
Partial Matching of Interpose 3D Facial Data for Face Recognition

P. Perakis†‡ G. Passalis†‡ T. Theoharis†‡ G. Toderici‡ I.A. Kakadiaris ‡

Abstract— Three–dimensional face recognition has lately re-
ceived much attention due to its robustness in the presence of
lighting and pose variations. However, certain pose variations
often result in missing facial data. This is common in realistic
scenarios, such as uncontrolled environments and uncooperative
subjects. Most previous 3D face recognition methods do not
handle extensive missing data as they rely on frontal scans.
Currently, there is no method to perform recognition across
scans of different poses. A unified method that addresses
the partial matching problem is proposed. Both frontal and
side (left or right) facial scans are handled in a way that
allows interpose retrieval operations. The main contributions
of this paper include a novel 3D landmark detector and a
deformable model framework that supports symmetric fitting.
The landmark detector is utilized to detect the pose of the facial
scan. This information is used to mark areas of missing data
and to roughly register the facial scan with an Annotated Face
Model (AFM). The AFM is fitted using a deformable model
framework that introduces the method of exploiting facial
symmetry where data are missing. Subsequently, a geometry
image is extracted from the fitted AFM that is independent
of the original pose of the facial scan. Retrieval operations,
such as face identification, are then performed on a wavelet
domain representation of the geometry image. Thorough testing
was performed by combining the largest publicly available
databases. To the best of our knowledge, this is the first method
that handles side scans with extensive missing data (e.g., up to
half of the face missing).

I. INTRODUCTION

In recent years, 3D face recognition has received much
attention because of its potential to overcome lighting and
pose variations which hamper 2D face recognition methods.
Most previously proposed 3D face recognition methods claim
pose invariance. The main assumption of these methods is
that even though the head can be rotated with respect to the
sensor, the entire face is always visible. However, this is true
only for frontal scans; side scans usually have large missing
areas. These scans are very common in realistic scenarios
such as uncooperative subjects or uncontrolled environments.
Therefore, to take advantage of the full pose invariance
potential of 3D face recognition, the partial object matching
problem must be addressed.

In our previous work, we have proposed a general intr-
aclass 3D object retrieval method [26]. We employed this
method to face and ear recognition [15], [27], [34] with
success (scored the top accuracy in the shape-only section of
NIST’s Face Recognition Vendor Test 2006). However, no
interpose retrieval was performed; frontal scans were used
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strictly for face recognition and side scans were used strictly
for ear recognition.

In this paper, we extend our previous work to handle
partial matching in order to allow interpose identification. A
novel 3D landmark detector based on curvature and radial
distances is introduced. It is robust to missing data and
works both for frontal and side scans, allowing an initial
registration with an Annotated Face Model (AFM). The
deformable model framework is extended to take advan-
tage of the symmetry of the human face during fitting
(Fig. 1). This allows the creation of geometry images that
are independent of the initial pose, even in cases of severe
missing data. Therefore, by completing the missing data we
handle the partial matching problem, thus achieving true pose
invariance. Experiments are performed on a combination of
the largest publicly available databases. Since the available
3D databases for face recognition contain frontal scans, we
combined them with 3D databases for ear recognition. These
contain up to 80o side scans (both left and right). Note that
we only use the subset of subjects that have at least one
frontal and one side scan.

The rest of this paper is organized as follows: Section II
describes related work in the field, Section III presents the
proposed method in detail, Section IV evaluates the method’s
performance, while Section V summarizes the method and
proposes future directions.

II. RELATED WORK

There exists extensive work in the face recognition field,
excellent surveys of which are given by Bowyer et al. [3]
and Chang et al. [5]. The majority of these works use frontal
scans only, and few handle the partial matching problem.

Lu et al. [19], [20], [21], in a series of works, have
presented methods to locate the positions of eye and mouth
corners, and nose and chin tips, based on a fusion scheme of
shape index on range maps and the “cornerness” response on
intensity maps. They also developed a heuristic method based
on cross-profile analysis to locate the nose tip more robustly.
Candidate landmark points were filtered out using a static
(non-deformable) statistical model of landmark positions,
in contrast to our approach. Although they report a 90%
rank-one matching accuracy in an identification experiment,
no claims where made with respect to the effects of pose
variations in results.

