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Abstract
Combining the properties of conformal geometry and graph-based topological information for 3D object retrieval,
a non-rigid 3D object descriptor is proposed, which is both robust and efficient in terms of retrieval accuracy and
computation speed. In previous works, graph-based methodsfor non-rigid 3D object retrieval, have shown high
discriminative power and robustness, while geometry-based methods, have proven to be tolerant to noise and pose.
In this work, we present a 3D object descriptor that combinesthe above advantages.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—i.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

The increasing availability of 3D objects makes content
based retrieval a key operation. Retrieval methods are based
on the creation of a shape descriptor that faithfully encodes
the shape of the objects in an efficient manner. 3D object
descriptors can be classified into two main categories: rigid
and non-rigid. Over the last years, a lot of research effort has
successfully addressed rigid 3D shape descriptors exploit-
ing inter-class variability. However, in the case of intra-class
variability non-rigid 3D object descriptors are more effec-
tive where the objects of the class can assume a variety of
transformations, including deformations.

In this paper we present a non-rigid 3D object descrip-
tor by combining two concepts: (i) the geometry-based dis-
crete conformal factor by Ben-Chen and Gotsman [BCG08],
which provides geometry information and is tolerant to pose
and noise, and (ii) graphs [HSKK01,BGSF08], which pro-
vide topology information and have shown high discrimina-
tive power and robustness.

The remainder of the paper is structured as follows. In
section 2, related work in 3D shape descriptors, catego-
rized into rigid and non-rigid, is discussed. In section3, the
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Scholarship Foundation (I.K.Y.)

proposed method is given, including a detailed description
of the combined approach along with a brief introduction
for each constituent methodology, namely conformal map-
pings and graphs. Combining those theories, the proposed
3D shape descriptor is presented. Section4 presents the eval-
uation methodology along with the experimental results and
the related discussion. Finally conclusions are drawn in sec-
tion 5.

2. Related Work

Research in the field of 3D shape descriptors has advanced
significantly over the past few years, leading to a number of
different categorizations [SMKF04,TV08,BP06] according
to the features and/or representations used. One such catego-
rization is into rigid and non-rigid 3D object descriptors.

2.1. Rigid 3D Object Descriptors

Rigid 3D object descriptors usually address inter-class 3D
object retrieval.

One of the most cited methods for 3D object retrieval,
based on the extraction of features from 2D representa-
tions of the 3D objects, was the LightField descriptor, pro-
posed by Chen et al. [CSTO03]. This descriptor comprises
of Zernike moments and Fourier coefficients computed on
a set of projections taken from the vertices of a dodeca-
hedron. The SH-GEDT descriptor proposed by Kazhdan et
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Figure 1: Three sample models from the class ‘Centaur’ of theTOSCA dataset, color-coded with the corresponding conformal
factors.

al. [KFR03] is a volumetric representation of the Gaussian
Euclidean Distance Transform of a 3D object, expressed
by norms of spherical harmonic frequencies. Papadakis et
al. [PPPT08] proposed a hybrid descriptor formed by com-
bining features extracted from a depth-buffer and spherical-
function based representation, with enhanced translationand
rotation invariance properties. Sfikas et al. enhanced this
method by the addition of a symmetry based new pose nor-
malization method [STP10]. Papadakis et al. in [PPTP09]
proposed PANORAMA, a 3D shape descriptor that uses a
set of panoramic views of a 3D object which describe the
position and orientation of the object’s surface in 3D space.
For each view the corresponding 2D discrete Fourier Trans-
form and the 2D discrete Wavelet Transform are computed.

2.2. Non-Rigid 3D Object Descriptors

Non-rigid 3D object descriptors can effectively deal with
intra-class 3D object retrieval, where the objects of the class
can assume a variety of transformations, including deforma-
tions.

A large number of methods are based on the discrete
Laplace-Beltrami operator. Reuter at al. [RWP06] compare
two triangulated surfaces by computing the distance between
two isometry-invariant feature vectors given by the first
n eigenvalues of the Laplace-Beltrami operator. Similarly,
Rustamov [Rus07] uses the eigenvectors of the Laplace-
Beltrami operator. Zaharia and Preteux [ZP02] presented
the 3D shape spectrum descriptor which is the histogram
that describes the angular representation of the first and sec-
ond principal curvature along the surface of the 3D object.
Xiang et al. [XHGC07] use the histogram of the solution
to the volumetric Poisson equation∇2U = −1 (which in-
volves the Laplace-Beltrami operator) as a pose invariant
shape descriptor. In a similar manner, Ben-Chen and Gots-
man [BCG08], working on the boundary surface of the 3D
shape, create a descriptor that maps the local curvature char-
acteristics of the 3D object. The histogram of the solution to

the conformal factor equation∇2φ is used. The same princi-
ples were also used by Wang et al. [WWJ∗06] for face recog-
nition using 3D conformal maps.

