
Efficient Hardware Voxelization

G. Passalis, I.A. Kakadiaris
Visual Computing Lab
University of Houston

{gpassali,ioannisk}@mail.uh.edu

T. Theoharis
Department of Informatics

University of Athens
theotheo@di.uoa.gr

Abstract

This paper presentes a novel algorithm for the voxeliza-
tion of surface models of arbitrary topology. Our algorithm
uses the depth and stencil buffers, available in most com-
mercial graphics hardware, to achieve high performance. It
is suitable for both polygonal meshes and parametric sur-
faces. Experiments highlight the advantages and limitations
of our approach.

1. Introduction

Surface and volumetric models constitute the two main
classes of objects in computer graphics. Volume models are
used mainly where volumetric data are available (e.g., med-
ical imaging, CSG, seismic data). However, surface models
are far more efficient to display and store. Often it is useful
to convert surface data to voxels so that methods that work
with regularly sampled data can be applied. This process
of voxelizationproduces a set of values on a regular three
dimensional grid.

In recent years the development of widely available
graphics hardware has been staggering; in fact the rate of
its development has far outstripped that of microprocessors.
Although graphics hardware is designed for surface render-
ing, it is often possible to utilize it in different tasks. In this
paper we show how it can be used for voxelization. Future
graphics hardware will probably be able to accelerate even
the rendering of voxel models (by combining 3D textures
and pixel shaders).

1.1. Related Work

The majority of previous approaches in voxelization do
not exploit graphics hardware to achieve efficiency. For ex-
ample, Cohen et al [3] proposed such a method that can be
applied to irregular polygon meshes and He et al [5] used
voxels for object simplification purposes. In contrast, Fang
and Chen [4, 2] proposed a voxelization method that uses
graphics hardware. They slice the surface object into slices

and for each slice they render the object using the slicing
plane as a clipping plane. Finally they reconstruct the 3D
data by combining the data from the slices. Even though
this operation is done using graphics hardware, the compu-
tational time is proportional to the number of slices which
is large for complex objects.

One component of graphics cards that has been shown to
have applicability in a wide range of tasks [10] is the depth
buffer (or z-buffer), which was originally designed for hid-
den surface elimination in polygonal model rendering. The
long list of tasks include volume estimation [8], symmetry
detection and surface registration [1, 7]. Prakash et al [9]
presented a method that uses a pair of z-buffers in order to
voxelize aconvexobject. The limitation is that the object
must represent unstructured grid cells for the voxelization
to work properly. The use of just two z-buffers results in
voxelizing only the part of the surface that is visible to them.

Karabassi et al [6] proposed the use of six z-buffers. This
algorithm is the most efficient to date; it is simple to imple-
ment and only requires to render the object six times. It can
be applied to objects of arbitrary topology and complexity.
The main disadvantage is that it can miss concavities in non-
convex objects thus producing erroneous results. This limits
the usefulness of the algorithm as it can be applied only to a
restricted subset of closed objects. Furthermore, it does not
indicate whether an object has been correctly voxelized.

1.2. Overview

In this paper we improve on the algorithm proposed by
Karabassi et al [6] by generalizing it so that it can be applied
to a wider range of objects without sacrificing performance.
The goal is to make the algorithm general enough to handle
most common objects, thus limiting the need for complex
and slow voxelization algorithms for special case objects.
Our algorithm actually detects (rare) cases where the task
of voxelization may have been incorrectly performed.

The rest of the paper is structured as follows: Section 2
reviews Karabassi’s original algorithm, Section 3 describes
our algorithm, and Section 4 summarizes the results.



Figure 1. Six z-buffers for a 3D object.

2. Voxelization using six single layer z-buffers

The algorithm by Karabassi et al [6] voxelizes objects
by extracting their z-buffers using OpenGL [11]. OpenGL
can render polygonal meshes and analytical surfaces. Since
analytical surfaces are converted internally by OpenGL to
a triangular mesh and rendered using the normal graphics
pipeline, they also produce a z-buffer making the voxeliza-
tion algorithm invariant to the initial representation of the
object. Therefore the voxelization process can be separated
from the computation of the z-buffer.