Dibeklioglu [11] introduced a nose tip localization and
segmentation method using curvature-based heuristic analy-
sis to enable pose correction in a face recognition system
that allows identification under significant pose variations.
However, a limitation of the proposed system is that it is



not applicable to facial datasets with yaw rotations greater
than 45◦. Additionally, even though the Bosphorus database
used consists of 3,396 facial scans, they are obtained from
81 subjects.

Blanz et al. [2], [1] presented works on 3D face re-
construction by fitting their 3D Morphable Model on 3D
facial scans. Although their method is a well established
approach for producing 3D synthetic faces from scanned
data, it uses manually positioned landmarks for the fitting
procedure. Also, face recognition testing is performed on
FRGC database with frontal facial scans, and on FERET
database with faces under pose variations which do not
exceed 40◦.

Bronstein et al. [4] presented a face recognition method
that can handle missing data. Their method is based on their
previous work where they used a canonical representation of
the face. On a limited database of 30 subjects they report
high recognition rates. However, the database they use has
no side scans. The scans with missing data that they use
are derived synthetically by randomly removing certain areas
from frontal scans.

In Nair’s [23] work on partial 3D face matching, the face
is divided into areas and only certain areas are used for
registration and matching. The assumption is that the areas
of missing data can be excluded. Using a database of 61
subjects, they show that using parts of the face rather than
the whole face yields higher recognition rates. They mention,
however, that their method has problems when holes exist
around the nose region.

Lin et al. [17] introduced a coupled 2D and 3D feature
extraction method to determine the positions of eye sockets
by using curvature analysis. The nose tip is considered as
the extreme vertex along the normal direction of eye sockets.
The method was used in an automatic 3D face authentication
system but was tested on only 27 human faces with various
poses and expressions.

Methods that are focused mainly on the detection of 3D
facial landmarks include that of Segundo et al. [30]. They
introduced a face and facial feature detection method by
combining a method for 2D face segmentation on depth
images with surface curvature information for detecting
facial features (e.g., eye corners and nose tip). The method
was tested on the FRGC 2.0 data with over 99.7% correct
detections. However, nose and eye corner detection presented
problems when the face had a significant pose variation
(> 15◦ around the y and z-axes).

Finally, Wei et al. [35] introduced a nose tip localization
method to determine the facial pose. The method was based
on a Surface Normal Difference algorithm and Shape Index
estimation, and used as a preprocessing step in pose-variant
systems to determine the pose of the face. No claims where
made with respect to invariance to pose.

III. METHOD

The proposed method processes each raw facial scan
through a common pipeline of algorithms. The output of this
pipeline is a wavelet domain representation of the face. The
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Fig. 1. Raw data (top row) and fitted AFM (bottom row) of a subject: (a)
Frontal scan has both sides fitted; (b) left scan where left side is fitted (and
the right is mirrored); and (c) right scan where the right side is fitted (and
the left is mirrored).

coefficients of this representation are directly comparable
using a L1 distance metric, thus allowing efficient matching
and retrieval operations. Moreover, the representation is
independent of the initial pose due to the symmetric fitting
algorithm (Fig. 1). Therefore, by automatically completing
missing data, the partial face matching problem is converted
to a full face matching problem. The individual steps of our
method are the following:

Step 1. Preprocessing: Standard preprocessing tech-
niques are used to filter the raw data.

Step 2. 3D Landmark Detection: A novel landmark de-
tector is used to estimate the rough pose (thus
determining if it is a frontal, left or right scan).

Step 3. Registration: The raw data are registered to the
AFM.

Step 4. Deformable Model Fitting: The Annotated Face
Model is fitted to the data. The fitted model is
then converted to a geometry image (a normal
image is also computed).

Step 5. Wavelet Analysis: A wavelet transform is applied
on the geometry and normal image and the
wavelet coefficients are exported and stored.

A. Preprocessing

The purpose of preprocessing is mainly to eliminate
sensor-specific problems. In general, modern 3D sensors
output either a range image or 3D polygonal data, but in our
experiments we used only range images from laser scanners.
Therefore, certain preprocessing algorithms (Median Cut,
Hole Filling, Smoothing and Subsampling) operate directly
on the range data before the conversion to polygonal data
[15].

