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Abstract

Methods for representing curves in R2 and R3 using
fractal interpolation techniques are presented. We show
that such representations are both effective and conve-
nient for irregular or complicated data. Experiments
in various datasets, including geographical and medical
data, verify the practical usefulness of these methods.

1. Introduction

In many practical applications, it is often necessary
to model complicated or irregular data as, for example,
coastlines and similar complicated geographical bound-
aries, or medical data such as boundaries of anatomical
structures. Such data have an inherent fractal struc-
ture that can be cumbersome to model using tradi-
tional techniques based on smooth elementary func-
tions, e.g. polynomials. Fractal interpolation offers a
convenient and efficient approach to modelling intricate
or irregular shapes.

In this paper, we examine three methods for mod-
elling 2D or 3D curves using fractal interpolation tech-
niques and apply them in a variety of areas, including
geographical and medical ones. The results show that
these methods are indeed useful in practice, achieving
accurate representations along with satisfactory com-
pression ratios. The paper is structured as follows.
Section 2 contains a brief review of fractal interpola-
tion functions. In Section 3, we present three methods
for constructing fractal interpolation curves, while Sec-
tion 4 describes how to model shapes using them. In
Section 5, we apply the aforementioned methods to a
variety of datasets, evaluate their performance and in-
dicate areas of future work.

2. Fractal interpolation functions

Fractal interpolation functions as defined in [1]
and [2] are based on the theory of iterated function
systems (IFSs). An IFS, denoted by {X ; wn, n =
1, 2, . . . , N}, consists of a complete metric space (X, ρ),
e.g. (Rn, || · ||) or a subset of such a space, and a
finite set of continuous mappings wn: X → X , n =
1, 2, . . . , N . If wn are contractions with respective con-
tractivity factors sn,n = 1, 2, . . . , N , the IFS is termed
hyperbolic and the transformation W :H(X) → H(X)
with W (B) = ∪N

n=1wn(B), where H(X) denotes the
space of nonempty compact subsets of X , has a unique
fixed point A∞ = W (A∞) = limn→∞ Wn(B), for ev-
ery B ∈ H(X), which is called the attractor of the
IFS.

2.1. Fractal interpolation functions on the
plane

Let us represent the given set of data points as
{(um, vm) ∈ R2: m = 0, 1, . . . , M}. In general, the
interpolation is applied to a subset of them, the in-
terpolation points, represented as {(xi, yi) ∈ R2: i =
0, 1, . . . , N}. Both sets are linearly ordered with re-
spect to their abscissa, i.e. u0 < u1 < · · · < uM and
u0 = x0 < x1 < · · · < xN = uM . The interpolation
points partition the set of data points into interpolation
intervals and may be chosen equidistantly or not.

Let {R2; wn, n = 1, 2, . . . , N} be an IFS with affine
transformations
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for every n = 1, 2, . . . , N . Solving the above equations



results in
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i.e. the real numbers an, dn, cn, en are completely de-
termined by the interpolation points, while the sn

are free parameters of the transformations satisfying
|sn| < 1, in order to guarantee that the IFS is hy-
perbolic with respect to an appropriate metric. The
transformations wn are shear transformations : line
segments parallel to the y-axis are mapped to line seg-
ments parallel to the y-axis contracted by the factor
|sn|. For this reason, the sn are called vertical scaling
(or contractivity) factors.

It is well known (see for example [2]) that the attrac-
tor G =

⋃N
n=1 wn(G) of the aforementioned IFS is the

graph of a continuous function f : [x0, xN ] → R that
interpolates the points (xi, yi), i = 0, 1, . . . , N . This
function is called fractal interpolation function (FIF)
corresponding to these points. It is a self-affine func-
tion since each affine transformation wn maps the en-
tire (graph of the) function to its section, i.e. function
values between the interpolation points (xn−1, yn−1)
and (xn, yn) for all n = 1, 2, . . . , N .

Although the FIF passes by definition through the
interpolation points, this is not necessarily the case for
the remaining data points {(um, vm)} \ {(xi, yi)}. The
accuracy of fit can be measured as the squared error
between the ordinates of the original and the recon-
structed points

ε =
M∑

m=0

(vm − G(um))2 (1)

where G(um) denotes the ordinate of the attractor for
abscissa um, or alternatively, as the Hausdorff distance
between the two sets

ε = h({(um, vm)}, G). (2)

The vertical scaling factors of a FIF are usually chosen
so as to minimize such an error measure. For example,
in [8] and [10] the minimization of (1) is achieved by an-
alytic or geometric methods. Moreover, in [10] a greedy
algorithm for finding some proper (but not necessarilly
globally optimal) interpolation points is presented.

