++++++++++++###################
+++++++++++++###################
+++++++++++++###################
++++3++++++++##############4####
+++++++++++++###################
+++++++++++++###################
+++++++++++++###################
+++++++++++++###################

+++++++++------2------//////////
++++++++++------------//////////
++++++++++------------//////////
++++++++++-----------///////////
++++3+++++-----------//////1////
++++++++++-----------///////////
+++++++++++---------////////////
++++++++++++------//////////////
++++++++++>>>>>>>-//////////////
++++++++++>>>>>>>-///////////***
##++++++++>>>>>>>-//////********
######+++>>>10>>>>///||*********
#######++>>>>>>>>>|||||||*******
#######+-->>>>>>>||||||||*******
########->>>>>>>>||||||||*******
########->>>>>>>/||||9|||******8
4########+>||===|||||||||*******
#########+=======||||||||*******
########O========||||||||*******
########O=========|||||*********
#######O\===11====|*X***********
#######OOO========X*X**X********
##OOOOOOOO=======\X*XXXXXXXXXXX*
OOOOOOOOOO=======*XXXXXXXXXXXX
OOOOOOOOOOO\\\\\\\\\\XXXXXXXXXXX
OOOOOOOOOO\\\\\\\\\\\\XXXXXXXXXX
OOOOOOOOOO\\\\\\\\\\\\XXXXXXXXXX
OOOO5OOOOO\\\\\\\\\\\\XXXXX7XXXX
OOOOOOOOOO\\\\\\\\\\\\XXXXXXXXXX
OOOOOOOOOO\\\\\\\\\\\\\XXXXXXXXX
OOOOOOOOOO\\\\\\\\\\\\\XXXXXXXXX
OOOOOOOOO\\\\\\\6\\\\\\XXXXXXXXX

Tiling of the image with blocks (a) using a circle of diameter n for 4 slaves and (b) using two circles
(diameters n/3 and n) to inscribe slave starting blocks for 11 slaves. Each block is shown as a character

which indicates the slave that rendered it. The starting blocks are marked by the slave numbers.
Figure 3

With this method the image will be tiled with blocks
by the available slaves in a way that resembles a
weighted Voronoi diagram of the starting blocks, the
weight being the difficulty in rendering the
individual blocks. The choice of starting blocks is
crucial as the wrong choice could yield much slower
results than the last two strategies. We tested three
different schemes. In the first, all starting blocks
were inscribed in a circle of diameter n/3 centred at
the centre of the image. The advantage of this is that
the blocks rendered last are the ones around the
edges of the image which are usually the easiest.
This facilitates an almost simultaneous termination
of all slaves. The drawback is that if there is a large
number of slaves, their expanding rings are almost
concentric and their allocated blocks are mixed
randomly.

In the second scheme we increased the diameter of
the circle to n/2 to avoid the drawback of the
previous scheme. The corners of the image are still
left last. Very few 5D nodes are usually needed to
ray trace these blocks so any slave can take them on,
independent of its starting block.

In the last scheme we used two concentric circles to
inscribe the starting blocks if there are more than 8
slaves available, otherwise only the outer circle is
used. The inner circle has diameter n/3 and the outer
n. One third of the slaves are allocated starting
blocks in the inner circle and the rest in the outer
one. This scheme changes the wedge-like regions
generated by the last scheme to more compact and
coherent regions and outperformed the other two
schemes in all cases. Examples of the tiling
generated by the last scheme can be seen in fig. 3.

3. TIGHTLY COUPLED PAFAS:
DISTRIBUTING THE 5D HYPERSPACE

In the loosely coupled methods discussed above as
the number of slaves increases the number of hyper-
tree nodes per slave decreases, but the percentage of
overlap of the trees in different slaves increases. One
way to eliminate almost all overlap is to distribute
the 5D trees amongst the slaves. Only one slave will
be allowed to generate some specific 5D node, and
all rays that classify to that node have to be sent to
this slave to be traced and their results sent back to
the originating slave.

The distribution of the hyper-trees can be done in the
following manner. Each processor takes on a
number of subtrees starting from level 2 of the
hyper-trees. Level n can contain a maximum of
6*(25)n nodes, thus there are 6144 possible subtrees
to be distributed. In practice only a fraction of these
will be generated. A subtree can be uniquely defined
by a number from 0 to 6143, which is easily

computed during the traversal of the two top levels.
For n slaves, a subtree with number s will be
assigned to a slave p if s mod n = p. The static load
balance achieved by this distribution is satisfactory
for a moderate number of slaves, and preferably if
this number is odd or, even better, a prime number.