Some non-rigid shape descriptors are derived from
geodesic distances on the mesh, which are invariant to iso-
metric transformations. Elad and Kimmel [EK03] proposed
a canonical representation for triangulated surfaces: a sur-
face inR3 is transformed into canonical coordinates in the
Euclidean spaceRm by applying multi-dimensional scaling.
In this canonical representation the geodesic distances onthe
original surface are approximated by the corresponding Eu-
clidean distances. The matching problem of non-rigid and
deformed objects is then reduced to the problem of match-
ing rigid objects embedded inRm, which can be approached
with well-known algorithms. Jain and Zhang [JZ07] com-
pare non-rigid objects by matching spectral embeddings that
are derived from the eigenvectors of affinity matrices, com-
puted by considering geodesic distances. A non-rigid de-
scriptor based on histograms of surface functions is pre-
sented by Gal et al. [GSCO07], where two scalar functions
are used on the mesh. Carlsson et al. [CZCG04] compared
barcode descriptors of point clouds computed by using the
persistence homology theory. Dey et al. [DGG03] compared
noisy point clouds, by matching signatures extracted from
segmented parts of the point sets by making use of Morse
theory. In [MDTS09], Mademlis et al. proposed a novel
shape descriptor based on the impact that the 3D objects
have when they are exposed to a specific type of force field
(i.e. the Newtonian or the Coulombian fields). The 3D ob-
jects are initially voxelized and subsequently the histograms
of the field factors are compared.

Zhang et al. [ZSM∗05] consider the use of medial sur-
faces to compute an equivalent directed acyclic graph of an
object. In the work of Sundar et al. [SSGD03], the 3D object
passes through a thinning process producing a set of skele-
tal points, which form a directed acyclic graph by applying
the minimum spanning tree algorithm. The P3DS descrip-
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tor developed by Kim et al. [KPYL05] uses an attributed
relational graph whose nodes correspond to parts of the ob-
ject that are represented using ellipsoids and the similarity is
computed by employing the earth mover’s distance. Hilaga
et al. [HSKK01] presented a technique to match the topology
of triangulated models, by comparing Multiresolution Reeb
Graphs (MRGs). Their algorithm for matching two MRGs
is a coarse-to-fine strategy, which searches the node pairs
providing the largest value of similarity while maintaining
topological consistency. Similarly to [HSKK01], Hamza and
Krim [HK03] considered a discrete approximation of the
global squared geodesic distance function. The dissimilar-
ity between two objects was calculated by computing the
Jensen-Shannon divergence between the corresponding sta-
tistical shape descriptors. Tung and Schmitt [TS05] used
geodesic distances for building an MRG and merge the
graph geometrical and visual information to calculation of
shape similarity between models. In recent research works,
Tierny et al. [TVD09] compare 3D models by extracting
partial signatures from disk or annulus-like charts using
Reeb graph topology. Bronstein et al. [BBK∗10] instead
of using geodesic distances for extracting shape signatures,
they exploit the properties of diffusion distances within the
Gromov-Hausdorff framework. Biasotti et al. [BPS∗10] de-
scribed a method for the characterization of shapes by using
a set of patches, which are automatically tiled and stitched,
in order to approximate the original shape. Reeb graphs are
used for the definition of the main shape features that drive
the approximation process.

3. The Proposed Method

In the sequel, a non-rigid 3D object descriptor, using graph
topological structure driven by the discrete conformal fac-
tors, introduced by Ben-Chen and Gotsman [BCG08] will be
presented. We shall briefly introduce both of the aforemen-
tioned concepts and then describe the proposed combined
scheme.

Before we proceed, let us define a triangular meshM =
{V,F,E}, represented by the set of verticesV, the set of
facesF and the set of edgesE connecting neighboring ver-
tices. Optionally, the set of the boundary verticesB could be
defined. For a vertexvi , V1(i) denotes the 1-ring set of adja-
cent vertices tovi andF1(i) denotes the 1-ring set of adjacent
faces tovi .

3.1. The Discrete Conformal Factor

Ben-Chen and Gotsman in [BCG08] have introduced the dis-
crete conformal factor for a 3D mesh, which is used as a non-
rigid shape descriptor. The conformal factorφi at a vertexvi

A
Voronoi

vi

θf

i

vj

βij

αij

Figure 2: Adjacent faces of vertexvi at 1-ring neighborhood.
Angle θ f

i andAVoronoi region are also presented.

of the triangular 3D meshM is the solution to the following
discrete linear equation (see Figure1):

φi =
ktarg

i − korig
i

L(vi)
(1)

where L(vi) denotes the discrete Laplace - Beltrami
function, at vertexvi , with cotangent weights, defined
in [MDSB02]:

L(vi) =
1

2AMixed
∑

j∈V1(i)

(cotαi j +cotβi j )|vi − v j | (2)

whereAMixed denotes as the mesh surface area around a
vertexvi , which is computed as shown in Algorithm1 (see
also Figure2).