2.2. Generalized fractal interpolation func-
tions

The FIF model described in the previous section can
be extended to higher dimensions, producing functions
that interpolate points in Rk. Let {pm ∈ Rk: m =
0, 1, . . . , M} be the set of data points and {qi ∈ Rk: i =
0, 1, . . . , N} the set of interpolation points. Both sets
are again assumed to be linearly ordered with respect
to their abscissa. Let {Rk; wn, n = 1, 2, . . . , N} be an
IFS with affine transformations
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constrained to satisfy

wn(q0) = qn−1 and wn(qN ) = qn

for every n = 1, 2, . . . , N . The real numbers an, ci
n, dj

n

for n = 1, . . . , N , i = 1, 2, . . . , k − 1 and j = 1, 2, . . . , k
are completely determined by the interpolation points
by solving the above equations, while the si,j

n , i, j =
1, 2, . . . , k − 1 are free parameters of the transforma-
tions chosen such that the contractivity factor sn of
the matrix (called contractivity matrix )⎡
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has modulus less than unity, in order to guarantee that
the IFS is hyperbolic with respect to an appropriate
metric. The exact values of the si,j

n can be determined
by minimizing an error measure as in the planar case
(see e.g. [9]). In R3 we have
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The attractor G =
⋃N

n=1 wn(G) of the IFS is the
graph of a continuous function f : [q1

0 , q
1
N ] → Rk−1 that

interpolates the points qi, i = 0, 1, . . . , N (see [2]). It
is a self-affine FIF in Rk; however, its orthogonal pro-
jections on R2 are not necessarilly self-affine.

3. Fractal interpolation curves

In the case where the interpolation points define a
curve rather than a function, i.e. they are not linearly
ordered with respect to their abscissa, the direct use
of a fractal interpolation function is not possible. In
order to construct an IFS whose attractor interpolates
the given points and is therefore a curve, we can trans-
form or extend the original points such that the appli-
cation of a FIF is possible. This is then transformed or
projected back to the plane to obtain a fractal interpo-
lation curve that interpolates the original points. Here
we will present two existing methods for constructing
fractal interpolation curves ([4], [11]) and a new one we
have introduced in a previous work ([7]). Alternative
methods can be found in [3], [5] and [6]. A detailed re-
view of methods for constructing fractal interpolation
curves can be found in [7].

3.1. Related work

A straightforward way for constructing fractal in-
terpolation curves involves the use of Generalized FIFs
(see e.g. [4]). Let {(xi, yi) ∈ R2: i = 0, 1, . . . , N} be
the set of interpolation points. These points do not
define a function but a curve on the xy-plane, i.e. it
is not necessarily xi < xj for i < j. We apply the
transformation T : R2 → R3 with (xi, yi) �→ (ti, xi, yi),
i = 0, 1, . . . , N , where the introduced index coordinates
ti satisfy t0 < t1 < · · · < tN ; usually we set ti = i.
The new set of points (ti, xi, yi), i = 0, 1, . . . , N is
the generalized set corresponding to the original points
and defines a function. We create a FIF that inter-
polates the generalized set as described in Subsection
2.2. The attractor G′ =

⋃N
n=1 wn(G′) of the IFS is the

graph of a continuous function f ′: [t0, tN ] → R2 that
interpolates the generalized set of points (ti, xi, yi),
i = 0, 1, . . . , N . The projection of the attractor to R2,
defined by Pt: G′ → G with (ti, xi, yi) �→ (xi, yi), is the
graph of a continuous curve f : [x0, xN ] → R that inter-
polates the points (xi, yi), i = 0, 1, . . . , N . Note that
although the attactor G′ is self-affine, its projection G
is not necessarily self-affine. This method will be called
Method 1 hereafter.

A similar approach involves the introduction of in-
dex coordinates without generalization to a higher-
dimensional space ([11]). Specifically, we split the orig-

inal set of points into two new sets by introducing an
index for each coordinate. Then a fractal interpolation
function is constructed for each new set and these are
finally combined in a single curve that interpolates the
original points.

As previously, let {(xi, yi) ∈ R2: i = 0, 1, . . . , N}
be the set of interpolation points. We apply the
transformations T1: R2 → R2 with (xi, yi) �→ (ti, xi),
i = 0, 1, . . . , N and T2: R2 → R2 with (xi, yi) �→ (ti, yi),
i = 0, 1, . . . , N , where the introduced index coordinates
ti satisfy t0 < t1 < · · · < tN ; usually we set ti = i.