The choice of level 2 for the distribution is not a
random one. Level 1 contains a maximum of 192
nodes, which are not enough by any means to
guarantee a relatively acceptable load balance. The
storage requirements for level 0 (the 6 roots) and
level 1 is small, and the object-beam classifications
needed to generate the nodes at level 1 are
comparatively few, so that levels 0 and 1 can be
duplicated on each slave at a small cost. On the other
hand, distributing level 3 would increase the needed
memory, object-beam classifications, and tree
traversal costs without a significant gain in load
balance.

Compared to the loosely coupled strategies the
number of messages is increased by at most 2r for r
rays. Some rays need not be sent since their
candidate sets will happen to reside on their
originating slave. However, this chance is reduced
for an increasing number of slaves. This number of
messages compares favourably with the number of
messages in ray-flow algorithms based on spatial
subdivision where many messages are usually
needed for a single ray. It does, however, assume a
full connected network, since any slave can send a
ray to any other, whereas in spatial subdivision ray-
flow algorithms messages are usually passed only
between ‘neighbouring’ processors.

4. RESULTS - DISCUSSION

For our experiments we used a cluster of
workstations on a local area network. FAS was
added upon the ray tracing kernel of Rayshade, a
public domain ray tracer [Kolb92]. The test scenes
we used are the well-known scenes proposed by Eric
Haines [Haine87] (plus the teapot), with a resolution
of 512 by 512 pixels, one sample per pixel. All the
tests were repeated 5 to 7 times and the normalised
standard deviation of the run times was always
small, so we can assume a dedicated use of the
cluster.

In parallel processing the performance of an
algorithm depends largely on the actual hardware
configuration. The timing results of the tightly
coupled PAFAS on the cluster proved that the
communications were a bottleneck. From the used
memory, the tree growth and the intersections done,
we could deduce that the static load balancing works
well with the number of available slaves. To use this
algorithm, however, a multiprocessor with a

PAFAS: number of slavesSequential
FAS 1 2 4 8 11 15

round robin 1,00 1,00 1,80 3,27 5,95 7,96 9,42
bands 1,00 0,97 1,96 3,80 7,22 9,03 12,72speed-up
blocks 1,00 1,02 2,01 3,84 7,38 9,24 12,69

round robin 28,0 Mb 30,0 Mb 19,1 Mb 12,6 Mb 8,4 Mb 7,5 Mb 6,1 Mb
bands 28,0 Mb 32,1 Mb 22,2 Mb 12,4 Mb 8,3 Mb 6,3 Mb 5,6 Mbmax. memory

per slave
blocks 28,0 Mb 26,1 Mb 14,9 Mb 11,3 Mb 9,1 Mb 8,0 Mb 7,0 Mb

The results for scene rings2
Figure 4

fast interconnection network is needed. In general,
the task of intersecting a ray against the objects of a
beam (and even more against the objects of a voxel)
is quite small, so that ray-flow algorithms have fine
grain.

An object-flow FAS would perform well in a shared
memory multiprocessor as the principle of ray
coherence closely relates to the locality of reference.
However, the object-flow algorithm also has too fine
a grain for a cluster of distributed workstations.

The only efficient algorithm for such a cluster is the
loosely coupled PAFAS. In fig. 4 we see the results
for scene rings2, which are representative of most
results we obtained. The average (over 7 runs)
speed-up compared to the sequential FAS, and the
maximum memory per slave are shown for the three
load balancing strategies. All three strategies exhibit
satisfactory reduction in the required memory per
processor, thus solving the memory requirement
problem of the sequential algorithm. The speed-up is
nearly linear, with the blocks strategy approaching
closer the ideal speed-up. The ideal speed-up cannot
be approached due to the maintenance cost of the 5D
data structure which is not distributed in full.

As we can see from the 1 slave column, the 5D
subdivision is a highly dynamic algorithm, where
even the order in which pixels are calculated can
affect its performance. This is due to the decision-
making process of the automatic subdivision tuner
which bases its decisions on the existing statistics
during ray tracing.

samples per pixel 1 4 9 25 36
round robin 1,0 2,8 4,9 11,1 16,4

bands 1,0 2,9 5,6 14,9 19,8
slow-
down

blocks 1,0 3,5 6,5 17,1 25,2

Supersampling results on 11 slaves
Figure 5

Ray tracing acceleration methods are usually tested
on 512 by 512 pixel images with 1 sample per pixel,
even though supersampling is used to render demo
pictures. This does injustice to 5D adaptive
subdivision, which benefits from a larger population
of rays and thus greater ray coherence. To
demonstrate this property, we rendered the same
scene with 11 slaves (a) with 4, 9, 25 and 36 samples
per pixel. The results appear in fig. 5. As a general
rule the ‘slow-down’ due to the supersampling was
less than linear, with the simpler round-robin
method benefiting the most. Other acceleration

