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Abstract— In this article an application of the inpainting
algorithm for recovering packet losses from transmitting se-
quential quad tree compressed images over wireless sensor
networks is presented. The aim of the proposed scheme is
to reconstruct the missing information at the receiver side,
based on the inpainting algorithm, instead of increasing the
overhead of the network by requesting from the transceiver to
re-transmit the lost data packets. The proposed architecture
initially compresses the images sequentially using the quad
tree decomposition algorithm. In the sequel, at the receiver
side, the image is reconstructed as a lossy image, based on the
available successfully received data packets, while afterwards
the proposed scheme applies the image inpainting algorithm,
in order to restore any missing partitions of the image. The
inpainting algorithm is performed based on information derived
from the the received image itself. Experimental results are
presented that prove the efficacy of the proposed scheme.

I. INTRODUCTION

The reconstruction of missing or damaged partitions of
images is receiving significant attention nowadays varying,
from the restoration of damaged paintings and photographs
to the removal and replacement of selected objects [1–3].
Digital techniques are starting to become a widespread way
of performing inpainting, ranging from attempts to fully
automatic detection and removal of scratches in images, to
software tools that allow for a manual more sophisticated
process [4].

Moreover, the field of Wireless Sensor Networks has
received significant attention in recent years with the number
of applications to cover areas such as surveillance, security,
monitoring of natural habitats, eco–systems and medical
monitoring [5, 6]. Among the features of WSNs that made
them so popular in our days are: a) the ability to construct a
long–lived system that can be untethered and unattended, b)
the easiness of ad–hoc deployment, c) the network’s inherit
reconfiguration property, d) the redundancy and heterogene-
ity of the network, and finally e) the rapidly decreasing cost
of wireless embedded devices that constitute a WSN. All
these benefits are turning this technology in a most promising
one, especially in cases that involve large scale applications
at geographical areas with difficult access.
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In parallel to the improvements in the area of WSNs,
multimedia applications are becoming dominant in our days,
making the need for simultaneous access to multimedia
content more demanding than ever. In order to cover this
need, new types of fast networks and compression algorithms
emerge to satisfy bandwidth needs for delivering multimedia
content. From another point of view, the need for high
bandwidth and burst modes of packet transmission and
reception is in conflict with the communication capabilities
of WSNs, which are characterized by low bandwidth, small
length of data packets and asynchronous communication
among nodes [7]. This situation results in a dominant need
to compress the data before their transmission over the
network. Such a compression algorithm is the Quad Tree
Decomposition (QTD) [8, 9].

Due to the unavoidable existence of packet losses in every
wireless communication channel, it is obvious that, in case
we transmit an image over the WSN, it would result in
a reception of a lossy image at the receiver side. If the
transmitted image is decomposed by a QTD approach, in
order to reduce the number of the data packets that are
required to transmit a full image, then these losses would
appear as orthogonal gaps in the received image with no
info and of a varying size equal to a power of 2.

The aim and novelty of the presented research is to utilize
the theory of inpainting in order to repair the effects of packet
losses in transmitting images over Wireless Sensor Net-
works(WSNs). Instead of following the classical approach
of analyzing the image and requesting re-transmission of
the missing packets, an act that increases the overhead in
the network, the inpainting algorithm is utilized to fill in,
with a satisfactory estimation at the receiver side without
any interaction of the transmitter, the missing information.
This repair is performed by propagating information from
the transmitted image.

Although the inpainting algorithm is widely utilized, its
combination with compression techniques and wireless sen-
sor nodes declare a new area of research where theories from
multiple fields are combined to produce novel approaches in
the area of image transmission.

This paper is structured as follows. In Section II, the
System Architecture of the proposed scheme is presented,
while in Sections 3,4, and 5 modules of the proposed scheme
are analyzed. Finally, in Section VI experimental results, that
prove the efficacy of the proposed scheme, are presented,



followed by conclusions and proposals for the future work
in Section VII.