B. 3D Landmark Detection

Our method for 3D Landmark Detection and Pose Esti-
mation utilizes 3D information to extract candidate interest
points, which are identified and labeled as anatomical land-
marks by matching them with a Facial Landmark Model



(a) (b)
Fig. 2. Landmark models: (a) landmark model as a 3D object; and (b)
landmark model overlaid on a 3D facial dataset. [28]

(FLM) [28]. Once anatomical landmarks are localized, the
corresponding rigid transformation is computed in order to
register the facial datasets.

We used a set of eight anatomical landmarks (Fig. 2): (1)
the right eye outer corner, (2) right eye inner corner, (3) left
eye inner corner, (4) left eye outer corner, (5) nose tip, (6)
mouth right corner, (7) mouth left corner, and (8) chin tip.

Note that five of these landmarks are visible in side scans
(right side contains landmarks 1, 2, 5, 6, 8 and left side
contains 3, 4, 5, 7, 8). These sets of landmarks constitute a
Facial Landmark Model (FLM). In the following, the model
of the complete set of eight landmarks will be referred to
as FLM8 and the two reduced sets of five landmarks (left
and right) as FLM5L and FLM5R, respectively. The steps to
create the FLMs are:
• A statistical Mean Shape for each landmark set (FLM8,

FLM5L and FLM5R) is estimated from a manually
annotated training set (150 frontal faces with neutral
expressions) using Procrustes Analysis.

• Variations of each Facial Landmark Model are com-
puted using Principal Component Analysis (PCA).

For each facial dataset the procedure for landmark detec-
tion has the following steps (Fig. 5):

Step 2.1. Extract candidate landmarks from the Shape
Index map and the Extrusion map.

Step 2.2. Compute the rigid transformation that best
aligns combinations of eight or five candidate
face landmarks with the corresponding FLMs.

Step 2.3. Discard combinations of candidate landmark
sets that are not consistent with the FLMs.

Step 2.4. Select the best combination of candidate land-
marks (based on the minimum Procrustes dis-
tance) and the corresponding rigid transforma-
tion for registration.

The Landmark Mean Shape: To obtain a true repre-
sentation of landmark shapes, location and rotational effects
need to be filtered out. Since, for our purposes, the size
of the shape is of great importance, it is not filtered out
by scaling shapes to unit size. This is carried out by
establishing a common coordinate reference to which all
shapes are aligned. Alignment is performed by minimizing
the Procrustes distance D2 = |xi−xm|2 of each shape (xi)
to the mean (xm). The alignment procedure is commonly
known as Procrustes Analysis [12], [32], [8], and is used to
compute the Mean Shape of landmark shapes (Fig. 3). The

(a) (b) (c) (d)
Fig. 3. Landmark Mean Shape estimation: (a) unaligned landmarks; (b)
aligned landmarks; (c) landmark mean shape; and (d) landmark cloud &
mean shape rotated 60◦ around the y-axis. [28]

Mean Shape is the Procrustes mean: xm = 1
N

∑
xi for all

example shapes xi after alignment.
Landmark Shape Variations: After bringing landmark

shapes into a common frame of reference and estimating the
landmarks’ Mean Shape, further analysis can be carried out
to describe the shape variations. This shape decomposition
is performed by applying PCA to the aligned shapes.

Aligned shape vectors form a distribution in the nd-
dimensional shape space, where n is the number of land-
marks and d the dimension of each landmark. We can model
this distribution by estimating a vector b of parameters that
describes the shape’s deformations [10], [8], [9]. We compute
the eigenvectors Ai, and corresponding eigenvalues λi of the
covariance matrix of the shape vectors, sorted in descending
order.

If A contains (in columns) the p eigenvectors Ai corre-
sponding to the p largest eigenvalues, then we can approxi-
mate any example shape x using: x′ ≈ xm + A · b, where
b is a p-dimensional vector given by: b = AT · (x− xm).

The vector b is the projection of x onto the subspace
spanned by the p most significant eigenvectors of the
eigenspace (principal components). By selecting the p largest
eigenvalues, the mean square error between x and its ap-
proximation x′ is minimized. By applying limits to each
bi (i.e., |bi| ≤ 3

√
λi) we can create marginal mean shape

deformations. Thus, the Facial Landmark Model (FLM) is
created [28].

