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Abstract

Combining the properties of conformal geometry and grapbkell topological information for 3D object retrieval,

a non-rigid 3D object descriptor is proposed, which is batbust and efficient in terms of retrieval accuracy and
computation speed. In previous works, graph-based metloodsn-rigid 3D object retrieval, have shown high
discriminative power and robustness, while geometry-thasethods, have proven to be tolerant to noise and pose.
In this work, we present a 3D object descriptor that combihesabove advantages.

Categories and Subject Descript@scording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—i.3.7 [Computer Graphics]: Three-BPimsional Graphics and Realism—

1. Introduction

The increasing availability of 3D objects makes content
based retrieval a key operation. Retrieval methods arelbase
on the creation of a shape descriptor that faithfully ensode
the shape of the objects in an efficient manner. 3D object
descriptors can be classified into two main categoriesd rigi
and non-rigid. Over the last years, a lot of research effast h
successfully addressed rigid 3D shape descriptors exploit
ing inter-class variability. However, in the case of intlass
variability non-rigid 3D object descriptors are more effec

proposed method is given, including a detailed description
of the combined approach along with a brief introduction
for each constituent methodology, namely conformal map-
pings and graphs. Combining those theories, the proposed
3D shape descriptor is presented. Sectipresents the eval-
uation methodology along with the experimental results and
the related discussion. Finally conclusions are drawnén se
onb5.

2. Related Work

tive where the objects of the class can assume a variety of Research in the field of 3D shape descriptors has advanced

transformations, including deformations.

In this paper we present a non-rigid 3D object descrip-
tor by combining two concepts: (i) the geometry-based dis-
crete conformal factor by Ben-Chen and Gotsna@G09,
which provides geometry information and is tolerant to pose
and noise, and (ii) graph$iSKK01, BGSF08, which pro-
vide topology information and have shown high discrimina-
tive power and robustness.

The remainder of the paper is structured as follows. In
section 2, related work in 3D shape descriptors, catego-
rized into rigid and non-rigid, is discussed. In sect®rhe

T This work has been funded by scholarship from the Greek State
Scholarship Foundation (1.K.Y.)

significantly over the past few years, leading to a number of
different categorizationsSMKF04, TV08, BP0§ according
to the features and/or representations used. One sucloeateg
rization is into rigid and non-rigid 3D object descriptors.

2.1. Rigid 3D Object Descriptors

Rigid 3D object descriptors usually address inter-class 3D
object retrieval.

One of the most cited methods for 3D object retrieval,
based on the extraction of features from 2D representa-
tions of the 3D objects, was the LightField descriptor, pro-
posed by Chen et alCJSTOO03. This descriptor comprises
of Zernike moments and Fourier coefficients computed on
a set of projections taken from the vertices of a dodeca-
hedron. The SH-GEDT descriptor proposed by Kazhdan et
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Figure 1: Three sample models from the class ‘Centaur’ oftB8CA dataset, color-coded with the corresponding cordibrm

factors.

al. [KFROJ is a volumetric representation of the Gaussian
Euclidean Distance Transform of a 3D object, expressed
by norms of spherical harmonic frequencies. Papadakis et
al. [PPPTO8 proposed a hybrid descriptor formed by com-
bining features extracted from a depth-buffer and sphlerica
function based representation, with enhanced translatidn
rotation invariance properties. Sfikas et al. enhanced this
method by the addition of a symmetry based new pose nor-
malization method $TP1Q. Papadakis et al. inPTP0Y
proposed PANORAMA, a 3D shape descriptor that uses a
set of panoramic views of a 3D object which describe the
position and orientation of the object’s surface in 3D space
For each view the corresponding 2D discrete Fourier Trans-
form and the 2D discrete Wavelet Transform are computed.

2.2. Non-Rigid 3D Object Descriptors

Non-rigid 3D object descriptors can effectively deal with
intra-class 3D object retrieval, where the objects of tlas<l
can assume a variety of transformations, including deferma
tions.