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00

0 2 4 6 8 10 12 14 16

number of slaves

sp
ee

d-
up

round robin

bands

blocks

ideal

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

0 2 4 6 8 10 12 14 16

number of slaves

m
ax

im
um

 m
em

or
y

pe
r

sl
av

e

0

9

18

27

36

0 9 18 27 36

samples per pixel

sl
ow

-d
ow

n

round r.

bands

blocks

linear

FAS FAS

methods can also benefit from supersampling, but
not to the extend that FAS can.

5. CONCLUSIONS

We have presented several attempts to parallelise a
directional subdivision algorithm for ray tracing.
The tightly coupled PAFAS can only be used on
multiprocessors with fast interconnection networks.
It can also be adapted to shared memory
multiprocessors.

The loosely coupled PAFAS algorithm, on the other
hand, is ideal for distributed processing. It can be
used to take advantage of the idle time of
workstation clusters, which are cheaper and more
widely available than multiprocessors.

We have demonstrated the inherent property of FAS
to distribute the memory-demanding 5D hyper-tree
structure without any data-flow. The obtained speed-
up comes close to linear. The hyper-tree distribution
reduces the memory per processor and makes
PAFAS usable with more complicated scenes than
FAS. However, the memory requirements still limit
it to medium complexity scenes. In any case, with
high complexity scenes it is preferable to use spatial
subdivision since the cost of the object-beam
classifications would exceed the cost of voxel
walking [Simia94]. For complex scenes a hybrid
hierarchy-FAS method could be used. If the scene
becomes so complicated that the memory needed for
the object descriptions becomes too big, the objects
could be distributed amongst the processors using
shared virtual memory at the expense of the page
requests and replies communication overhead
[Badou90].

ACKNOWLEDGEMENTS

We would like to thank everyone in the graphics
group of the University of East Anglia. Many thanks
to Shaun McCullagh and Matt Beare for their
valuable help. Finally, thanks to Craig Kolb, the
author of Rayshade.

BIBLIOGRAPHY

[Arvo87] Arvo,J., Kirk,D.: Fast Ray Tracing by Ray
Classification, Computer Graphics (Proc.
SIGGRAPH), Vol. 21, No. 4, pp. 55-64,
1987.

[Badou90] Badouel,D., Priol,T.: Advances in
Computer Graphics Hardware (ed. R.
Grismdale and A. Kaufman), Springer-
Verlag, New York, An Efficient Parallel Ray

Tracing Scheme for Highly Parallel
Architectures, pp. 93-106, 1990.

[Bouvi85] Bouville,C., Brusq,R., Dubois,J.,
Marshal,I.: Generating High Quality Pictures
by Ray Tracing, Computer Graphics Forum,
Vol. 4, No. 2, pp. 87-99, 1985.

[Caspa89] Caspary,E., Scherson,I.: A Self-balanced
Parallel Ray-tracing Algorithm, Parallel
Processing for Computer Vision and Display,
pp. 408-419, 1989.

[Caube88] Caubet,R., Duthen,Y., Gaildrat,V.:
Voxar: A Tridimensional Architecture for
Fast Realistic Image Synthesis, New Trends
in Computer Graphics (Proc. of CGI ’88),
Springer Verlag, New York, pp. 135-149,
1988.

[Chalm96] Chalmers,A., Tidmus,J.: Practical
Parallel Processing, International Thomson
Publishing, 1996.

[Clear86] Cleary,J., Wyvill,G., Birtwistle,G.,
Vatti,R.: Multiprocessor Ray Tracing,
Computer Graphics Forum, Vol. 5, No. 1,
pp. 3-12, 1986.

[Devil89] Devillers,O.: The Macro Regions: An
Efficient Space Subdivision Structure for Ray
Tracing, Proc. Eurographics ’89, Elsevier
Science Publishers, Amsterdam, North-
Holland, pp. 27-38, 1989.

[Dippe84] Dippe,M., Swensen,J.: An Adaptive
Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis,
Computer Graphics (proc. SIGGRAPH ’84),
Vol. 18, No. 3, pp. 149-158, 1984.

[Fujim86] Fujimoto,A., Tanaka,T., Iwata,K.: ARTS:
Accelerated Ray-tracing System, IEEE
CG&A, Vol. 6, No. 4, pp. 16-26, 1986.