II. SYSTEM ARCHITECTURE

The overall transmission and reconstruction scheme is
presented in Figure 1 where it is shown that the received
images from a camera are decomposed according to the
Quad–Tree decomposition factor and afterwards, the pro-
duced decomposed image is buffered and transformed in
concatenated data streams with a size equal to the buffer size
that the nodes of the WSN are utilizing. This data packet

Fig. 1. System Architecture

is forwarded to the WSN’s base station (at the transceiver
side) that controls the transmission of data over the WSN.
From the receiver side, the reverse procedure takes place.
The received data packets are inserted to the Quad–Tree
composition algorithm. After a complete reception of an
image frame, the algorithm of image inpainting is executed in
order to fill in the missing partitions, in an off–line manner,
and in parallel to the process of receiving the sequential
transmitted image. These missing partitions occur due to
packet losses over the WSN.

III. PROPERTIES OF WSN

Although sensor networks posses several characteristics
of conventional networks, they also have key differences [5].
Sensor networks combine three important components: sens-
ing, data processing and communication [6]. The nodes
that comprise a sensor network are spatially distributed,
energy–constrained, self configuring and self–aware. Sensors
networks can provide quite effective performance in noisy
environments, since they allow sensors to be placed close
to signal sources, therefore yielding high Signal to Noise
Ratios (SNR). Moreover, the scalability of the sensor net-
work permits monitoring of phenomena widely distributed
across space and time, and their architecture makes an ideal
infrastructure for robust, reliable and self–repairing systems.

An important issue, related to scalability [12] , is the fact
that, after some point, the communication becomes more
expensive than computation. The requirements for collab-
oration and adaptation to “stochastic networking” features

(usually due to exogenous factors) impose the need for the
development of novel protocols dedicated to sensor networks,
such as [13]. Another major concern is energy consumption,
which requires a compromise between node collaboration,
energy constraints [7] and affects the maximum active
communication area. These features affect the routing of
communication packets sent over a WSN, which require
multiple hops to complete the origin to destination travel.
The dynamic nature of the network further implies that the
number of hops may be variable. Moreover, the wireless
medium dynamics highlight that the stochastic behavior of
the transmission range and the impact factor the ambient
conditions may have on the latter; the transmitted signal will
be propagated through the medium by different mechanisms
(such as reflection and diffraction), will experience path loss
due to obstacles (e.g. walls, floors, ceilings) and will finally
reach its destination via multiple paths. Some of the observed
events that can take place among server and client and are
responsible for the insertion of packet losses in a WSN are
presented in Figure 2 [14] , where the indices K,M,N,and n
correspont to the number of tries for transmitting data packets
from a client to a server.

Client

#1           ...              #K+n ... #K            ....                         #N        #M+ì    ...

Failure
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Dropped
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Simulation Time

Fig. 2. Phenomena observed during a data packet transmission from Client
to Server

In this paper, it is investigated how the effect of packet
losses can be eliminated, based on the image inpainting
algorithm, instead of requiring the transmitter to resend the
missing information. The introduction of this approach can
increase the total overhead of the network and will, most
probably, cause a great number of packet losses due to
deliberate heavy network traffic.

As it will be presented in the following two Sections,
the compensation in the desiring quality of the received
image frame can be adjusted by utilization of the QT–
Decomposition while the restoration of the image’s missing
information, caused from packet losses, can be effectively
simplified by incorporating the inpainting algorithm.

Such features affect the utilization of a WSN for transmit-
ting images, while a novel reconfiguration scheme based on
Quad–Tree decomposition of sequential images that increase
network bandwidth, with the trade off of reducing the quality
of the transmitted image, is proposed. With respect to the
cases presented in Figure 2 , it should be mentioned that the
most important cases for the image transmission application
are the data packet failure transmission and the packet drop–



out cases, where the image data cannot be restored and
appeare in the received image as empty regions.