A large number of methods are based on the discrete
Laplace-Beltrami operator. Reuter at &\VJ/P0§ compare
two triangulated surfaces by computing the distance betwee
two isometry-invariant feature vectors given by the first
n eigenvalues of the Laplace-Beltrami operator. Similarly
Rustamov Rus07 uses the eigenvectors of the Laplace-
Beltrami operator. Zaharia and PreteudPD] presented
the 3D shape spectrum descriptor which is the histogram
that describes the angular representation of the first asid se
ond principal curvature along the surface of the 3D object.
Xiang et al. KHGCO7] use the histogram of the solution
to the volumetric Poisson equation2u 1 (which in-
volves the Laplace-Beltrami operator) as a pose invariant
shape descriptor. In a similar manner, Ben-Chen and Gots-
man BCGO0§, working on the boundary surface of the 3D
shape, create a descriptor that maps the local curvature cha
acteristics of the 3D object. The histogram of the solutmn t

the conformal factor equatioi2¢is used. The same princi-
ples were also used by Wang et &\/\VJ*06] for face recog-
nition using 3D conformal maps.

Some non-rigid shape descriptors are derived from
geodesic distances on the mesh, which are invariant to iso-
metric transformations. Elad and Kimm&HKO03] proposed
a canonical representation for triangulated surfacesra su
face inR® is transformed into canonical coordinates in the
Euclidean spacB™ by applying multi-dimensional scaling.

In this canonical representation the geodesic distancdson
original surface are approximated by the corresponding Eu-
clidean distances. The matching problem of non-rigid and
deformed objects is then reduced to the problem of match-
ing rigid objects embedded R™, which can be approached
with well-known algorithms. Jain and ZhandZ07 com-
pare non-rigid objects by matching spectral embeddings tha
are derived from the eigenvectors of affinity matrices, com-
puted by considering geodesic distances. A non-rigid de-
scriptor based on histograms of surface functions is pre-
sented by Gal et alGSCOO0T, where two scalar functions
are used on the mesh. Carlsson et @Z€G04 compared
barcode descriptors of point clouds computed by using the
persistence homology theory. Dey et &GG03 compared
noisy point clouds, by matching signatures extracted from
segmented parts of the point sets by making use of Morse
theory. In MDTS09, Mademlis et al. proposed a novel
shape descriptor based on the impact that the 3D objects
have when they are exposed to a specific type of force field
(i.e. the Newtonian or the Coulombian fields). The 3D ob-
jects are initially voxelized and subsequently the histoys

of the field factors are compared.

Zhang et al. ZSM*05] consider the use of medial sur-
faces to compute an equivalent directed acyclic graph of an
object. In the work of Sundar et aSEGDO03, the 3D object
passes through a thinning process producing a set of skele-
tal points, which form a directed acyclic graph by applying
the minimum spanning tree algorithm. The P3DS descrip-
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tor developed by Kim et al.HPYLO5] uses an attributed
relational graph whose nodes correspond to parts of the ob-
ject that are represented using ellipsoids and the sinyilisri
computed by employing the earth mover’s distance. Hilaga
et al. HSKKO1] presented a technique to match the topology
of triangulated models, by comparing Multiresolution Reeb
Graphs (MRGSs). Their algorithm for matching two MRGs

is a coarse-to-fine strategy, which searches the node pairs
providing the largest value of similarity while maintaigin ] ) ) )
topological consistency. Similarly tfSKKO01], Hamza and Figure 2f: Adjacent faces of vertexat 1-ring neighborhood.
Krim [HKO3] considered a discrete approximation of the Angle8; andAvoronciregion are also presented.

global squared geodesic distance function. The dissimilar
ity between two objects was calculated by computing the
Jensen-Shannon divergence between the corresponding sta
tistical shape descriptors. Tung and Schmit§Qg used
geodesic distances for building an MRG and merge the
graph geometrical and visual information to calculation of targ | orig
shape similarity between models. In recent research works, @ = u
Tierny et al. TVD09] compare 3D models by extracting £(v)

partial signatures from disk or annulus-like charts using where £(vi) denotes the discrete Laplace - Beltrami
1