Algorithm 1 Pseudo-code for the calculation of the surface
area of regionAMixed of vertexvi on an arbitrary mesh

1: AMixed = 0
2: for f ∈ F1(i) do
3: if f is non-obtusethen
4: AMixed+= AVoronoi
5: else
6: if the angle off at vi is obtusethen
7: AMixed+ = area( f )/2
8: else
9: AMixed+ = area( f )/4

10: end if
11: end if
12: end for
13: return AMixed

area( f ) denotes the triangular area of facef based on a
standard estimation method (Heron’s formula).AVoronoi de-
notes the surface area contribution of a single non-obtuse
triangle inF1(i) (see Figure2).

AVoronoi=
1
8 ∑

j∈F1(i)

(cotαi j +cotβi j )‖vi − v j‖
2 (3)
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Figure 3: Examples of partitionings and the corresponding graphs of 3D meshes from the class ‘Centaur’ of the TOSCA dataset
using the discrete conformal factor asµ function.

whereαi j andβi j denote the two angles opposite to the
common edgêviv j (see Figure2).

In (1), korig
i is defined as the discrete Gaussian Curvature

at vertexvi of the triangular 3D mesh:

korig
i =





2π− ∑
f∈F1(i)

θ f
i , vi ∈V\B

π− ∑
f∈F1(i)

θ f
i , vi ∈ B

(4)

The first case of equation (4) is used for vertices of the
triangular mesh whose 1-ring of adjacent faces is closed,
whereas the second case is used for vertices that belong to
the boundary of the triangular mesh (if such boundary ex-
ists).θ f

i is the angle near vertexvi of face f (see Figure2).

In (1), ktarg
i denotes the uniform Gaussian Curvature:

ktarg
i =

(
∑
j∈V

korig
j

) ∑
f∈F1(i)

1
3

area( f )

∑
f∈F

area( f )
(5)

ktarg
i assigns to each vertex a portion of the total curvature

of the mesh.

3.2. Graph Construction

A graph can be used as a topological map that represents
the skeletal structure of an object with arbitrary dimensions.
Reeb graphs are an example of methods for the charac-
terization of 3D mesh topological information [HSKK01,
CMEH∗04,BGSF08]. Here, in similar manner, we will de-
fine a graph, that captivates the topological structure of an
arbitrary 3D mesh:

The nodes of the graph represent connected components,
while the edges of the graph describe the connectivity be-
tween adjacent connected component sets. Each connected
component is composed of 3D mesh faces that belong to
the same level-set (i.e. have the same label) and are also
pathwise-connected (i.e. there exists a continuous path that
connects each face of the connected component to every
other face that belongs to the same connected component).
The level-sets are defined by theµ function, which labels the
faces of the 3D mesh, based on a selection of characteristics
(see also Figure4).

It is evident that the selection ofµ function is critical for
the construction of the corresponding graph. Among the var-
ious types ofµ and related graphs, one of the simplest exam-
ples is a height function [dBvK93,SKK91,TSK97,TV98].
Other options include functions that measure the distance
between each vertex on the surface of a 3D mesh and an ap-
proximation of its center of mass and/or using other geodesic
properties of the 3D mesh.

Driven by the work of Ben-Chen and Gotsman and prop-
erties of graphs, discrete conformal factors appear to be a
good candidate for theµ function to guide the graph con-
struction (Figure3). This is mainly due to the stability and
robustness of the discrete conformal factors when used as a
non-rigid 3D shape signature [BCG08].

At this point, note that the computation of the graph is
based on the triangle setF of the 3D mesh and not on the
corresponding vertex set. Therefore, it is necessary to map
the magnitude of the discrete conformal factors from the ver-
tices to the faces of the triangulated mesh. To achieve this,
for each triangular face we aggregate the conformal factor
values of the three verticesφ f

i :

φ f =
3

∑
i=1

φ f
i , f ∈ F (6)
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(a) (b) (c)
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(d)

Figure 4: Detailed steps for the construction of the graph for a 3D mesh. SampleRn, Re, andFs are illustrated.

The algorithm for the computation of the graph is com-
posed of the following steps:

• Quantization of the 3D mesh surface, based on the values
of theµ function computed over the 3D mesh’s faces, into
q discrete partitions (Figure4a).