IV. THE QUAD TREE ALGORITHM

Hierarchical data structures have become increasingly im-
portant representation techniques in the domains of computer
graphics, image processing, computational geometry, geo-
graphical information systems and robotics [15]. These ap-
proaches are based on recursive computation and one of the
most successful techniques is the Quad–Tree algorithm [16]
, which recursively divides the image into simple geometric
regions, and is the method that has been adapted in this
research effort [8, 9].

Most images are stored in raster format. When an access
to a raster image is made, it is sequential, starting with the
top left–most pixel and ending with the bottom right–most
pixel, whereas the Quad–Tree algorithm is based on a spatial
order [17]. With this method, the image can be divided in
half along both axes, all the way down to pixel level. For
example, an image of 512x512 pixels size, would be initially
divided into four 256x256 pixel regions. Another layer would
have each of those regions divided into regions of 128x128
pixels, succeeding all the way down to the single pixel level.
This subdividing of blocks allows for the data of the image to
be organized by its neighbors. Each subdivision would exist
as one of four neighbors, which is the similar case of having
a tree–like structure, where the root of the tree is the entire
image, then it branches out four times, and again, until its
leaves are single pixels. This case is presented in Figure 3.

Fig. 3. Quad–Tree decomposition example

By evaluating the image like a tree, it is possible to remove
unnecessary leaves and branches from the tree, resulting in
the reduction of the Quad–Tree representation size [18]. This
is achieved by testing whether each block meets a criterion
of homogeneity. In case this criterion is satisfied, the block is
not divided any further while if this criterion is not satisfied
the block is moreover divided into another four blocks. The
process is applied iteratively, until each block meets the
homogenity criterion, and results in blocks of different sizes.
The similarity criterion, can be tested and applied by utilizing
the following rule:

max(MX4−AV G4,AV G4−MN4)≤ R
L

(
AV G

(1− γ
2 )

4
128

) (1)

Where MX is the maximum value of the four leaves of a
branch, MN is the minimum value found on that branch, and
AV G is the linear average of the values found on that branch.
The right side is the threshold for removing the branches

while R is the variable used to adjust the quality versus
compression ratio tradeoff for the removal operation. The
parameter L refers to a scaling factor for different types of
regions. For example L would be 1 for pixels, 2 for 2 x 2s,
4 for 4 x 4s and 8 for 8 x 8s. The remainder of the right
side is for displaying device gamma corrections, and because
gamma is usually 2, the right side simplifies to 1/128, where
128 represents the ratio of the region to image size. For
a pixel array derived from an image that is 256 x 256, it
represents 1/128th of the image size, or simply, there are
128 pixel arrays in a 256 x 256 sized image. If a leave is
removed, a quadrant will be represented by the average of
the pixels it contained before pruning. By applying this rule,
we could conclude in Quad–Tree decomposed images, of
reduced size, like the Quad–Tree partitioned image that it is
presented in Figure 4.

Fig. 4. Optimized Quad–Tree decomposition based on quality threshold

V. THE DIGITAL IMAGE INPAINTING ALGORITHM

While popular texture synthesis techniques are able to
reproduce large areas of missing pixels from images, recov-
ering packet losses resulting from image transmission over
wireless sensor networks require a more subtle and natural
approach. The inpainting technique proposed by Bertalmio
et al. [19] is able to fill the missing pixel regions regardless
of the variety of structures and backgrounds present. In
addition, it imposes no limitation to the topology of the
region to be repaired. Thus the selection of the inpainting
algorithm is the most suitable in this scenario.

Let I0(i, j) be our discrete gray level image and Ω the
region to be inpainted, where (i, j) are the pixel coordi-
nates. As the algorithm executes, it advances through a
sequence of images I(i, j,n), where I(i, j,0) = I0(i, j) and
limn→∞ I(i, j,n) = IR(i, j) is the resulting inpainted image.
At any step the algorithm can be generally described by:

In+1(i, j) = In(i, j)+∆tIn
t (i, j),∀(i, j) ∈Ω, (2)

where n is the step, ∆t is the rate of improvement and In
t (i, j)

is the update at each step.
Let ∂Ω denote the boundary of the region to be inpainted.