Reeb_ graph t°p_°'°9y- Bronstein et aEE[K 10 ins_tead function, at vertexvj, with cotangent weights, defined
of using geodesic distances for extracting shape sigrature [MDSBOZ:

they exploit the properties of diffusion distances witHie t
Gromov-Hausdorff framework. Biasotti et aBPS 10] de-
scribed a method for the characterization of shapes by using 1
. . . ; i cotaij + cotBij ) |vi — Vi 2
a set of patches, which are automatically tiled and stitched () (cotaj +cotfij)vi —vi| - (2)
in order to approximate the original shape. Reeb graphs are
used for the definition of the main shape features that drive  whereAyixeq denotes as the mesh surface area around a

of the triangular 3D mesM is the solution to the following
discrete linear equation (see Figuje

1)

2AMixed iEVa(i)

the approximation process. vertexv;, which is computed as shown in Algorithin(see
also Figure?).
Algorithm 1 Pseudo-code for the calculation of the surface
3. The Proposed Method area of regio\yixeq Of vertexv; on an arbitrary mesh
1: Amixed =0

In the sequel, a non-rigid 3D object descriptor, using graph 5. for f € Fy(i) do
topological structure driven by the discrete conformalfac 3. if f is non-obtusehen

tors, introduced by Ben-Chen and GotsmB€{G08 will be 4 Awtixed+ = Avoronoi
presented. We shall briefly introduce both of the aforemen- 5. gg
tioned concepts and then describe the proposed combined g. if the angle off atv; is obtusethen
scheme. 7: Anixed+ = area(f)/2
Before we proceed, let us define a triangular mikhk: 2, dSZM_ + — area(f) /4
{V,F,E}, represented by the set of verticés the set of o end if'xed N
facesF and the set of edgds connecting neighboring ver- 11-  endif
tices. Optionally, the set of the boundary verti@sould be 12: end for

defined. For a vertey;, V1 (i) denotes the 1-ring set of adja-

. : : . 13: return Ay
cent vertices t@; andF (i) denotes the 1-ring set of adjacent Mixed

faces tov;.
area( f) denotes the triangular area of fatéased on a
standard estimation method (Heron’s formul&)eronoi de-
notes the surface area contribution of a single non-obtuse
3.1. The Discrete Conformal Factor triangle inF4(i) (see Figure).

Ben-Chen and Gotsman iBCGO0§ have introduced the dis-
crete conformal factor for a 3D mesh, which is used as a non- Avoronoi = 1 z (cotatj + cotBij)[[vi — v H2 3)
rigid shape descriptor. The conformal facgpmat a vertex; iR
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Figure 3: Examples of partitionings and the correspondiiaglgs of 3D meshes from the class ‘Centaur’ of the TOSCA datas
using the discrete conformal factor jagunction.

whereaijj andfj; denote the two angles opposite to the The nodes of the graph represent connected components,
common edge;Vj (see Figure). while the edges of the graph describe the connectivity be-
tween adjacent connected component sets. Each connected
component is composed of 3D mesh faces that belong to
the same level-set (i.e. have the same label) and are also
pathwise-connected (i.e. there exists a continuous path th
connects each face of the connected component to every
other face that belongs to the same connected component).

In (1), kiOrigl is defined as the discrete Gaussian Curvature
at vertexy; of the triangular 3D mesh:

-y eif, Vi €V\B

kio"g = feF1<i)ef ' 4) The level-sets are defined by théunction, which labels the
m= ; Z i vieB faces of the 3D mesh, based on a selection of characteristics
€h() (see also Figurd).
The first case of equatior) is used for vertices of the It is evident that the selection @ffunction is critical for

triangular mesh whose 1-ring of adjacent faces is closed, the construction of the corresponding graph. Among the var-
whereas the second case is used for vertices that belong toious types oftand related graphs, one of the simplest exam-
the boundary of the triangular mesh (if such boundary ex- ples is a height functiondBvK93, SKK91, TSK97, TV98].

is,ts).eif is the angle near vertex of face f (see Figure). Other options include functions that measure the distance
between each vertex on the surface of a 3D mesh and an ap-

In (1), K" denotes the uniform Gaussian Curvature: oot i ; :

n (1), k uni ussl urvature. proximation of its center of mass and/or using other geadesi

properties of the 3D mesh.

