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Abstract

The main purpose of this paper is to present
a functional view of the fundamentals of the
computer graphics process based on the clas-
sic polygonal model. There are several advan-
tages for adopting such an approach. Firstly.
the functional view is a natural abstraction of
the problem. Secondly. many well known com-
puter graphics optimization techniques can be
directly obtained from the original specifica-
tion by applying general and well understood
transformational programming algebraic laws
on functional expressions. Thirdly, a number
of highly parallel implementations suited for
various parallel architectures can be derived
from the initial specification by a systematic
application of general transformation strate-
gies for parallelizing functional programs.

1 Introduction

Synthetic irnage lleneration, (commonly called
computer oraphics) can be considered as the
process which transforms a three dimensional
model of a scene into a two dimensional ar-
ray of pixel colours. known as the srlnthetic
irnage or just i,rnage. A typical example is
flight simulation. where the pilot flies through
a predefined terrain and irnages representing
the pilot's current vierv are rapidly generated.
Another example is architectural walkthrough
where the custorner can explore a visual rnodel
of a proposed building.
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Computer graphics has been studied for
about 30 years and has lately witnessed a
period of explossive growth. An increasing
amount of image realism has been achieved in
this period making increasing demands on the
performance of the supporting computer sys-
tems. Its immediate relenance to the human
computer interface as well as a large number of
important applications. from the film industry
to computer aided design. have fuelled a great
influx of funds and new products into the field.
The annual Siggraph conference is widely re-
garded as the largest conference in the world.
However this dramatic grorvth iras taken its tall
by creating chaos in the terminology used and
the semantics of computer graphics operations.
It is an area which is in great need of formal-
ism. Some attempts to this end have taken
place in the past [5, 12] but they were mainly
concerned with the graphics standards of the
tinre which soon became obsolete and tle-facto
standards were established. Here we attempt
to put a stone in the direction of formalising
some oore elernents of these de-facto standard
operations. We <lo dot <;laim to have a com-
plete formal franrework for cornputer graphics:
far from it. But we do hope to point in the right
direction for this large. but necessary. task.

The increasing demands on performance
have r:onstantly oustripped the dramatic rise

in processor speeds: coupled with the need for

real time performance in nrany graphics appli-
cations this has Ied to the use of parallel pro-

cessing techniques. even from the very young
<lays of the field [17. 15]. For this reason we

0-7695-r165-1/01 Sl0 00 @ 2001 IEEE 242



pay special attention to the issue ofparallelism

which is at the hea.rt of aU high performance

graphics sYstems.

Providing a functional programming frame.

work for Computer Graphics ha-s several at-

tractions. First it provides a natural abstrac-

tion (clear, concise specification) to the prob-

lem. Second the functional specification pro-

vides an instant prototype. Third it is possi-

ble to apply gereral transformational program-

ming rules to transform the functional specifi-

cation into more efficient versions. In so doing

many well known graphics optimisation tech-

niques (e.g. clipping, culling) can be formally
justified and understood. Fourth it is possible

to derive parallel versions of these algorithms

by applying well known functional program-

ming parallelization methodologies (e.g. skele'
ton. annotation technique [9, 3]). Finally it is
possible to formally link a family of sequential
and pa.rallel algorithms by understanding how
they can be derived from a common functional
specification.

In this paper we shall introduce the essen-
tial concepts of computer graphics and for-
mally capture them in a functional notation [7].
We start by giving a functional formalism of
the problem and then we systematically apply
correctness preserving transformations rules to
derive a new functional form which exhibits a
high degree of implicit parallelism. Finally, the
functional form is refined into a collection of
communicating sequential processes described
in Hoare's CSP notation [14]. Through alge-
braic program transformations the final func-
tional form can be implemented as processes
with different physical configurations. Some
of these are suitable for massively parallel ma-
chines. fixed pipes ofprocesses. systolic designs
and FPGAs.

2 Notation and Preliminaries

Throughout this paper. we use the functional
notation and calculus developed by Bird and
\Ieertens [6, 7] for specifying algorithmics and
reasoning about them and rvill use the CSP

notation and its calculus developed by Hoare

[14, 1, 3] for specifying processes and reason-
ing about them. We grve a brief summary of
the notation and conventions used in this pa-
per. The reader is advised to consult the above
references for details.