The number p of eigenvectors and eigenvalues to retain
(modes of variations) can be chosen so that the model
represents a given proportion of the total variance of the
data. For our purposes, a factor of 99% was chosen.

Fitting Landmarks to the Model: General-purpose fea-
ture detection methods are not able to identify and label the
detected candidate landmarks. It is clear that some topologi-
cal properties of faces need to be taken into consideration. To
address this problem, we use the FLM. Candidate landmarks,
irrespectively of the way they are produced, have to be
consistent with the corresponding FLM. This is done by
fitting a candidate landmark set to the FLM and checking
the deformation parameters b to be within certain margins.

Fitting a set of points y to the FLM x is accomplished
by minimizing the Procrustes distance in a simple iterative
approach. We also consider a landmark shape as plausible if
it is consistent with marginal shape deformations [8], [9].

Landmark Detection & Selection: Shape Index is ex-
tensively used for 3D landmark detection [6], [7], [19], [20],
[21]. It is a continuous mapping of principal curvature values



(a) (b) (c) (d)
Fig. 4. 2D image maps: (a) radial map; (b) tangent map; (c) extrusion
map; and (d) Shape Index map.

(kmax, kmin) of a 3D object point p into the interval [0,1],
according to the formula:

SI(p) =
1
2
− 1
π
tan−1 kmax(p) + kmin(p)

kmax(p)− kmin(p)
.

Its value represents the type of local curvature of shapes (Cup
= 0.0, Rut = 0.25, Saddle = 0.5, Ridge = 0.75, Cap = 1.0).

After computing Shape Index values on a 3D facial
dataset, a mapping to 2D space is performed (using the native
UV parameterization of the facial scan) in order to create
a Shape Index map (Fig. 4(d)). Local maxima and minima
are identified on the Shape Index map. Local maxima (Cap
= 1.0) are candidate landmarks for nose tips and chin tips
and local minima (Cup = 0.0) for eye corners and mouth
corners. The Shape Index’s located maxima and minima
are sorted in descending order of significance according to
their corresponding Shape Index values. The most significant
subset of points for each group (Caps and Cups) is retained.
In Fig. 5(a), black boxes represent Caps, and white boxes
Cups.

Our experiments indicated that the Shape Index is not
sufficiently robust for detecting the nose and chin tips. Thus,
we propose a novel method based on two common attributes
for locating these two landmarks. The first attribute is that
they extrude from the rest of the face. To encode this feature
we used the radial map (Fig. 4(a)). The radial map is a 2D
map that represents, at each u, v pixel, the distance of the
corresponding (x, y, z) point from the centroid of the object.
The second attribute is that most of the normals at nose
and chin regions have an outward direction (with respect
to the centroid). The tangent map (Fig. 4(b)) encodes this
feature. It is a 2D map that represents, at each u, v pixel, the
cosine value of the angle between the normal vector at the
corresponding (x, y, z) point and the radial vector from the
centroid of the object. Both maps are subsequently normal-
ized to [0, 1]. Their product constitutes the extrusion map
that represents the conjunction of the above two attributes
(Fig. 4(c)). Since the extrusion map depends only on the
position of the centroid, it is considered pose invariant. Local
maxima of the extrusion map that are also Shape Index’s
maxima (Cap = 1.0) are candidate landmarks for nose tips
and chin tips. Located candidate nose and chin tips are
sorted in descending order of significance according to their
corresponding extrusion map values. The most significant
subset of points is retained. In Fig. 5(b), crossed circles
represent candidate nose and chin tips.

By using the extrusion map, the candidate landmarks of
the nose and chin tips are decreased significantly. We retain

Fig. 5. Landmark detection and selection process: (a) Shape Index’s
maxima & minima; (b) candidate nose and chin tips; (c) extracted best
landmark sets; (d) resulting landmarks; and (e) facial landmark model.

the Shape Index’s minima as candidate landmarks for eye
and mouth corners (Fig. 5(a)) and extrusion map maxima as
candidate landmarks of the nose and chin tips (Fig. 5(b)).

Using the candidate landmark points, we create combi-
nations of five landmarks. Since an exhaustive search of
all possible combinations of the candidate landmarks is not
feasible, simple length constraints from the shape model and
its deformations (FLM) are used to reduce the search space
(pruning). From all the feasible candidate five-landmark sets,
the ones that do not conform with either FLM5L or FLM5R
are filtered out. This is accomplished by applying the fitting
procedure that has been previously described.

