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Abstract

In the recent past, fragment matching has been treated
in two different approaches, one using curve matching
methods and one that compares whole surfaces or
volumes, depending on the nature of the broken artefacts.
Presented here is a fast, unified method that combines
curve matching techniques with a surface matching
algorithm to estimate the positioning and respective
matching error for the joining of three-dimensional
fragmented objects. Combining both aspects of fragment
matching, essentially eliminates most of the ambiguities
present in each one of the matching problem categories
and helps provide more accurate results with low
computational cost.

1. Introduction

In computer-aided archaeology, the identification and
joining of three-dimensional broken fragments in order to
reconstruct the original artefacts is a problem that is
receiving increasing attention by the computer science
community. Many methods have been developed for two-
dimensional cases of fragments, such as small pot sherds
although in the last years work for the treatment of pure
three-dimensional fragments has emerged as well.

Curve matching techniques have originated from the
research on joining flat potsherds, a problem which can be
regarded as a “jigsaw puzzle”. Many solutions have been
proposed which deal with the problem as matching of
planar curve segments, such as [1], [2]. Wolfson [3]
proposed a method for the matching of smoothed
polygonal approximations of 2D curves by comparing
sequences of turning angle values per sampled vertices.
Leitão and Stolfi [4] use curvature based criteria for the
assemblage of large quantities of flat fragments via an
efficient multiscale comparison schema. The extension of
signature-based curve matching [5] to fully 3D closed
curves is adopted by Ucoluk and Toroslu [6] for the noise-
tolerant joining of thin-walled curved fragments that may
even contain flaws.

Methods for registering and assembling fully three-
dimensional arbitrary fragments have not been devised
until recently, due to their heavier computational
complexity, the cost of the 3D scanning equipment and
the intricacies of the digitization and sample processing
procedures involved.

Barequet and Sharir [7] introduced a robust and noise
tolerant method for the matching of point clouds
representing the shell or the volume of identical partially
overlapping objects. The method requires uniform point
sampling and is sensitive to noise and surface faults or
missing parts.

Papaioannou et al [8] presented a generalized method
for the three-dimensional jointing of arbitrary polygonal
objects, and a fragment matching and artefact reasemblage
method [9] that constrains the stochastic joint search of
[8] on fractured sides only. Unfortunately, both algorithms
are non-deterministic and take no advantage of possible
curve similarities of the fractured sides.

The work presented here integrates the surface
matching algorithm of Papaioannou et al [8] and a curve
matching schema, similar to the one developed by Ucoluk
and Toroslu [6], for the comparison of fractured side
boundary lines, in order to provide a fast, deterministic
method for the jointing of arbitrary three-dimensional
fragments. The proposed method is fault tolerant, and can
therefore cope with digitized archaeological data
collections, where perfect fragment joining is unlikely to
occur due to material deterioration and digitization errors.
The matching method operates on object surface meshes
of arbitrary topology and it can be easily extended to work
on volume crusts.

2. Method Overview

The fragment assemblage method as a whole adheres
to the architecture proposed in [9]. First, the fragment
meshes are segmented into crude sides and the potentially
fractured ones are detected, marked accordingly and
stored.

At a second stage, potentially fractured sides are
processed in pairs, in order to define the geometric



transformation that joins the two surfaces in an optimal
way. Given two fragment meshes 1Obj , 2Obj and two

fractured surfaces 1, 1mF Obj⊂ , 2, 2nF Obj⊂ we seek to

calculate a complementary matching error ( , )se m n

between the two fractured surfaces and define the rigid
transformation ,m nM that aligns 1Obj with 2Obj (or

1
,m n

−M to align 2Obj with 1Obj ) so that the complementary

matching between 1,mF and 2,nF is optimal. The fractured

facet boundary information guides the search for
complementary matching between the two fragments but
is not sufficient to determine a correct match alone.
Therefore, it is used to constrain a local search using the
surface similarity criterion of [8]. The rest of this paper
will focus on this curve-constrained matching.

Finally, a global optimization scheme is employed to
arrange the fragment collection in a set of reconstructed
objects, based on the pairwise matching errors, and the
corresponding geometrical transformations are applied
hierarchically to arrange the fragments to the correct pose.