Function composition is denoted by o. The
operator * (pronounced "map") takes a func-
tion on the left and a list on the right and ap-
plies the function to each element of the list.
Informally we have:

f  * l o t , a 2 t . - .  , a z f  :  [ / ( o t ) ,  f  ( o ) , . . -  ,  f  ( a " ) ]

The operator / (pronounced "reduce") takes
an associative binary operator on the left and a
list on the right. It can be informally described
as follows

( e ) /  [ o r ,  a 2 t . . . , a n f  - -  a 1 @  a 2  O . . . @  a n

2.L Algebraic Laws

One important asset of the functional pro-
gramming framework and, in particular. Bird-
Meertens Formalish (BMF) is its richness in
algebraic laws which allow the transformation
of a program from one form to another rvhile
preserving its meaning. Hcre is :r short list of
frequently used algebraic rules which rvill be
used later in this paper. Historicall;-. the "pro-

motion rules" are intended to express the idea
that an operation on a compound stnrcture can
be "promoted" into its components.
mao distributivitv:

f f  "S ) * :  ( " f * )  o  (g * )

map prornotion:

f *  "  l t l  :  j+ l  o  ( / * )*

reduce promotion:
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3 Formal Specification

3.1 Polygonal Model

A number of modeling schemes, such as polyg-
onal modeling, bicubic patches and construc-
tive solid geometry [13, ?, 7, ?], have been
proposed over the years. We shall concen-
trate on the classic polygon model because of
its widespread acceptance, simplicity and ma-
turity. In this model objects are represented
as sets of 3D polygons: each object is typically
defined in its own object coordi,nate system. In
order to define the polygonal model, we first
need to capture some basic concepts. A colour
is encoded as a number in some colour system
such as RGB or CMY [13, ?, ?, ?]:

colour :: TL'r.LTn

Having defined a two dimensional (2D) and
a three dimensional (3D) point as:

point2d : :  (num.nurn)
pointSd : :  (num,nttm,num)

we can build up the definition of a polygonal
model:

uerter :: (point3d. colour)
polygon :: luerterl
object :: fttolyoon)
model :: lobjectl

Some discussion is in order at this point. A
polygon is defined as a Iist of vertices: it is
necessary to impose the order of a list on the
vertices because this order is used in the nor-
mal vector and the point-inside-polygon calcu-
lations. In the first case the order is required
in order to produce a vector which points in
the r;orrect "outward" direction and in the sec-
ond in order to unambiguously define the in-
terior of the polvgon. An obiect could be de-
fined as a set of polygons because their order
does not matter in this case and repetitions
should not be allowed. Equally a model could
be defined as set or bag of objects. An ob-
ject may appear multiple times within a model

(".9. a car) but normally not at the same loca-
tion. If we therefore include the transformation
that places each instance of the object in the
data structure then we can use a set since in-
stances will be differentiated by this transfor-
mation (known as the modelling transforma-
tion in computer graphics); otherwise we must
use a bag to allow for repetitions of an object
within the model. However in this paper, in
order to simplify the manipulation and the no-
tation required, we shall use lists as specified
above.

A graphics model is thus a list of polygo
nal objects. Each polygon is a list of vertices
and each vertex is a 3D point and an associated
colour which has been determined by a shading
model such as Gouraud or Phong [?. ?]. The
above abstraction of a vertex coincides with
the Gouraud model. The colour of each point
in the teapot image is derived from the colour
of the vertices of the polygon in which the point
lies in the polygonal model of the teapot. This
is achieved through a given interpolation func-
tion icolour:

icolour :: polygon -+ point2d -+ colour

Similarly, the depth (from a viewing point) of
each point in the teapot can be derived from
the depth of the vertices of the polygon in
which it l ies.

idepth :: pol'ygon -+ poin,t2d -+ rruTrl

We use point2d in the rlefinitions of icolour
and i.deTtth since the point is completely de-
termined from the knowledge that it is copla-
nar rvith the polvgon vertices. Figure 1 shows
the polygonal model of a teapot and figure 2
shows the final image of the teapot from a cer-
tain viewpoint after going through the com-
puter graphics process.

3.2 Rendering

The rendering stage can be seen as a function
which takes a list of pro.jected polygons and
a background image. sav bkg, as inputs and
produces a new image. after rendering its input
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Figure Polygonal model of a teapot

Figure 2: Rendered image of the teapot from
a viewpoint

polygons, as output. An image can be defined
as a set of pixels; we shall use a list structure
here, however, for a concrete representation.
Each pixel is defined as:

pi r eI :: (point2d, col our, depth)

The initial image either contains the initial val-
ues (background colour, morimum depth) or is
a partly rendered image; this definition allows
us to decouple the rendering of one polygon
from that of another, thus facilitating paral-
lel processing. The renderimage function can
be defined using a simpler function, rendpix,
which solves the rendering problem for a single
pixel:

renderimage :: lgtolygonl -+ lpirell -> lpircIl;
renderimage m bkg : (rendpix m) + bkg

The rendpir function can be defined as fol-
lows:

rendpix :: lpolygonl + pirel -+ pirel;
r e n d p i r l r  :  r
rendpix (g: gs) r: rendstep g (rendpir gs r)

The above recursive definition leaves a pixel
unchanged if the poygon list is empty (stopping
case) otherwise it updates the value calculated
for he tail of the polygon list by the head poly-
gon using another function which can easily be
defined as:

rendstep:: polygon -+ pirel -+ pirel:
rendstep g (p,c,d)
: (p,c,d), if p outside 9 V rt < i,depth g p
: (p,icolour g p,idepth g p). otherwise

where icolour and ideTtth are functions which
calculate by interpolation the colour and depth
values of polygon g at pixel p respectively, from
the colour and depth values at the vertices of
the polygon.