In total six z-buffers are rendered for each object, two per
axis, as shown in Fig. 1. The camera is placed on each of
the six faces of a computed bounding box of the object and
the z-buffers are taken using parallel projection. For each
pair of opposite directions (e.g., +X, -X), the values of the
two associated z-buffers provide a regular sampling of the
object’s surface from the ’front’ and ’back’ views. A voxel
is inside the object only if it is ’inside’ the z-buffer values
for all three pairs. The pseudo-code follows:
• Compute the 6 z-buffers (X1, X2, Y1, Y2, Z1, Z2)
• For eachvoxel(i, j, k) do

1. Check if (i ≥ X1(k, j) andi ≤ X2(k, j))
2. Check if (j ≥ Y1(i, k) andj ≤ Y2(i, k))
3. Check if (k ≥ Z1(i, j) andk ≤ Z2(i, j))
4. If all checks are true setvoxel(i, j, k) = 1 else set

voxel(i, j, k) = 0
This algorithm assumes that the object surface is closed:

a ray in any direction from every point inside the object
must intersect the object’s surface an odd number of times.
Karabassi’s algorithm can handle convex and a subset of
concave objects. The limitation lies in the fact that certain
surface details (like concavities) may not be visible from
any of the six directions; it is not possible to voxelize such
parts of the object correctly. As seen Fig. 2 (a),(b) the letter
’G’ was voxelized incorrectly because the concavity is not
visible from any direction. Furthermore it is not easy to tell
whether a concave object has been correctly voxelized.

(a) (b) (c)

Figure 2. (a) Letter ’G’ and its z-buffers
(X1, X2, Y1, Y2). (b) Erroneous voxels marked
in red. (c) Double z-buffers and stencil buffer.

3. The Proposed Voxelization Algorithm

Our goal is a voxelization algorithm that alleviates the
above problems while using only standard graphics hard-
ware, so as to maintain performance and applicability. The
fundamental flaw in Karabassi’s algorithm is that it can not
correctly classify a voxel if any of the three lines that pass
from this voxel and are parallel to each of the three axes (X,
Y, Z) intersect the object surface more than two times.

We propose two improvements to Karabassi’s algorithm
that significantly increase the range of objects that are cor-
rectly handled. The first is an obvious generalization: the
use of an arbitrary configuration of more than six z-buffers.
The second is the combined use the z-buffer and the sten-
cil buffer which can handle up to one concavity per direc-
tion. Furthermore, our approach detects object cases that
may have been voxelized incorrectly.

3.1. Multiple z-buffers

Some concavities are not visible from any of the six main
directions but may be clearly visible from some others (Fig.
5 (a)). We generally need only one direction with clear line
of sight to determine if a voxel is inside the object. Chang-
ing the configuration of the six z-buffers and replacing them
with an arbitrary number can improve the voxelization re-
sult.

To generalize the orientation of the z-buffers we will use
the equation of the plane that defines a z-buffer. Such a
plane is defined by three points−→a ,

−→
b ,−→c . The plane equa-

tion is −→a ∗ x +
−→
b ∗ y + −→c ∗ z +

−→
d = 0 ⇐⇒

−→
d =

−(−→a ∗ ax +
−→
b ∗ ay + −→c ∗ az) and the parametric plane

equation isP (u, v) = −→a +(
−→
b −−→a )∗u+(−→c −−→a )∗v. The

normal to the plane is computed as−→n = (−→a−
−→
b )×(

−→
b −−→c )

|(−→a−
−→
b )×(

−→
b −−→c )|

.