In brief, the various steps of the method are the
following:

Segmentation
For all fragments kObj , 1... objk N= :

1) Segment mesh kObj into adjacent facets.

2) Detect the possibly fractured facets ,k mF ,

,1... k facetsm N= .

Matching
For all fragment pairs ( ),k lObj Obj , , 1... objk l N= , k l≠ :

For all fractured side pairs ( ), ,,k m l nF F ,

,1... k facetsm N= , ,1... l facetsn N= :

1) Extract the boundary lines of ,k mF and ,l nF .

2) Calculate the signatures ,vk m and ,vl n from the

boundary curves.
3) Detect all segN pairs of similar segments of the

boundary lines, based on ,vk m , ,vl n .

4) Find the transformations ( )
, , 1...i

m n segi N=M that

align the segments of each segment pair i .

5) Discard ( )
,

i
m nM that lead to large error in segment

matching.
6) For all remaining ( )

,
i

m nM estimate the surface

penetration between kObj and lObj .

7) Discard all ( )
,

i
m nM that lead to significant object

intersection.

8) For all remaining ( )
,

i
m nM calculate the surface

matching error ( , )se m n .

9) Set as optimal transformation ,m nΜ the one with

minimum ( , )se m n .

Assemblage
1) Optimise the fragment facet combinations based on the

calculated surface matching errors.
2) Geometrically arrange the fragments to form the final

objects.

3. Boundary Congruency Constraint

The search for a proper joint between two pieces

1Obj , 2Obj requires the extraction of the closed boundary

curve of every fragment side which has been marked as
candidate for matching. Then, for every pair of boundary
curves extracted on the fragments 1,mF , 2,nF to be jointed,

all congruent spans of curve nodes are detected. Each
congruent segment combination defines a transformation

,m nM that aligns and joins the two pieces. All solutions

that cause one surface to penetrate significantly into the
other are discarded at this stage. For the remaining
solutions, ,m nM is corrected so that fragments do not

intersect each other and the corresponding surface
matching error ( , )se m n is estimated. The configuration

with the minimum error is considered the best pose for the
facet pair 1,mF , 2,nF .

3.1. Boundary Curve Extraction

In order to achieve a boundary curve sampling
independent of topology and surface representation, an
image-based curve extraction procedure that uses the z-
buffer is performed (Fig. 1). This way it is possible to
compare objects of different types (polygonal meshes,
parametric surfaces, volume data) in a concise and unified
manner ever on fragment representations with topological
errors (e.g. T-junctions or self-intersections).

The discrete approximation of the boundary curve

,k mH of a fragment side ,k mF is derived in the following

manner:
First, facet ,k mF is rendered into a surface-aligned

b bN N× z-buffer using an orthographic projection (simple

scan-conversion in the case of polygonal meshes). The
alignment is achieved by rotating the view so that the
viewing direction coincides with the average fragment
side normal vector. The projection matrix bufP defines the

appropriate scaling for the rendered sides using a



Figure 1. Boundary line extraction procedure.

Figure 2. Curve signature similarity matrix example. 

normalization factor R (the maximum radius of the two
fragment data sets) and the buffer resolution bN :

bufP = 1 1
, , , ,

2 2 2 2 2 2
b b b bN N N N

R R R

−   
   
   

T S

A buffer resolution of 256×256 is more than adequate
considering that fine details are not very important for
boundaries of damaged (fractured) surface regions and
that sampling errors are likely to occur at sharp fragment
edges.

Subsequently, we extract the outer boundary of all non-
background pixels stored in the depth buffer. The
extracted closed polyline is transformed from image space
(z-buffer) back to object space to define the evenly

sampled boundary curve { }, , ,h (1), h ( )k m k m k m mH M= … ,

mM being the number of curve nodes.

As the boundary line has been calculated on discrete
data (the buffer cells), ,k mH must be smoothed. A simple

Gaussian or weighted averaging filter with a radius of 3-4
nodes produces good results. The smoothed curve can
now be subsampled to reduce its number of points.