1 Driven by the work of Ben-Chen and Gotsman and prop-
—areq(f) : :
) e 3 erties of graphs, discrete conformal factors appear to be a
K29 — Z/k?"g —~ et (5) good candidate for thg function to guide the graph con-
i€ %: area(f) struction (Figure3). This is mainly due to the stability and

robustness of the discrete conformal factors when used as a

k2" assigns to each vertex a portion of the total curvature non-rigid 3D shape signatur8¢G0g.

of the mesh. At this point, note that the computation of the graph is
based on the triangle sEtof the 3D mesh and not on the
corresponding vertex set. Therefore, it is necessary to map
the magnitude of the discrete conformal factors from the ver
A graph can be used as a topological map that representstices to the faces of the triangulated mesh. To achieve this,
the skeletal structure of an object with arbitrary dimensio  for each triangular face we aggregate the conformal factor
Reeb graphs are an example of methods for the charac-values of the three verticcqé:
terization of 3D mesh topological informatiotd$KKO1,
CMEH*04,BGSF08. Here, in similar manner, we will de-
fine a graph, that captivates the topological structure of an f Z(‘qf’ feF ©)

=

3.2. Graph Construction

arbitrary 3D mesh:
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(d)

Figure 4: Detailed steps for the construction of the graptaf8D mesh. Samplen, Re, andFsare illustrated.

The algorithm for the computation of the graph is com- graphs are topologically equivalent. To achieve this, we ap
posed of the following steps: ply the graph matching technique presentedS8A09 over
the graphs of triangular meshbt, G; = (Rm,Re, Fly)
andMy, Gy = (Rmp,Rey, Flp), respectively. The goodness-
of-fit criterion is the number of unmatched graph nodes, nor-
malized by the total number of nodes®f andG, and leads
to the calculation o8imopo(M1, M2).

e Quantization of the 3D mesh surface, based on the values
of thep function computed over the 3D mesh'’s faces, into
g discrete partitions (Figuréa).

e Definition of connected component sets and their repre-
sentative points (centers of mass) at each mesh partition

(Figure4b). In addition to the topological matching procedure,
e Estimation of boundary edges between adjacent con- geometry-based matching further enhances the discrimina-
nected components (Figude). tive power of the algorithm. To achieve geometry-based

e Connection between neighboring nodes that represent ad- matching eaclrsarea is compared to alFsarea Values of the
jacent connected components by graph edges (Figi)re second triangular mesh and vice versa. The average value of

In our implementation we have selectgd= 3, which the best matching scores is kept:

creates a three-level graph. This choice has been experi-
mentally determined as it yields good results while simul-
taneously preserving acceptable computational speed. Dur N
ing the graph construction procedure, if amgallconnected 11 Zl min_ (|Fsarea(i) — Fsarea(j)|)+
component sets occur, then these sets are removed as out- 2 N1 (& i=L.Nij=1.N; @)
liers, in order to ensure the coherence of the corresponding 1N . . .
graphs. In our implementation we definsmall connected N, IZlj:l_.l(lT;IirlluNlﬂFsarea(J) ~ Fsarea(l)]))
component set if it is composed of less than 2% of the 3D

mesh surface. The outcome of the graph construction is a set
of matrices that represent its structure:

Simgeo(ML Mp) =

where N1,No the number ofFs in triangular meshes

M1, M2 respectively.

Rn: The nodes of the graph.

Re: The edges connecting tiiRn of the graphRe are rep-
resented by al x N adjacency matrix, wherld equals
to the number oRn.

Fur;o'rl;zﬁt.mean value oft function at each connected com match(Mr, Mz) = 0.5-Simopo(M1, M) +0.5-imgeo(M1, Mz)

Fs. The set of faces (triangles) in each connected compo- (8)
nent. EactFsis represented by a correspondirg. As shown in Eq. 8), both measures are equally weighted

Fsarea: The area of the faces that belong to e&shFsarea for the calculation of the final match. The range of
is normalized with respect to the total area of the 3D mesh. match{M1,My) lies in [0, 1], where O represents 100% simi-

larity.