The final step is to fuse them in complete landmark sets
of eight landmarks that conform with the FLM8. From the
three available sets (FLM5R, FLM5L, FLM8), the one that
has the minimum Procrustes distance to the corresponding
model is considered the final solution.

In Fig. 5(c), blue boxes represent landmark sets consistent
with the FLM5R, red boxes with the FLM5L, green boxes
with the FLM8, and yellow boxes the best landmark set.
Notice that some of the consistent landmarks overlap. Also
note that the FLM8-consistent landmark set is not always
the best solution – FLM5L and FLM5R are usually the best
solutions for side facial datasets (Fig. 5(d)). Finally, using
the best solution, the pose is estimated, and the facial dataset
is classified as frontal, left side or right side (based on the
rotation angle with respect to the vertical axis).

C. Annotated Face Model

The Annotated Face Model (AFM) is an anthropomet-
rically correct 3D model of the human face [13]. It is
constructed only once and is used in the alignment, fitting,
and metadata generation [15]. The AFM defines the control
points of subdivision surfaces and it is annotated into dif-
ferent areas (e.g., mouth, nose, eyes). Using a global UV
parameterization of the AFM, we can convert the polygonal
representation of the model to an equivalent geometry image
representation.

A geometry image is the result of mapping all vertices of a
3D object (x, y and z coordinates) to a 2D grid representation
(u, v coordinates) [14]. Thus, a geometry image is a regular
continuous sampling of a 3D model represented as a 2D



Fig. 6. From left to right, for a frontal facial scan: Raw data → Fitted
AFM → Extracted geometry image → Computed normal image.

image, with each u, v pixel corresponding to the original
x, y, z coordinates. 2D geometry images have at least three
channels assigned to each pair of u, v coordinates, encoding
geometric information (x, y, z coordinates and/or normals).

D. Registration

The landmarks provide a common frame of reference for
the raw 3D data. However, in order to fit the AFM, a finer
registration is needed. In contrast with the previous step that
computes only an initial pose, this step provides a tight rigid
registration between the raw data and the AFM.

We utilize the registration algorithm presented by Pa-
paioannou et al. [25] that uses a global optimization tech-
nique (Simulated Annealing [16], [31]) applied to depth
images. The Simulated Annealing process minimizes the
following objective function:

E =
R∑

i=1

R∑
j=1

|Dmodel(i, j)−Ddata(i, j)|,

where R is the spatial resolution of the buffer and D is the
z-buffer (normalized to [0, 1]).

Note that we assume that the initial pose is roughly
correct, thus limiting the translation and rotation limits of
Simulated Annealing. This step, therefore, can only fine
tune the registration – it cannot alleviate errors caused by
completely wrong landmark detection. Also, for side scans,
only one half of the model’s z-buffer is used in the objective
function. The other half is excluded as it would have been
registered with areas that have missing data.

E. Deformable Model Fitting

The purpose of fitting the model to the data is to capture
the geometric information of the desired object. In order to
fit the AFM to the raw data, a deformable model frame-
work [15] is utilized. The main idea is that the deformation
of the AFM is controlled by internal and external forces.
The internal forces correspond to the elastic properties of
the model’s surface (e.g., strain energy, material stiffness)
and resist the deformation. The external forces deform the
model so that it gradually acquires the shape of the raw data.
The analytical equations are solved using an iterative Finite
Element Method approximation.

In this paper, we extend this technique to handle partial
data by incorporating the notion of symmetric fitting. In
areas of missing data, the computed external forces will
distort the deformation. Therefore, in these cases, mirrored
external forces from the model’s symmetric area are used.
The internal forces are not affected and remain unmodified

(a) (b) (c)
Fig. 7. Wavelet analysis of a frontal facial geometry image. For visualiza-
tion purposes, the coefficient’s magnitude is mapped as greyscale intensity:
(a) Original image; (b) First level Walsh transform; (c) Second level Walsh
transform. [15]

in order to ensure the continuity of the fitted surface. In
our implementation, facial scans that are classified as frontal
from the landmark detector do not use any symmetric fitting.
Facial scans that are classified as left use symmetric fitting
for the whole right side and vice versa.