In order to compare the boundary lines of two
fragments’ facets, each curve ,k mH is described by a

signature , , ,v ( ) ( ) ( )
T

k m k m k mi k s sτ =   , based on the

discrete curvature ( )k s and torsion ( )sτ , where ( )s s i=
is the arc length, as is the practice in [6]. ( )k k s= and

( )sτ τ= are estimated using discrete approximations of

derivatives by average differences.

3.2. Boundary Matching

In order to exploit the boundary lines of the fractured
faces 1,mF , 2,nF of two fragments 1Obj , 2Obj , to constrain

the jointing solutions, we must search for all matching
segments between the boundary lines. This problem is
addressed as a circular sub-string matching between the
signatures 1,v m and 2,v n respectively. In a similar way to

[6], for boundary lines of mN and nN samples, the

string matching is based on an m nN N× similarity matrix

Λ (Fig. 2), whose elements ( , )i jΛ hold the difference

between signature node 1,v ( )m i and 2,v ( )n j , expressed as

the mean Euclidean distance of 1,v ( )m i and 2,v ( )n j in the

vicinity of the two nodes, using normalized torsion and
curvature values:

1

1, 2,
1

1
( , ) v ( ) v ( )

3 m n
q

i j i q j q
=−

= + − −∑Λ

Ucoluk and Toroslu [6] construct such a matrix and
detect similar signature segments as sequences of
consecutive diagonal elements of Λ :



Figure 3. Boundary curve segment comparison. 

Figure 4. Constrained surface matching 

{ ( , ), ( 1, 1),i j i j⊕ ⊕Λ Λ ( , )}i L j L⊕ ⊕Λ… , L being the

length of the detected segment. Unlike their algorithm,
which permits gaps to exist in similar segments, we do not
opt for permitting gaps to exist when locating similar
signature sub-strings. Due to the differential nature of the
signature attributes, the presence of dissimilar elements in
a signature segment implies that there may exist
substantial differences between the respective boundary
segments.

Another modification of the string matching algorithm
is that due to the fact that two fractured sides must face
each other, we compare the directional curve strings
mirrored (Fig. 3), in contrast to [6] where matching of
non-overlapping closed curves (side by side) is pursued.
This amounts to a search for similar consecutive anti-

diagonal elements of Λ (top-right to bottom-left with
wrap-around): { ( , ), ( 1, 1), ( , )}i j i j i L j L+ − + −Λ Λ Λ… .

As an ideal match between the boundary lines is rarely
expected, we assume a similarity between two curve nodes
if ( , )i jΛ < tolΛ , which has been set experimentally to

0.3tolΛ = for rough fracture lines.

Two fractured sides are considered for joining if they
share one or more boundary segments of length at least
1/4 the arclength of the shortest boundary. After marking
all similar signature segments, small congruent node
sequences contained in larger ones are eliminated.

If a total of segN congruent curve segment pairs have

been detected for two fractured sides 1,mF , 2,nF , the next

step is to find the rigid transformations ( )
, , 1...i

m n segi N=M

that align the segments of each pair i . This process will
lead to segN transformations, corresponding to all

possible valid boundary alignments, i.e. alignments that
lead to a significant match between the two curves. These
poses will act as constraints in the next phase, where
surface matching between the two facets will be
attempted.

Each relative alignment transformation ( )
,

i
m nM between

the points of the i-th segment pair can be calculated using
a least mean squares or closed-form rigid motion
estimation method, like [10].

4. Surface Matching

Comparison of boundary lines for the detection of
potential joints between fractured faces 1,mF , 2,nF is not

adequate in the case of fractures with non-negligible
width. Instead, a full fracture surface comparison must be
made and a surface matching error ( , )se m n has to be

estimated, using ( )
, , 1...i

m n segi N=M as a constraint (Fig. 4).

First, we detect if the two surfaces penetrate each
other. If the penetration depth is non-negligible ( )

,
i

m nM is

discarded. In the opposite case, the fragments are
separated and ( , )se m n is estimated.

The surface penetration and the error ( , )se m n are both

related to the distance between corresponding points on
the two facets. We can eliminate the computationally
expensive registration of points and estimate the point-to-
point distances directly if the fragment surfaces are
sampled over a regular grid on a properly aligned
reference plane. For this purpose we adopt the depth-
buffer-based distance measurement implementation
proposed in [9].



