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Abstract

In the current study we present a parallel statistical algorithm (SHMap), which distinguishes
DNA regions which possibly carry protein coding information from non-coding regions. The code
was parallelized using MPI and was deployed in a Grid testbed provided by the CrossGrid IST
European Project. We tested the SHMap algorithm on mammalian chromosomes. The paralleliza-
tion of the algorithm and the use of the Grid environment achieves significant speed-up compared
to the sequential version of the algorithm, although the use of the Grid environment still presents
some problems. Our algorithm is open source and freely distributed from our website.

1 Introduction

The need of biological problems for computational power has been steadily increasing over the past
decade. New DNA sequences are decoded and stored in biological databases, while biocomputational
tools are becoming more and more demanding and sophisticated.

Some of the most demanding and resource-consuming biological problems have to do with analyzing
biosequences, in order to distinguish areas with specific biological meaning. These sequences may
have DNA (nucleic acid) or protein (amino acid) origin and usually can be retrieved from databases
like NCBI [9]. The annotation of DNA sequences requires hard and expensive experimental work.
Alternatively, computational tools may be used based on similar statistics between different kinds of
sequences. In the current study we will focus on the statistical analysis of DNA sequences aiming to
recognize and annotate functional areas of the DNA from the degree of statistical homogeneity.

DNA chromosomes consist of areas with different composition. There are parts inside the chro-
mosome (coding regions) which are able to code for proteins using the genetic code and their bases
appear to be “statistically random”, whereas other parts of the chromosome do not code for proteins
(non-coding regions) and have more structural role[1, 2, 8, 7, 5]. In eucaryotic cells the coding areas
are less common than the non-coding ones. Areas rich in coding regions are more homogeneous, in the
sense that all possible combinations of nucleotides can be found, whereas areas poor in coding regions
are less homogeneous, since some sequences (like poly-A) dominate these areas and some nucleotide
combinations are missing. For this reason in homogeneous areas the distances between successive
occurrences of the same oligonucleotide should be smaller than in less homogeneous areas.

Since coding regions appear more “random” than non-coding ones, if we consider all possible com-
binations of oligonucleotides of a fixed length and calculate their inter-distances, it should be possible
to distinguish areas according to their homogeneity. Our method has been realized using a sequential
algorithm (SHMap, Statistical Homogeneity Map Algorithm, [6]), by analyzing the homogeneity of
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long DNA sequences, or even entire chromosomes. Because of the length of a medium size eucaryotic
chromosome, this algorithm is computationally demanding. However each oligonucleotide combina-
tion could be processed independently of the others; for this reason the performance of the SHMap
algorithm can be drastically improved by parallelization. The code of our algorithm is open source
under GNU GPL and can be freely downloaded from our website http://www.bioinfo.gr.

Bioinformatics is among the scientific disciplines that stand to benefit from Grid Computing capa-
bilities [10, 3, 4]. Currently there does not exist a prevalent architecture for building Grid infrastruc-
tures. A trend is the agglomeration of various tools and APIs in order to provide what is considered
a required set of Grid Services (job management, load balancing, security, data management, data
replication etc). Such solutions are currently implemented in the context of various International Grid
Projects like the European DataGrid (http://www.edg.org), CrossGrid (http://www.crossgrid.org)
and EGEE (Enabling Technologies for E-sciencE, http://www.cs.wisc.edu). In this paper we have
utilized the Grid Infrastructure of the CrossGrid IST Project Testbed in order to parallelize and gridify
our application.

In the next section we outline the Grid infrastructure organization and implementation. The
SHMap algorithm is described in section 3. Section 4 presents some applications of the algorithm and
speed up tests, while the concluding section discusses the results and the problems we encountered
while working with the Grid environment.

2 Grid Tools, Middleware and Testbed

2.1 Testbed Architecture

The CrossGrid testbed shares computing resources across sixteen European sites. The sites range from
relatively small computing facilities in universities, to large computing centers. Sites are connected
through the high-performance European network Géant. Each site includes at least the following
computing and data storage resources: A Computing Element (CE) machine, which provides the
entry point to the local processing farm, a farm with at least two Worker Nodes (WNs) which are
responsible for the actual execution of a job, a Storage Element (SE) machine, which provides storage
resources (disk space) as well as data and replica management services (GridFTP, RLS, etc), and a
User Interface (UI) machine which provides an access point for local users to the testbed by including
all the required client and development software to exploit the Grid capabilities.

The testbed provides a total of 104 CPUs and a storage volume above 4 TB. The integration of these
resources is done by the following centralized services: The Resource Broker (RB) and the Information
Index (II). The RB is the heart of the workload management system. It receives job requests sent by
users and finds computing resources (Computing Elements and respective Worker Nodes) suitable to
run the jobs. Job management is performed by Condor-G (http://www.cs.wisc.edu). Every RB is
paired with an II node which is a centralized LDAP repository of Grid resource information published
by local CE and SE systems.