Our goal is to smoothy propagate the missing information
into Ω. In order to achieve the above we must compute
the propagation direction ~Nn(i, j) and the information to be
propagated Ln(i, j) which define

In
t (i, j) =

−−→
δLn(i, j) ·−→N n(i, j), (3)



where
−−→
δLn(i, j) denotes a measure of change in the informa-

tion Ln(i, j). In order to achieve smoothness in the resulting
image, for Ln(i, j) a simple implementation of the discrete
Laplacian is used:

Ln(i, j) = In
xx(i, j)+ In

yy(i, j) (4)

For
−→
N n(i, j) the direction of the smallest spatial change

∇⊥In(i, j) is used as proposed in [19]. In addition to the
procedure described above an anisotropic diffusion technique
is applied every few steps of the inpainting algorithm to
ensure the correct evolution of the direction coefficient and
reduce any noise interfering with the process. The discrete
2D anisotropic diffusion used in our algorithm incorporates
a 3x3 pixel neighborhood to contribute information and is
described by:

I(i, j, t +δ t) = I(i, j, t)+δ t

[
1

∑
k=−1,k 6=0

I(x+ k,y, t)+ I(x,y+ k, t) (5)

+
√

2
2

(I(x−1,y−1, t)+ I(x−1,y+1, t)+ I(x+1,y−1, t)+ I(x−1,y+1, t))

]

VI. EXPERIMENTAL RESULTS

For the experimental verification of the proposed scheme a
Zigbee–WSN has been established, consisting of one coordi-
nator node, three routers and one end device. The coordinator
was responsible for establishing the WSN network and
transmitting the decomposed images as data packets to the
Zigbee network. Moreover, the routers were responsible for
establishing connections within the WSN network in order
to forward the decomposed image data packets to the rest
of the network until their arrival to the end device. The end
device was the interface of the network to the computer at
the receiver side. The image inpainting algorithm was also
executed in this computer.

For the presented experimental results, the benchmark
image of an 8–bit grayscale image of Lena with an anal-
ysis of 256x256 pixels has been used. The test scenario
includes the application of different decomposition factors
on the same image and the sequential examination of: a) the
effect of the packet losses on the same image, and b) the
capabilities of the image inpainting alogrithm. The network
coordinator, that it is presented in Figure 5 was constructed
using a MaxStream XBee XB24BZigbee Modem. In order to
interface the XBee modem to the camera computer a custom
printed circuit board was built utilizing an FTDI FT232RL
chip to interface between the XBee modem serial port and
the hosts’ USB port. The XBee modem was set up using
the provided XBee API communication framework. The
communication between the XBee modem and the computer
were setup to a Baudrate of 38.4kbps using hardware flow
control for the serial port.

For the rest of the network, other custom built printed
circuit boards have been designed and utilized based on the
same XBee modem device but using different interfaces.
The router devices did not require any wired communication
interface thus this was omitted providing only a power
connection to them. The end device was built around the

Fig. 5. The designed and implemented coordinator node of the utilized
WSN

router devices custom built printed circuit board but with
the addition of a serial port interface using a MAX3232
chip in order to interface it with the receiver computer. The
parameters that have been utilized in the WSN for our test
case are outlined in Table I.

TABLE I
EXPERIMENTAL CONFIGURATION OF THE UTILIZED WSN

Network Characteristics Values
Number of nodes (N) 5

Coverage Area (M×M) 20x20
Maximum Transmission Range (m) 40

MAC Sub-Layer Protocol IEEE 802.15.4
Routing Protocol ZIGBEE

Data size per Packet (B) 68
Data size per Packet(including Overhead) (B) 84

Transmission Interval(sec) 2.5
Distance between nodes(m) 5
Interface Baudrate (Kbps) 38.4