Analytical Formulation: The basic equation of the de-
formable model framework is given by:

Mq
d2~q

dt2
+ Dq

d~q

dt
+ Kq~q = ~fq,

where ~q is the control points vector, Mq is the mass matrix,
Dq is the damping matrix, Kq is the stiffness matrix, and
~fq are the external forces. For data fitting purposes we
used M = O and D = O. The stiffness matrix is the
most important component as it resists the external forces
and determines elastic properties of the model. It can be
decomposed into three matrices K = Kfo + Kso + Ksp.
The matrix Kfo is related to the first order strain energy,
Kso to the second order strain energy and Ksp is related to
the spring forces energy:

Efo = 1
2κfo~q

T Kfo~q,
Eso = 1

2κso~q
T Kso~q,

Esp = 1
2κsp~q

T Ksp~q

where κfo ,κso, κsp are the individual weights.
Finite Element Method: In our implementation, we

employed the subdivision-based Finite Element Method ap-
proximation proposed by Mandal [22]. This approximation
solves the above equations in an iterative way. We build
a Loop subdivision surface using the AFM as the control
mesh. The Loop subdivision scheme [18] is used here for
two reasons: it produces a limit surface with C2 continuity,
and only 1-neighborhood area information is needed for each
vertex. In the above equations, the vector ~q corresponds to
the control mesh.

When the deformation stops, the annotated model acquires
the shape of the raw data. Since the deformation has not
violated the properties of the original model, the deformed
model can be converted to a geometry image. We also
compute the normal image (equivalent to the first derivative
of the geometry data). This process is depicted in Fig. 6 for
a frontal facial scan.

F. Wavelet Analysis

We apply a wavelet transform on the derived geometry and
normal images in order to extract a descriptive and compact
biometric signature. As explained above, even if half of the



face is missing, the derived geometry and normal images
describe the full face. Clearly, there is redundant information
for side scans, as half of the geometry and normal image is
the mirror of the other half. However, we keep both sides in
order to have a common representation that is independent
of the initial pose.

Each channel of the geometry and normal image is treated
as a separate image for the wavelet analysis. The Walsh
wavelet transform [33] for images is a decimated wavelet de-
composition using tensor products of the full Walsh wavelet
packet system. The 1D Walsh wavelet packet system is
constructed by repeated application of the Haar filterbank, a
two-channel multirate filterbank based on the Haar conjugate
mirror filter. The choice of Haar wavelets was based on
their properties. The transform is conceptually simple and
computationally efficient. The Haar wavelet transform is
performed by applying a low-pass filter and a high-pass filter
on a one-dimensional input, then repeating the process on the
two resulting outputs. Since we are working with images,
there will be four outputs for each level of the Haar wavelet
(Low-Low, Low-High, High-High, High-Low). We compute
a level 4 decomposition, meaning that we apply the filters
four times, which yields 256 16×16 wavelet packets (Fig. 7).

Each packet contains a different amount of energy from
the initial image. It is possible to ignore most of the
packets without losing significant information and store the
same subset of the most significant coefficients as metadata.
This allows an efficient direct comparison of the selected
coefficients of two images (approximately 15%) without the
need for reconstruction, by using a weighted L1 distance
metric. The weights are empirically selected and depend on
the annotation of the face model.

IV. RESULTS

A. Databases

For performance evaluation we combined the largest pub-
licly available 3D face and ear databases. For frontal facial
scans, we use the FRGC v2 database [29]. It contains a total
of 4007 range images, acquired between 2003 and 2004.
The hardware used to acquire these range data was a Minolta
Vivid 900 laser range scanner, with a resolution of 640×480.
These data were obtained from 466 subjects and contain
various facial expressions (e.g., happiness, surprise). For side
facial scans, we used the Ear Database from the University of
Notre Dame (UND) [24], collections F and G. This database
(which was created for ear recognition purposes) contains
side scans with a vertical rotation of 45o, 60o and 90o. In
the 90o side scans, both sides of the face are occluded from
the sensor, therefore they contain no useful information for
face recognition purposes. We use only the 45o side scans
(119 subjects, 119 left and 119 right) and the 60o side scans
(88 subjects, 88 left and 88 rights). Note that even though
the creators of the database marked these side scans as 45o

and 60o, the measured average angle of rotation is 65o and
80o respectively (Fig. 8). However, when we refer to these
scans we will use the database notation (45o and 60o).