2.2 Middleware

The CrossGrid testbed utilizes the middleware that is being developed by CERN for the Large
Hadron Collider (LHC) Particle Accelerator. This middleware known as LCG (LHC Computing Grid,
http://lcg.web.cern.ch) is a collection of various Grid components, mainly the Globus Toolkit,
Condor and PBS, deployed on top of a uniform Linux-based OS architecture (Red Hat 7.3). These
components have initially been extended and enhanced in the context of European DataGrid project,
have been adopted and further enhanced by CrossGrid and currently are also used by the EGEE (En-
abling Grids for E-Science and Engineering) project. The main Grid capabilities that LCG provides
are: job and workload management, replica and data management, information indexing and retrieval,

2



job and testbed monitoring. Jobs are described using the Job Description Language (JDL) which is
based on Condor ClassAdds.

2.3 Application Gridification

The main purpose of gridifying SHMap was to split the workload by parallelizing the execution of the
algorithm, thus achieving execution speed-up. We have opted to parallelize the algorithm itself; this
approach is the most efficient. The code is parallelized using the MPI library. The disadvantage of
this solution is that the source code has to be altered in order to include the required MPI calls and
apply the parallelization strategy. The advantage is that this solution can easily scale. All the required
interprocess synchronization and communication is handled by MPI. For instance, the last step which
produces the final result histogram file can be performed using MPI’s collective communication or
parallel I/O. Moreover the application is submitted as a single job irrespective of the number of
processes, thus the Grid overhead is small and constant.

3 SHMap Biocomputation Algorithm under Grid environment

The SHMap algorithm distinguishes areas of the genome according to their statistical homogeneity.
This is achieved by marking areas for which the distance between consecutive occurrences of any ran-
dom oligonucleotide is larger than a given threshold . The algorithm consists of a repeatable procedure
which marks areas where distances between two consecutive oligonucleotides are well above a statisti-
cally defined threshold. Computed areas of higher homogeneity has been found to be probable coding
areas, when compared with experimental biological data. The structure of the SHMap algorithm has
been described in previous work [6].

We have implemented the necessary changes to run the SHMap algorithm under MPI in data
parallel mode. Each process is responsible for a different set of oligonucleotides. In SHMap searches
the whole chromosome has to be traversed. Thus splitting the chromosome among multiple processes
would not have been an efficient solution, as it would involve considerable ‘border’ checking and
therefore communication between the parallel processes. The parallelization of SHMap follows a
simple Single Program Multiple Data (SPMD) coarse grain strategy. All processes hold the entire
chromosome. In the preparation phase each process computes the set of oligonucleotides that it will
handle.

Synchronization is performed using the MPI Reduce function on the master process, which is re-
sponsible for gathering the results and producing the unified statistical map. Upon completion of the
reduction operation, the master process proceeds alone, performs the normalization of the map and
stores the results in the output file.

The job is submitted to the Grid middleware using an appropriate JDL file. Using JDL we
define the input sandbox comprised of the executable itself and the input genome file. As execution
parameters we pass the name of the input file and the range of oligonucleotide sequences that will
be collectively searched. Notice that the application can also be used with the first parallelization
approach since the range of oligonucleotides is parametrically defined at execution time.

We define the total number of processes that will be created and give requirements regarding the
execution environment of the application in JDL. Each process is given a complete copy of the genome
and requires an equal amount of space for the result array. This requirement is passed in the JDL
specification. Before submitting the job we can test for availability of a sufficient cluster using the
edg-job-list-match LCG workload management command.

The job is submitted using edg-job-submit. The programmer then periodically checks the progress
of the job execution using edg-job-status command. The parallel application is executed as a batch
job since there is no requirement for interactivity. When the application has finished the user retrieves
the result file using edg-job-get-output command.
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m n ttotal tcomp Stotal Scomp pctotal pccomp

6 1 3982 3735 1 1 3982 3735

6 2 2701 2453 1.47 1.52 5402 4906

6 4 2231 1983 1.78 1.88 8924 7932

6 8 1554 1330 2.56 2.81 12432 10640

Table 1: Benchmark results of the SHMap algorithm when run in the Grid subsystem. m is the length
of the oligonucleotide, n is the number of processors, t is run time in seconds. ‘total’ stands for the
parallel execution time (from submission of Grid request to run, up to the end of execution), ‘comp’
is the execution time only. ‘S’ and ‘pc’ stands for speedup and parallel cost respectively.

4 Application to biological data

As already noted, the SHMap algorithm annotates areas of the chromosome depending on their degree
of homogeneity. Genome areas where the output of the algorithm is high possess a low degree of
homogeneighty and vice versa. Since coding regions are usually homogeneous, the SHMap output can
be considered as an indicator for coding regions.