Both 1Obj and 2Obj are rendered separately into two

virtual depth-buffers 1( , )D i j and 2 ( , )D i j , , 1,..., bi j N= .

The elements of 1D and 2D are the normalised distances

of the two fragments from the reference plane and
therefore 1( , )D i j + 2 ( , )D i j is the distance of the surfaces

of 1Obj and 2Obj measured at the ( , )i j point of the

regular grid.
The use of the depth maps eliminates the need for

specific topology and regular or dense sampling of point
clouds during the surface construction, thus making the
method appropriate for arbitrary surfaces.

4.1. Surface Intersection

The penetration percentage between the aligned
fragments is the maximum value of ( , )penetration i j over

all grid locations. As the contents of the depth-buffers
acquired are normalized to the range [0,1] (0=near,
1=far), the surface penetration percentage at a grid
location ( , )i j is simply:

1 2( , ) 1 ( , ) ( , )penetration i j D i j D i j= − −

A specific relative pose of two fragments 1Obj and

2Obj is discarded if the penetration percentage (relative

to the object size) is more than 3%-5% deep. Otherwise,
the transformation ,m nM that aligns 1Obj with 2Obj is

corrected by a translation tcorr
T along the average surface

normal 2,( )ave nN F of fractured side 2,nF :

max 2,t ( ) ( )corr ave npenetration R N F= ⋅ ⋅

where R is the projection scale normalization factor of
section 3.1, which is used here to scale the percentage

maxpenetration to a displacement in object space.

4.2. Surface Matching Error

If ,m nM produces a fragment positioning that passes

the surface intersection test (no significant penetration),
the two corresponding fragment facets 1,mF and 2,nF are

compared point by point and a surface matching error
( , )se m n is derived.

( , )se m n depends on the facets’ point-to-point

distances, which are calculated in the same manner as in

the case of the surface penetration. For this purpose, we
adopt the surface derivatives matching error formula of
Papaioannou et al [8]:

1 2
( , )

1 2

1
( , ) ( , ) ( , )

( , ) ( , )

s x x
i j SS

y y

e m n D i j D i j
N

D i j D i j

∈

= ∆ + ∆ +

∆ + ∆

∑

where ( , )x D i j∆ and ( , )y D i j∆ are the discrete

approximation of the partial derivatives with regard to i
and j directions.

Unlike [8] though, instead of rendering the entire
fragments, only the two facets of interest 1,mF and 2,nF

are rendered into the depth-buffers.
After the calculation of ( , )se m n for all candidate

matches ( )
, , 1...i

m n segi N=M of two facets 1,mF , 2,nF , the

relative positioning transformation ( )
,

i
m nM with the smallest

matching error is considered as the best match ,m nΜ
between them, hence the jointing solution and the rest
rigid transformations are discarded.

5. Implementation and Results

The method has been tested with digitized objects of
varying fracture smoothness and noise level. The
digitization, meshing and post processing surface
optimization produced polygonal surfaces of spatially
varying detail.

Instead of using a hardware depth-buffer, as proposed
in [8], a software-only solution was adopted, as memory
transfer lags between video memory and application
buffers in the hardware-based case slowed down the
processing considerably.

Fig. 5 shows the successful assemblage of a clay pot,
which was dropped on a marble floor and split into four
large sherds and several tiny fragments. The four pieces
were digitized with a touch probe and used for the jointing
and assemblage test. Due to the dense sampling of the
original fragments, the meshes produced had no
significant errors and the reconstruction procedure
managed to yield transformation matrices with tight fitting
between the pot sherds. Fig. 6a presents the reconstruction
results of a plaster replica of an ornate block, split into
two large fragments. This object is one of the test cases
also used in [9]. Fig. 6b shows the partial reconstruction
of a rectangular clay pot.



Figure 5. Reconstruction of a pot. (a) the fragments, (b) the assembled pot 

Figure 6. Reconstruction examples. (a) an ornate block, (b) section of a rectangular clay pot. 

All tests were performed on a Pentium III/500MHz PC
with 256MB of RAM. The average matching time per
facet pair (curve extraction + boundary matching +
surface penetration and similarity testing) was about 2.5s.
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