We next need the projection of a given pointV (the
voxel) onto the plane. This is computed as the intersec-
tion of the plane with a line that starts fromV and has the
direction of the plane’s normal. The line equation is given
by L(ω) = V −−→n ∗ω. Solving the plane and line equations
results to the point of intersection of the line and the plane,



Figure 3. Stencil and z-buffers for Y direction.

and by using it in the parametric plane equation we obtain
its u, v parameters. Theu, v parameters can then be used to
obtain a value from the z-buffer. The pseudo code follows:
• Compute z-buffer pairs{Zl1, Zl2} for each direction

l = 0..N − 1
• For eachvoxel(i, j, k) do

◦ For each pair of buffers{Zl1, Zl2} do
1. Compute intersections of lineLvoxel(i,j,k)(ω)

with Zl1 andZl2 ((ul1, vl1) and(ul2, vl2))
2. Compute distancesdl1 anddl2 from V to the

two z-buffer planes
3. Check if (dl1 ≥ Zl1(ul1, vl1) and dl2 ≤

Zl2(ul2, vl2))
◦ If all N checks are true setvoxel(i, j, k) = 1 else

setvoxel(i, j, k) = 0
There is a trade-off between accuracy and performance.

As the number of z-buffers increases the algorithm becomes
slower. We do not consider the use of a large number of z-
buffers to be an efficient approach. Usually 8 to 16 z-buffers
in combination with the double layer approach are enough.

3.2. Double layer buffers

For most concave real life objects there are rays that in-
tersect the object’s surface more than twice, in any given
direction. Thus some voxels cannot be correctly classi-
fied by the above approach. The double layer approach ad-
dresses this problem by moving the threshold beyond which
the problem appears, from two to four intersections. Even
though the number of z-buffers needed to handle the gen-
eral case is not finite, in practice this approach handles most
cases, minimizing the limitation of Karabassi’s algorithm.

In Fig. 2 (c) the double layer approach is demonstrated
for the two dimensional case. For each direction, we have
an inner and an outer z-buffer, hence the name double layer
z-buffer. The object boundary forms a concavity that is not
visible by the two outer z-buffersZ1, Z2, but can be de-
tected using the inner layer z-buffersZ3, Z4. Instead of
checking if the voxel is betweenZ1 andZ2 we now check
betweenZ1 andZ3 and then betweenZ4 andZ2.

Double layer buffering can be implemented in graph-
ics hardware by exploiting the method used for culling
back faces. Because we can define either the clockwise
or counter-clockwise triangles as front facing, it is possi-
ble to render the object twice from each direction (e.g., +Y)
obtaining a total of four z-buffers per direction pair (e.g.,
+Y, -Y). This is depicted in Fig. 3 where the inner sphere
boundary is visible in the back facing z-buffersZ3 andZ4.

Double layer buffering requires a way of determining the
number of actual intersections per ray/voxel; if it is 2 we use
just the outer z-buffers, if it is 4 we use the double layer; if
it is greater than 4 we can mark this voxel as unclassifi-
able. For this purpose, we can use the stencil buffer which
is standard in modern graphics hardware, mainly because
of its use in the shadow volume technique. We use the sten-
cil to count the number of times the z-buffer is assigned a
new value at each pixel. To that end, we render the object
an extra time after disabling the z-test (always true) so that
all triangles are rendered. Every time the z-buffer is up-
dated the corresponding pixel value in the stencil buffer is
incremented. The stencil values for closed objects should
be multiples of two. This is shown for the two dimensional
case in Fig. 2 (c) and for the three dimensional in Fig. 3.

Furthermore, the stencil buffer provides some extremely
useful information. If a voxel has stencil values greater than
four in any direction pair, we can mark it as unclassifiable.
We can thus identify exactly all unclassifiable voxels and
then decide on the success of the voxelization process using
our algorithm, or whether a slow and more accurate method
should be applied to the object. This is demonstrated in Fig.
5 (d): we intentionally surrounded the teapots with boxes
in all directions so that the algorithm would not be able to
voxelize the teapots. The algorithm marked the teapots as
unclassifiable (shown in red). Note that even in this case the
result is acceptable since the user can decide if the unclas-
sifiable area belongs to the object.