The parallel algorithm has been successfully tested on mammalian chromosomes of lengths ranging
from 10M base pairs to 100M base pairs. As an example we present here the application of SHMap on
chromosome 17 of Mus musculus (obtained from ftp://ftp.ncbi.nih). The oligonucleotide length
chosen (m) is of critical importance to the results. Although the length of the chromosome (c) is large,
the frequency of appearance of random oligonucleotides decreases dramatically as m increases. We
have opted for oligonucleotides of sizes 6 (hexaplets), since this size produces clearly distinguishable
areas with higher or lower homogeneity.

We have created the appropriate JDL files to perform the Grid tests for this system. The numbers
of processors used were 1, 2, 4 and 8. Since timing was an important issue, we forced the resource broker
to use only a specific cluster, so that the measurements are comparable to each other. We measured
the total Grid execution time and the computational time (without the Grid overhead). The former
corresponds to the duration between the submission of the job description to the resource broker to
the successful completion of the application, while the latter measures only the pure application run
time, without any Grid system overhead. The results appear in Table 1.

The speed-up corresponds to the sequential time over the corresponding parallel time:

S =
tsequential

tparallel

(1)

We set tsequential equal to the execution time of the algorithm on one processor of the same system.
The parallel cost was also computed:

pc = n ∗ tparallel (2)

where n is the number of processors.
The speedup and the parallel cost increase monotonically. The reason for the increase in the

parallel cost is the large amount of system overhead (relative to the computational cost) in order to
execute parallel instances of the application. Moreover, there are parts of the algorithm which are
executed sequentially and this cost (mainly gathering and combining the results) is proportional to
the number of processors. We have to note that the unknown bases had to be removed from the DNA
sequence (they were less than 1 : 103 in this example), since these bases do not match with any given
pattern and produce false high peaks.
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Figure 1: Statistical Homogeneity Map (SHMap) for the annotated chromosome 17 of Mus musculus.
The visible region is between the bases 12040000 − 12070000. The size of oligonucleotides is m = 6.
The lower the value on the vertical axis, the higher the homogeneity (and thus high possibility for
coding sequences) and vice versa. Red color marks “CDS” areas, as found in the GeneBank genome
file, green marks non-coding areas and blue marks areas with both coding and non-coding parts.

4.1 Biological evaluation of the results

In order to test the validity of the produced results of Mus musculus chromosome 17, we compare them
to the actual biological information gathered from a biological database. The annotated chromosome
17 of Mus musculus from NCBI database has been used. Figure 1 shows such a comparison for the area
12040000 − 12070000. We show the produced SHMap of this chromosome together with the coding
sequence areas (CDS) on the same graph. The higher the values on the vertical axis the lower the
homogeneity of the corresponding area of the chromosome. Red color denotes CDS and green color
the rest of the chromosome, as obtained from the GeneBank file.

We note that this approach does not perform a detailed distinction between coding and non-coding
regions, but it can be used to focus the researcher on areas which have a high probability of being
CDS. It is thus able to highlight areas of potential importance, since the structure and statistical
characteristics of the DNA sequence are related to its functionality.

5 Discussion

The gridification of the SHMap algorithm achieved a practical speed-up on the application run time,
compared to the sequential version. Moreover its scaling is rather good, especially when computation-
ally intensive parameters are used in the algorithm. Since we used a small chromosome, compared
to other mammalian chromosomes, it is expected that the algorithm will behave at least as well for
longer eucaryotic chromosomes. The Grid system overhead is also rather small and represents an
unnoticeable portion of the total execution time, for computationally intensive applications.

Apart from the benefits, we also faced some problems in the gridification of the system. Since
the middleware is in principle optimized towards batch applications, the user did not have immediate
feedback on the status of the requests. Sometimes a sample run crashed and the only way for the user
to be informed was to constantly ask the resource broker for the status of the submitted job. Even
worse, there were cases where the job had been terminated for no apparent reason and the feedback
messages to the user were rather sparse and non-informative. Most of the time, only a simple message
informed the user that the application terminated with a specific exit code, which was irrelevant to
the application itself but was specific to the Grid middleware.

Another problem had to do with the functionality of the Grid testbed itself. Due to current
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middleware architecture restrictions, the Information Index cannot keep detailed information about all
WNs in a farm. Site Administrators have to choose a ‘representative’ WN and publish its configuration
information as if it applies to all WNs in a site. There are situations where sites do not properly
advertise themselves, by providing outdated information about their status or their abilities. This had
the side effect that the resource broker sent a job to a specific cluster which advertised more processors
than the actual, with the result of constantly rejecting or aborting the job for reasons not obvious to
the end-user. Since this application was memory demanding, we have used some memory constrains in
order to send the job to the appropriate cluster. Unfortunately there were clusters where not all nodes
had the same amount of memory and the system advertised the average or the maximum memory
instead of the minimum. The effect was that the algorithm run well on some nodes of the cluster and
broke on others, making it impossible to gather the data in the last phase of the algorithm.

Despite the current practical problems, we believe that as Grid technology matures, it will become
a more attractive computational tool for demanding scientific applications.
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