 [Glass84] Glassner,A.: Space Subdivision for Fast
Ray Tracing, IEEE CG&A, Vol. 4, No. 10,
pp. 15-22, 1984.

[Green90] Green,S., Paddon,D.: A Highly Flexible
Multiprocessor Solution for Ray Tracing, The
Visual Computer, Vol. 6, No. 2, pp. 62-73,
1990.

[Haine86] Haines,E., Greenberg,D.: The Light
Buffer: A Ray Tracer Shadow Testing
Accelerator, IEEE CG&A, Vol. 6, No. 9, pp.
6-16, 1986.

[Haine87] Haines,E.: A Proposal for Standard
Graphics Environments, IEEE CG&A, Vol. 7,
No. 11, pp. 3-5, 1987.

[Isler91] Isler,V., Aykanat,C., Oaguc,B.: Sub-
division of 3d Space Based on the Graph
Partitioning of Parallel Ray Tracing, Second
Eurographics Workshop on Rendering,
Barcelona, Spain, pp. 182-191, 1991.

[Kapla87] Kaplan,M.: The Use of Spatial Coherence
in Ray Tracing, Techniques for Computer
Graphics, Springer-Verlag, pp. 173-93, 1987.

[Kay86] Kay,T., Kajiya,J.: Ray Tracing Complex
Scenes, Computer Graphics (SIGGRAPH ’86

Proceedings), Vol. 20, No. 4, pp. 269-278,
1986.

[Kim96] Kim,H.-J., Kyung,C.-M.: A New Parallel
Ray-tracing System Based on Object
Decomposition, The Visual Computer, Vol.
12, No. 5, pp. 244-253, 1996.

[Klima97] Klimaszewski,K., Sederberg,Th.: Faster
Ray Tracing Using Adaptive Grids, IEEE
CG&A, Vol. 17, No. 1, 1997.

[Kolb92] Kolb,C.: Rayshade: A Public Domain Ray
Tracer for Unix Systems.

[Narus87] Naruse,T., Yoshida,M., Takahashi,T.,
Naito,S: Sight – a Dedicated Computer
Graphics Machine, Computer Graphics
Forum, Vol. 6, No. 4, pp. 327-334, 1987.

[Nemot86] Nemoto,K., Omachi,T.: An Adaptive
Subdivision Algorithm by Sliding Boundary
Surfaces for Fast Ray Tracing, Proc. of
Graphics Interface ’86, Canadian
Information Processing Society, Toronto,
Ontario, pp. 43-48, 1986.

[Notki97] Notkin,I., Gotsman,C.: Parallel
Progressive Ray-tracing, Computer Graphics
Forum, Vol. 16, No. 1, pp. 43-55, 1997.

[Ohta87] Ohta,M., Maekawa,M.: Ray Coherence
Theorem and Constant Time Ray Tracing
Algorithm, Computer Graphics 1987
(Proceedings of CG International ’87),
Springer-Verlag, pp. 303-314, 1987.

[Parke99] Parker,S., Parker,M., Livnat,Y., Sloan,P.-
P., Hansen,Ch., Shirley,P.: Interactive Ray
Tracing for Volume Visualization, IEEE
Transactions on Visualization and Computer
Graphics, Vol. 5, No. 3, pp. 238-250, 1999.

[Priol89] Priol,T., Bouatouch,K.: Static Load
Balancing for a Parallel Ray Tracing on a
MIMD Hypercube, The Visual Computer,
Vol. 5, No. 1, pp. 109-119, 1989.

[Rubin80] Rubin,S., Whitted,T.: A 3-dimensional
Representation for Fast Rendering of
Complex Scenes, Computer Graphics (Proc.
SIGGRAPH ’80), Vol. 14, No. 3, pp. 110-
116, 1980.

[Salmo88] Salmon,J., Goldsmith,J.: A Hypercube
Ray-tracer, Proc. of the Third Conf. on
Hypercube Concurrent Computers and
Applications, ACM Press, pp. 1194-1206,
1988.

[Simia94] Simiakakis,G., Day,A.: Five-dimensional
Adaptive Subdivision for Ray Tracing,
Computer Graphics Forum, Vol. 13, No. 2,
pp. 133-140, 1994.

[Speer92] Speer,L.: A New Subdivision Method for
High-speed, Memory Efficient Ray Shooting,
Third Eurographics Workshop on Rendering,
Bristol, UK, pp. 45-60, 1992.

[Woo92] Woo,A.: Ray Tracing Polygons Using
Spatial Subdivision, Proc. Graphics Interface
’92, Canadian Information Processing
Society, Toronto, Ontario, pp. 184-191, 1992.