4. Results

We tested our algorithm on a number of different objects
and compared it to Karabassi’s original algorithm. Note
that our algorithm handles all objects handled by that al-
gorithm plus classes of objects that previously could not be
voxelized correctly. The cost for this is an extra z-buffer per
direction and a stencil buffer per pair of opposite directions.
Fig. 5 shows the application of the two algorithms to vari-
ous objects. Case(a) can be handled either by the multiple
z-buffers or the double layer z-buffer approaches. Cases(b),
(c) require the use of double layer z-buffers (in(c) the our
algorithm found the cavity in the monster’s mouth).

Fig. 4 (a) examines the correlation between compu-
tational time and voxel/object resolutions. The algorithm
handles object complexity very well since the computation



Figure 4. (a) Elapsed time for different voxel
and object resolutions (s is object resolution).
(b) Voxelization in different resolutions.

time increases sublinearly with object resolution. Computa-
tion time increases quadratically w.r.t. voxel resolution in-
stead of cubically, as one might except. The reason behind
this is that the bottleneck of the algorithm is the transfer of
the buffers from video to main memory. Therefore, perfor-
mance is mostly affected by the size of these buffers which
leads to quadratic behavior. Fig. 4 (b) shows the effect of
the choice of voxel resolution. Our algorithm applies to any
resolution as long as it is bellow the maximum screen reso-
lution supported by the graphics card.

Our algorithm assumes that the object is strictly closed
and has no irregular faces (e.g., crossing, duplicate). Al-
though objects that are triangulated correctly don’t suffer
from these problems, not all real life objects are ideally tri-
angulated. Odd values in the stencil buffer is an indication
that such problems exist. We also observed that triangles
perpendicular to the z-buffer planes may produce certain
artifacts, especially in lower voxel resolutions. This is at-
tributed to the non-linear accuracy of the z-buffer.

5. Conclusion

A voxelization algorithm that is both efficient and ro-
bust was presented. Graphics hardware is exploited to attain
high performance while retaining generality. Our method
scales very well with increasing voxel and object resolu-
tions, making it suitable for most voxelization applications.
Additionally, it self detects the rare cases where it fails. Fu-
ture work will be focused on how to handle the general case
efficiently. The direction that will be followed is to exploit
the programmable pipeline offered by the latest graphics
hardware.

References

[1] R. Benjemaa and F. Schmitt. Fast global registration of 3D
sampled surfaces using a multi-z-buffer technique.Image

Figure 5. Voxelization results.

and Vision Computing, 17:113–123, 1999.
[2] H. Chen and S. Fang. Fast voxelization of 3D synthetic ob-

jects.Journal of Graphic Tools, 3(4):33–45, 1998.
[3] D. Cohen, A. Kaufman, and Y. Wang. Generating a smooth

voxel-based model from an irregular polygon mesh.The
Visual Computer, 10(6):295–305, 1994.

[4] S. Fang and H. Chen. Hardware accelerated voxelization.
Computers and Graphics, 24(3):433–442, 2000.

[5] T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang.
Voxel-based object simplification. InProceedings of the
IEEE Visualization, pages 296 – 303, Atlanta, GA, 1995.

[6] E. Karabassi, G. Papaioannou, and T. Theoharis. A fast
depth-buffer-based voxelization algorithm.ACM Journal of
Graphics Tools, 4(4):5–10, 1999.

[7] G. Papaioannou, E. Karabassi, and T. Theoharis. Recon-
struction of 3D objects through matching of their parts.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(1):114–124, January 2002.

[8] G. Passalis, I. Kakadiaris, T. Theoharis, and M. Miller.
Non-invasive automatic breast volume estimation for post-
mastectomy breast reconstructive surgery. InIEEE Engi-
neering in Medicine and Biology Society, Cancun, Mexico,
2003.

[9] C. Prakash and S. Manohar. Volume rendering of unstruc-
tured grids - a voxelization approach.Computer Graphics,
19(5):711–726, 1995.

[10] T. Theoharis, G. Papaioannou, and E. Karabassi. The magic
of the z-buffer: A survey. InInt. Conference in Central Eu-
rope on Computer Graphics, Visualization and Computer Vi-
sion, pages 379–386, Pilsen, CZ, February 2001.

[11] R. Wright and M. Sweet.OpenGL SuperBible. Waite Group
Press, 1999.