Interface flow control Hardware (CTS/RTS)
RF Data rate (Kbps) 250

Transmit output power (mW) 1.25

The experiments were done in the following sequence.
First the 256x256 pixels grayscale and 8–bit image of Lena
was decomposed to its Quad–Tree equivalent with a specific
decomposition factor, filling in a buffer with the decomposed
image. This buffer was then divided into chunks of 68–
bit data packets, accordingly to the provided XBee modem
API framework. The packets were then extracted from the
receiver computer to its serial port. After the recomposition
phase, the received image was been checked for missing
partitions. Once the transmitted image has been received
and packet losses have been detected, the identified missing
regions were masked in red color, as for example it is
appearing at the test image of Lenna with manually inserted
partitions in Figure 6(left side), and the image was input to
the inpainting algorithm. The algorithm would commence the
repair process using an iterative multi–resolution approach.
For each lower level the image was down–scaled to half
the size of the level above and the inpainting algorithm was
applied to each frame. In the same Figure 6(right side) the
efficacy of the inpainting algorithm are presented.

At each level the algorithm iterates by progressively filling
in the missing pixels of the masked region by iteratively
applying N steps of inpainting (Eq. 2) and M steps of
diffusion (Eq. 5). The process is terminated after a total
number of predefined steps have been completed for each



Fig. 6. The masked input image (left side) and the resulting repaired image
4–levels, N = 12, N = 2 (right side)

level of the multi–resolution approach.
In Figure 7, the first Quad–Tree decomposed frame of

Lenna, with a compression factor of L = 0.3 (left side) and
the received (19.8sec) lossy frame is also displayed in the
same Figure (right hand). In Figure 8 the mask operation
on the lossy image (left hand) and the results of the image
inpainting (right side) are presented.

Fig. 7. QT–decomposed image (L = 0.3) (left side) and received lossy
image (right side)

Fig. 8. Applied mask on the lossy image (left side) and results of image
inpainting (right side)

In Figure 9, the second Quad–Tree decomposed frame of
Lenna, with a compression factor of L = 0.4 (left side) and
the received (13.4sec) lossy frame is also displayed in the
same Figure (right side). In Figure 10 the mask operation
on the lossy image (left hand) and the results of the image
inpainting (right side) are presented.

Finally in Figure 11, the third Quad–Tree decomposed
frame of Lenna, with a compression factor of L = 0.6 (left

Fig. 9. QT–decomposed image (L = 0.4) (left side) and received lossy
image (right side)

Fig. 10. Applied mask on the lossy image (left side) and results of image
inpainting (right side)

side) and the received (10.8sec) lossy frame is also displayed
in the same Figure (right side). In Figure 12 the mask
operation on the lossy image (left hand) and the results of
the image inpainting (right side) are presented.

Fig. 11. QT–decomposed image (L = 0.4) (left side) and received lossy
image (right side)

From the experiments above it is obvious that the image
inpainting algorithm achieves to reconstruct the missing
information, at the lost partitions, for all the selected QT–
decomposition factors. Smaller decomposition factors result
in smoother restorations of missing partitions while bigger
decompositions result in more rough restorations. This ob-
servation was expected, as the image inpainting algorithm
bases its operation on the information surrounding a missing
partion and there is no capability of increasing the level of
detail in the reconstructions further than the provided quality
of the image frame.



Fig. 12. Applied mask on the lossy image (left side) and results of image
inpainting (right side)

By utilizing the provided methodology, we achieve less
overhead in the network, as there is no need to track all
the transmitted data packets or request from the transmitter
to transmit the lost data packets. An advantage that is
of paramount importance, especially in highly congested
networks, as are the networks for exchanging multimedia
content wirelessly.

VII. CONCLUSIONS

In this article an application of the inpainting algorithm
for recovering packet losses from transmitting sequential
quad tree compressed images over wireless sensor networks
has been presented. The proposed architecture has been
experimentally verified over a WSN with the benchmark
image of Lenna and the efficacy of applying the inpainting
algorithm to restore the missing information of lossy received
images, instead of requesting re–submissions of the missing
data sets, has been experimentally proven.
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