(a)

(b) (c)

(d) (e)

Fig. 8. Scans from the database we constructed: (a) frontal, (b) 45o right,
(c) 45o left, (d) 60o right, and (e) 60o left. Note the extensive missing data
in (b-e).

Unfortunately, not all subjects exist in both databases. The
number of common subjects between the frontal scans and
the 45o side scans are 39 and between the frontal scans and
the 60o side scans are 33. For our experiments we define the
following test databases:
• DB45LR: 45o side scans from 119 subjects. For each

subject, the left scan is considered gallery and the right
is considered probe.

• DB60LR: 60o side scans from 88 subjects. For each
subject, the left scan is considered gallery and the right
is considered probe.

• DB45F: Gallery set has one frontal scan for each of the
466 subjects. Probe set has two 45o side scans (left and
right) for each of the 39 subjects.

• DB60F: Gallery set has one frontal scan for each of the
466 subjects. Probe set has two 60o side scans (left and
right) for each of the 33 subjects.

In all cases there is only one gallery scan per subject. Also,
all subjects present in the probe set are also present in the
gallery set (the opposite is not always true).

B. Performance Evaluation

In order to evaluate performance separately for the land-
mark detection method and the face retrieval (recognition)
method, we manually annotated all scans. Even though
our manual annotation may contain inaccuracies, for the
purposes of these experiments it will be considered the
ground truth. On average, the manually placed landmarks
boost the face recognition approach by approximately 10%.
Note that 10% is the approximate rate of total failures for the
automatic landmark detector, indicating a lack of robustness



(a)

(b)

Fig. 9. CMC graphs for matching left side scans (gallery) with right
scans (probe) using DB45LR and DB60LR: (a) automatic landmarks and
(b) manually placed landmarks.

rather than a lack of accuracy. In all experiments Cumulative
Match Characteristic (CMC) graphs are used.

The first experiment is designed to evaluate the perfor-
mance when a left side scan must be matched with a right
side scan. The CMC graphs are given in Fig. 9. The rank–
one rate for DB45LR is 67% and 82% for the automatic
and manually placed landmarks, respectively. The rank–one
rate for DB60LR is 64% and 69% for the automatic and
manually placed landmarks, respectively. As expected, the
60o side scans yield lower results as they are considered
more challenging compared to the 45o side scans.

The second experiment is designed to evaluate the perfor-
mance when a left or right side scan has to be matched with a
frontal scan. This is a common scenario, if gallery acquisition
is done in a controlled environment and probe acquisition
is uncontrolled. The CMC graphs are given in Fig. 10 and
Fig. 11. The rank–one rate for DB45F is 69% and 87% for
the automatic and manually placed landmarks, respectively.
The rank–one rate for DB60F is 44% and 41% for the
automatic and manually placed landmarks, respectively. Note
that, for DB60F, using manually placed landmarks decreases
the rate for rank–one but increases the rate for all other ranks.

Interestingly, in all experiments, using left side scans for
matching performed better than using right scans. Since
there is no objective reason for this to happen, we suspect
that our implementation of the registration algorithm is
slightly biased. Also, the same reason could explain why

(a)

(b)

Fig. 10. CMC graphs for matching frontal scans (gallery) with left and
right scans (probe) using DB45F: (a) automatic landmarks and (b) manually
placed landmarks.

60o left versus 60o right matching performs better than 60o

left/right versus frontal matching. This contradicts the fact
that frontal scans are generally of better quality and hence
less challenging.

V. CONCLUSION

We have presented a 3D face recognition (retrieval)
method that can handle missing data and offers pose invari-
ance. The proposed method introduced a novel 3D landmark
detector and employed a deformable model framework that
supports symmetric fitting. It has been evaluated using the
most challenging databases available that include pose varia-
tions of up to 80o along the vertical axis. All important steps
of the method (landmark detection, registration, fitting) work
even when half of the face is missing. Moreover, all scans
are represented in a uniform way, allowing partial matching
and interpose retrieval. Future work will be directed toward
increasing the robustness and accuracy of the landmark
detector [28]. Additionally, the registration algorithm will be
improved for unbiased registration of both frontal and side
facial scans.
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