3.3 Animation

In practical graphics applications such as
computer animation. the graphics process-
ing pipeline is usually driven by successively
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changing viewing parameters. To generate
real time animation, the graphics applica-
tion should be able to produce 30 consecutive

frames (images) per second. To capture the
whole animation process. we define the func-
tion animale as follows:

f rame:: lpixell
animate:: model -+ fuiewingparms] -+ lf ramel
mkf rame:: model -+ uiewingparnls -+ Jrame
anirnate m : (mkf rame m) +
mkf rame m u : renderimage (geo u m) bkg

Given a static model m as a list of polygonal
objects. the function animate takes a list of
viewing parameters (triplets consisting of view-
ing position. view direction and up vector) and
produces a list of frames by applying the func-
tion mkf rame m for each viewing parameter.
In turn, the functionmkf rame rn takes a view-
ing pararneter. performs a geometric transfor-
mation on the model resulting in a list of poly-
gons and renders these using renderimage.

The geometric transformation captured by
the functiorr geo first changes the coordinate
system to one which is r:entered at the view-
point and keeps from the Iist of objects those
polygons that are "front faces" via the culling
operation and Iie within a "vicwing pvranid''
via the clipping operation.

4 Derivation of a Massivelv
Parallel Solution

By applying lhe tail recu,rsiorr, unrollinq r:ule.
rendpir can be tlescribed as a composition of
several functions: t:ach of rvhich is an instance
of rend,step that <leals rvith a particular poly-
gon from the list rn:

rendp'ir rn : (o't I ft'end.step * rn)

In other words. ;rssuning the rnodel rn, (:on-
s is ts  o f  a  i i s t  o f ,  say  ?1 .  po lvgons  [g r , ! ]2 , . . . . !1 , f ,
then rertdpir tn cant be expressed as a cornpo-
si t ion of n funct ions:

rertdstep gtorend.str :p 9,2. .  .  oyen,dstep g,

Now by applying the distributivity law of
map over function composition, the rendering
of a whole image, (rendpi,x rn)* can be derived
as a composition of n functions:

(rendpi,r m) + - (o) I (map " rendstep) + m)

That is, (rendpir fh, gz, . . . , gnl) *

(rendstep 9r) + o (rendstep gz) + ..o (rendstep gn\ *

The composition of functions can be real-
ized in CSP as piping of processes. Hence, the
above form can be efficiently implemented as
a pipe of n processes. Each process in the
pipe. MAP(rendstep g), deals with a particu-
lar polygon from the polygonal list rn. It re-
peatedly inputs a pixel from its left neighbour,
update the pixel value (colour and depth) by
taking into account the polygon maintained by
the process. and outputs the new pixel value to
its right neighbour. The whole network is de-
picted in Fig. 3 and can be consisely expressed
as:

O>) I  (W AP o rendstep) * (reuerse m))

For any function f, the pipe process
MAP(f ) refines the function f *. By unfold-
ing the CSP definition of the proccss A,[AP,
the behaviour of each process in the pipe can
be synthesized as follows:

(M AP " rendstep) (g)
:  M AP(rend.step g)
:  pZ .  (  ' / ""r t"  -+leot -+ SKIP

I
?r -+t(r ' r :ndstep g t)  -+ Z)

The above solution effectively places the re-
sponsibility for rendering one polygon on each
pipelinc stage. Pixels florv tlrrough the pipeline
and take their final value upon exit. This is a
massively parallel algorithrn. Assurning that
the image to be rendered has A pixels and the
model m has n pol.ygons. the starting sequen-
tial algorithm requires O(rt x A) r:omputational
steps bttt thc pipelinerl version requires only
O(n -f A) <;omprrtational steJrs. We have thus
arrived at the ilrchitecture proposed by Cohen
and Deuretrescu [8].
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Figure 3: Rendering of the background