Combiningsimopo andsimyeo gives us the final measure
for 3D mesh matching:

3.3. Mesh Matching

Triangular mesh matching has two prongs: geometry-based 4. Evaluation

and topology-based. In this section we show the performance results of the

The topological matching procedure compares the graphs proposed non-rigid 3D shape descriptor (ConTopo) on the
of two meshes. This procedure checks whether the two following datasets: (i))TOSCA dataseBBK06, BBK0S]
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(parts of which are also used in the SHRECTOrrespon-
denceand Feature Detection and Descriptiomacks), (i)
SHREC'07 watertight models datas&BP07.

On the first dataset we compared against the non-rigid dis-
crete Conformal Factor (CF) descriptd8@G0g and the
rigid LightField (LF) [CSTOO03 and Spherical Harmonics
(SH) [KFRO3 descriptors. On the second dataset we com-
pared against the non-rigid discrete Conformal Factor (CF)
descriptor, and the augmented Multiresolution Reeb Graph
(@MRG) method TS04 (see also related work in Secti@h
The LF and SH benchmark code is publicly available, the CF
code was obtained from the author &JG0g, whom we
gratefully acknowledge, while the aMRG code is not pub-
licly available and therefore, the original graphs from the
SHREC’07 competition were used instead, since it was nec-
essary for making a compariso8BP07 and BCGO0§.

Our experimental evaluation is based on Precision-Recall
plots for the classes of the corresponding datasets. For ev-
ery query object that belongs to a cl&gecall denotes the
percentage of objects of claGshat are retrieved and preci-
sion denotes the proportion of retrieved objects that felon
to clas<C over the total number of retrieved objects. The best
score is 100% for both quantities.

TOSCA dataset
1 ———
N -
—06 > -
©
o
& \\
0,4 -|~ConTopo
=CF
0.2 L \‘\,(_x\
+-SH
0 t
0,05 0,25 0,45 0,65 0,85 1
Precision

Figure 5: The average P-R scores for the TOSCA dataset.
lllustrated methods are the proposed non-rigid descriptor
(ConTopo), the discrete Conformal Factor descriptor (CF)
and the rigid LightField (LF) and Spherical Harmonics (SH)
descriptors.

In Figure 5, in accordance to the experimental results
shown in BCGO§, we illustrate the P-R plots for the com-
plete TOSCA dataset for the proposed (ConTopo) non-rigid
descriptor, the discrete Conformal Factor descriptor amd t
state-of-the-art rigid descriptors: the LightField (LRdeathe
Spherical Harmonics (SH) descriptor. The P-R scores of the
methods clearly illustrate the increased accuracy of Con-
Topo. Furthermore, Figuré shows the corresponding P-R

According to the SHREC'07 classification scheme, the
dataset, composed of 400 3D objects, is classified into 20
classes, each of which contains 20 objects. Figuiéus-
trates the P-R plot for the complete dataset and Figure
shows the P-R plots for some of its classes. These plots il-
lustrate that the proposed method performs better than the
discrete Conformal Factor approach while its performance
against aMRG is mixed.

SHREC'07 dataset
1 "i\ |
N \
N N
=06 T \\\
g \ \\
(-4 04 \-\
g =
--ConTopo \-\x
0,2 | |=cCF
aMRG
0 :
0,05 0,25 0,45 0,65 0,85 1
Precision

Figure 6: The average P-R scores for the SHREC'07 dataset.
lllustrated methods are the proposed non-rigid descriptor
(ConTopo), the discrete Conformal Factor (CF) and the

aMRG method.

The proposed method was tested on a Core2Quad
2.5 GHz system, with 6 GB of RAM, running Matlab
R2010b. The average computational time for a 10,000 ver-
tex 3D mesh is about 0.6 seconds. The search in SHREC'07
dataset, is completed in about 210 seconds.

5. Conclusions

We have presented a new approach on non-rigid 3D shape
descriptors by utilizing the properties of both the diseret
conformal factor and graphs. The proposed method shows
improved performance over the discrete Conformal Factor,
as well as state-of-the-art rigid descriptors, like Ligbté

and Spherical Harmonics on the TOSCA dataset. Its results
are competitive against the Multiresolution Reeb Graph ap-
proach on the SHREC'07 dataset.
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