Then, we create a fractal interpolation function for
each of the two sets in the way described in Subsection
2.1. Let Gx = (txi , xi) and Gy = (tyi , yi) be the attrac-
tors of the respective IFS. We can merge Gx and Gy

in order to obtain G = (xi, yi) which is the graph of a
continuous curve f : [x0, xN ] → R that passes through
the interpolation points. Note that although the attac-
tors Gx and Gy are self-affine, this is not necessarilly
the case for G. This method will be called Method 2
hereafter.

3.2. The proposed method

A new method for creating fractal interpolation
curves on the plane without using index coordinates
or generalizing to a higher-dimensional space was intro-
duced in [7]. The fractal curve fitting (FCF) method in-
volves applying a reversible transformation to the data
points, such that they define a function on the plane.
Then a FIF is constructed as usual and its attractor is
transformed back to the original coordinates, in order
to obtain a curve that interpolates the original points.

Let us represent the given set of data points as
{(um, vm) ∈ R2 : m = 0, 1, . . . , M} and the re-
spective set of interpolation points as {(uJ(i), vJ(i)) ∈
R2 : i = 0, 1, . . . , N}, where the labelling function
J: {0, 1, . . . , N} → {0, 1, . . . , M} defines the indices of
the interpolation points. We apply the transformation
T1(um, vm) = (u′

m, v′m), m = 0, 1, . . . , M , where

u′
m = u0 +

m∑
j=1

(|uj − uj−1| + ε) =

= u′
m−1 + (|um − um−1| + ε),

v′m = vm,

where ε > 0 is an arbitrary constant necessary, when
all points in an interpolation interval have equal u-
coordinates, i.e. um = um−1 for every m = J(i) +
1, . . . , J(i + 1) and some i ∈ {0, 1, . . . , N}. Other-
wise, we set ε = 0. The resulting points (u′

m, v′m),
i = 0, 1, . . . , M are linearly ordered with respect to
their abscissa, i.e. u′

m < u′
n for every m < n. This



transformation is essentially arraying the data points
so as to preserve their horizontal distances.

The next step is to create an IFS whose attractor
is the graph of a function that interpolates the points
(u′

J(i), v
′
J(i)), i = 0, 1, . . . , N . This is achieved by using

a 2D affine IFS (Subsection 2.1) and the result is its
attractor G′.

The final step is to apply a second transformation to
G′ in order to obtain the graph G of a curve that inter-
polates the initial points {(um, vm): m = 0, 1, . . . , M}.
Let (u′, v′) ∈ G′ be a point of the attractor. We apply
the transformation T2: G′ → G with (u′, v′) �→ (u, v),
where

u = um−1 + (um − um−1)
(

u′ − u′
m−1

u′
m − u′

m−1

)
,

u′ ∈ [u′
m−1, u

′
m]

v = v′

Note that the overlapping at the endpoints of succes-
sive intervals [u′

i−1, u
′
i] in the above formula is not am-

biguous, since the resulting u is the same in both cases.
The transformation T2 can be efficiently computed, if
the points of the attractor are first sorted by u′ and
then the attractor and transformed data points are
sweeped in parallel in order to calculate the appropri-
ate (u, v). Th proposed method will be called Method
3 hereafter.

The fractal interpolation curves constructed by the
above three methods are open, assuming that the first
and last interpolation points are different. In order
to construct a closed fractal interpolation curve, we
append to the original interpolation points an addi-
tional one that is the same as the first, i.e. we add
(xN+1, yN+1) = (x0, y0). The curve is afterwards con-
structed in the same way.

3.3. Three dimensional curves

The three methods of Subsections 3.1–3.2 can be di-
rectly extended to model curves in R3; the additional
z coordinate is treated exactly as the y coordinate. In
Method 1, the interpolation points {(xi, yi, zi) ∈ R3:
i = 0, 1, . . . , N} are transformed by T : R3 → R4 with
(xi, yi, zi) �→ (ti, xi, yi, zi), i = 0, 1, . . . , N . A general-
ized FIF in R4 is subsequently constructed, whose at-
tractor is finally projected on R3 by eliminating the t
coordinate. In Method 2, a third FIF is constructed to
interpolate the additional points (ti, zi), i = 0, 1, . . . , N
and is subsequently treated similarly. In Method 3, the
third coordinate of the data points is treated exactly
like the v coordinate; in the intermediate step a 3D
generalized FIF is constructed instead.