5 Transformation to a fixed
length pipe of processes

In practice, the number of processing elements
in a parallel machine is much smaller than n,
the number of polygons in the graphics model.
We will show that using algebraic transforma_
tion, the massively parallel algorithm given in
the previous Section can be transformed to an
efficient pipelined algorithm with a given fixed
length, say p. Consider a partition function
parts p which partitions the list of polygons rn
into exactly p groups of consecutive elemenrs.
The function parts can be specified as follows:

parts :: nunl -+ lAl + [[/]l
llf (parts p m) : m

That is:  parts p m :  l* t ,*2,. . ,  mrl  and

mt f f  mz i l  . .  - * l  mo:777

We have

MAP(rendstep 92) MAp(rend,step g)

image bkimg by successive polygons

rendpix rn

{def. of rn}
: rendpix (*t l+ rnz.. ++ rnp)

{def. of rendpix}
:  (o)/(rendstep+ (m1 * mz..  + *r))

{distributivity of * over 1*}
= (o) l((rendstep*m1) J+ . .  l+ (rend.step*mp))

{reduction promotion}
: (,(o) I (rendstep * m)). ..((")/ (rend,step * mp))

{def. of rendpix}
: (rendpix *t) 

" ..o (rend.pix mo)
{def. of (o)/ }

: (o) I [rendpix Tnrt . . . ,rendpi, *r]
{def.  of* }

:  (o) I  (rendpix * fm1,mz, . . ,mp))
{def. of part.s p}

: (o) I ftendpir * (parts p m))

We can generalize this to rend,erirnage by
appealing to the distributivity law <.tf map over
function composition, hence. we reason m fol-
lows

renderimage m

{def. of renderimagel
: (rendpin m) x

{previous result of rend,pix ml
: ((o) I fte.ndpir * (parts p rn))) *

{unfolding definitions}
:  ((rendpix ,n) o . .o (rent lpir  mp)) *

{distributivity of * over o }
: (,(renrlpix mr) * ) o .. o ((renrlpir ntr) *)

{def. of renderimage}
: (renderimage m) o .. o (renderimage mp)

{folding definitions}
: (o)l ftenderimage * (parts p m))

rendpir m : (") / (rend,step * m)

to transform this to a composition of p func_tions. we reason as follows
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Figure 4: Fixed length

This composition of functions can be sys-
tematically transformed into a pipelined net-
work of p communicating processes as illus-
trated in Fig. 4; each stage in the pipeline is an
instance of a single pipe process which refines
the function (rendpir gs)* . In other words.
this process takes a background image on its
input channel. one pixel at a time. and pro-
duces the rendering of that image. one pixel at
a time, according to the partition of the poly-
gons it is holding. We have.

renderimage gs : (re,ndpir gs) ',

as we have seen. this function can be refined
into the process M AP(rendpir gs). Therefore.
the whole algorithmic expression can be trans-
formed into the fbllowing pipc:

O>) I (M AP o rendpir) * (r'euerse (pa,rts 'p ?n))

By unfolding the CSP rlefinition of the pro-
cess M AP, the behaviour of each process irr
the pipe can be synthcsizcd as follows:

(M AP " rendp i r )  (gs)
: Il[ AP(rendpir gs)
:  pZ  .  (  ? "e ,o t "  -+ leo t  -+  SKIP

I' l . r  -+t(rendpir  g.s r)  -+ Z)

6 Related Work and Conclu-
sion

The transformational approach used in this pa-
per for <leriving reconfigurable parallel iilgo-
rithms is based on earlier work by the authors

[1. 2. 3. -l]. It has benefited fiorn related rvork

pipeline for image rendering

on transformational programming and paral-
lelization by several researchers [3. 6, 7, 11, 9].
Related work on formal methods for describ-
ing a framework for the specification of modu-
lar graphics systems in Z appeared in [5. 12].
The methods used are non-procedural but par-
allelism is not discussed. Parallel rendering al-
gor i thms are discussed in [10. 15, 16, 17].

We provided an introrluctory functional de-
scription of the fundamental computer graph-
ics operations that have become <le-facto stan-
dards. Although incornplete. this can serve as
a starting poirrt for a formal framework for
r:omputer graphics. Starting from a formal
functional specification of the conrput;rtionally
expensive graphics rendering phase. we have
<lcrived using strict rnathernatical transforma-
tions. two parallel algorithms. Both algorithms
exploit pipelined parallelism in or<ler to achieve
efficienc]'. The first algorithm is rnassivelv par-

ir"llel but the second uscs a fixcd number of
proccssing elenrents. Drre to the nature of the

trausforrnations. we can ensure that the paral-

lel implcmetrtations satisfy the original specifi-
cation and rve can a.lso reason about them using
rvell known mathematical properties. .\part
from providing a corrcctness proof and seman-
tics consolidation. this rnethod is verv useful as

n concise and clear comrnunication mediurn for

algorithrn designers an<l engineers. We plan to

use the same techniques to derive other parallel
implernentations. with differcnt phvsic:rl pro-

<;ess configurations such as trees and meshes.
from the original specification of this problem'

M AP(rendptx m2) M AP(rendpix mr)
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