4. Shape modelling using fractal interpo-
lation curves

In order to model a shape as a fractal interpola-
tion curve, we first need to determine the interpola-
tion points. This can be done at a predetermined step,
i.e. by choosing every n-th data point as interpolation
point, or using an automated algorithm for locating
them such as the one in [10]. The number of interpola-
tion points determines the balance between the accu-
racy of fit and the compression ratio and should there-
fore be accordingly set. The fractal interpolation curve
can then be constructed by one of the three presented
methods. In all cases, we must define an algorithm for
calculating the vertical scaling factors such as those
mentioned in Subsection 2.1. A shape can then be rep-
resented by the vector consisting of the coefficents of
all affine transformations of the respective IFS(s). Note
that, for the first two methods, it is possible to omit the
an, d1

n and an, dn coefficients respectively, if a consis-
tent indexing scheme is predetermined (e.g. ti = i); in
this case a better compression ratio is achieved. More-
over, fractal interpolation curves provide an inherent
ability for multi-resolution modelling; any part of the
curve can be infinitely magnified revealing detail.

5. Results

We have applied the three described methods to a
variety of 2D and 3D data. In all cases, the inter-
polation intervals have been chosen with fixed length
and the contractivity factors of the constructed inter-
polants have been calculated with the analytic algo-
rithms of [9] and [10]. The compression ratio of each
representation is calculated as r = c1N/ (c2M), where
N is the number of affine transformations, c1 the num-
ber of affine transformation coefficients depending on
the method and the data dimension, M is the number
of data points and c2 = 2 or 3 depending on the data
dimension.

Figures 1–6 depict six coastlines of Greek islands and
their representation as two dimensional curves using
all three methods. The interpolation points have been
chosen with a fixed step of 20, i.e. every 20th data point
is used as interpolation point, resulting in compression
ratios from 1:5.00 to 1:8.04. Even though the coastlines
are very intricate, their representation is very accurate
with considerable compression ratios, as summarized
in the following table.

Figures 7–9, depict brain structures, namely the
white matter, located in axial anatomical images
(cryosections)1. Their boundaries are represented us-

1The axial anatomical images are from the Visible Human



Coastline Num. of points Method Comp. Ratio
A 4410 1 1:5.01
B 7510 2 1:6.68
C 3898 3 1:8.04
D 7186 1 1:5.00
E 4664 2 1:6.67
F 6172 3 1:8.02

Table 1. The compression ratios achieved by
the three methods for representing the coast-
lines.

ing multiple fractal interpolation curves, since they
consist of disjoint parts. All three methods have been
used, with the interpolation points chosen with a fixed
step of 20 resulting in compression ratios from 1:5.02
to 1:8.03, as summarized in the following table.

Anatom. image Num. of points Method C. Ratio
A 3000 1 1:5.02
B 4010 2 1:6.65
C 5218 3 1:8.03

Table 2. The compression ratios achieved by
the three methods for representing the white
matter of brain in axial anatomical images.

Figure 10(a) contains a three dimensional stone frag-
ment. Its boundary in the current view is a three di-
mensional curve. This boundary is represented using
the Method 1, and is depicted in Figures 10(b)–10(d).
The interpolation points have been chosen with a fixed
step of 20 resulting in a comp. ratio of 1:4.00. A simi-
lar example of a three dimensional pot fragment is de-
picted in Figure 11, where the current view boundary
is represented with the Method 3. The interpolation
points are chosen with a fixed step of 20 resulting in a
compression ratio of 1:6.15.

Conclusively, all methods represent accurately the
2D and 3D shapes achieving considerable compression
ratios. Even though the represented shapes are very
intricate, the three methods are easily applied, yield-
ing satisfactory results. Moreover, it is possible to de-
fine the balance between compression ratio and accu-
racy of representation by simply adjusting the interpo-
lation points selection step. Therefore, the three de-
scribed methods are both convenient and effective in
practice. Future work will focus on using piecewise
self-affine fractal interpolation as well as automated ef-

Project of the National Library of Medicine which is hereby ac-
knowledged.

(a) (b)

Figure 1. (a) Coastline A (Amorgos) consisting
of 4410 points. (b) The reconstructed curve
using the Method 1 with comp. ratio = 1:5.01.

(a) (b)

Figure 2. (a) Coastline B (Astypalaia) consist-
ing of 7510 points. (b) The reconstructed
curve using the Method 2 with comp. ratio
= 1:6.68 .

ficient methods for locating the optimal interpolation
points.
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