• Definition of connected component sets and their repre-
sentative points (centers of mass) at each mesh partition
(Figure4b).

• Estimation of boundary edges between adjacent con-
nected components (Figure4c).

• Connection between neighboring nodes that represent ad-
jacent connected components by graph edges (Figure4d).

In our implementation we have selectedq = 3, which
creates a three-level graph. This choice has been experi-
mentally determined as it yields good results while simul-
taneously preserving acceptable computational speed. Dur-
ing the graph construction procedure, if anysmallconnected
component sets occur, then these sets are removed as out-
liers, in order to ensure the coherence of the corresponding
graphs. In our implementation we define asmallconnected
component set if it is composed of less than 2% of the 3D
mesh surface. The outcome of the graph construction is a set
of matrices that represent its structure:

Rn: The nodes of the graph.
Re: The edges connecting theRn of the graph.Re are rep-

resented by anN×N adjacency matrix, whereN equals
to the number ofRn.

Fµ : The mean value ofµ function at each connected com-
ponent.

Fs: The set of faces (triangles) in each connected compo-
nent. EachFs is represented by a correspondingRn.

Fsarea: The area of the faces that belong to eachFs. Fsarea
is normalized with respect to the total area of the 3D mesh.

3.3. Mesh Matching

Triangular mesh matching has two prongs: geometry-based
and topology-based.

The topological matching procedure compares the graphs
of two meshes. This procedure checks whether the two

graphs are topologically equivalent. To achieve this, we ap-
ply the graph matching technique presented in [SSA08] over
the graphs of triangular meshesM1, G1 = (Rn1,Re1,Fµ1)
andM2, G2 = (Rn2,Re2,Fµ2), respectively. The goodness-
of-fit criterion is the number of unmatched graph nodes, nor-
malized by the total number of nodes ofG1 andG2 and leads
to the calculation ofsimtopo(M1,M2).

In addition to the topological matching procedure,
geometry-based matching further enhances the discrimina-
tive power of the algorithm. To achieve geometry-based
matching eachFsarea is compared to allFsarea values of the
second triangular mesh and vice versa. The average value of
the best matching scores is kept:

simgeo(M1,M2) =

1
2
(

1
N1

N1

∑
k=1

min
i=1..N1, j=1..N2

(|Fsarea(i)−Fsarea( j)|)+

1
N2

N2

∑
l=1

min
j=1..N2,i=1..N1

(|Fsarea( j)−Fsarea(i)|))

(7)

where N1,N2 the number ofFs in triangular meshes
M1,M2 respectively.

Combiningsimtopo andsimgeo gives us the final measure
for 3D mesh matching:

match(M1,M2)= 0.5·simtopo(M1,M2)+0.5·simgeo(M1,M2)
(8)

As shown in Eq. (8), both measures are equally weighted
for the calculation of the final match. The range of
match(M1,M2) lies in [0,1], where 0 represents 100% simi-
larity.

4. Evaluation

In this section we show the performance results of the
proposed non-rigid 3D shape descriptor (ConTopo) on the
following datasets: (i)TOSCA dataset [BBK06, BBK08]
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(parts of which are also used in the SHREC’10Correspon-
denceand Feature Detection and Descriptiontracks), (ii)
SHREC’07 watertight models dataset [GBP07].

On the first dataset we compared against the non-rigid dis-
crete Conformal Factor (CF) descriptor [BCG08] and the
rigid LightField (LF) [CSTO03] and Spherical Harmonics
(SH) [KFR03] descriptors. On the second dataset we com-
pared against the non-rigid discrete Conformal Factor (CF)
descriptor, and the augmented Multiresolution Reeb Graph
(aMRG) method [TS05] (see also related work in Section2).
The LF and SH benchmark code is publicly available, the CF
code was obtained from the author of [BCG08], whom we
gratefully acknowledge, while the aMRG code is not pub-
licly available and therefore, the original graphs from the
SHREC’07 competition were used instead, since it was nec-
essary for making a comparison [GBP07] and [BCG08].

Our experimental evaluation is based on Precision-Recall
plots for the classes of the corresponding datasets. For ev-
ery query object that belongs to a classC, recall denotes the
percentage of objects of classC that are retrieved and preci-
sion denotes the proportion of retrieved objects that belong
to classC over the total number of retrieved objects. The best
score is 100% for both quantities.
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Figure 5: The average P-R scores for the TOSCA dataset.
Illustrated methods are the proposed non-rigid descriptor
(ConTopo), the discrete Conformal Factor descriptor (CF)
and the rigid LightField (LF) and Spherical Harmonics (SH)
descriptors.

In Figure 5, in accordance to the experimental results
shown in [BCG08], we illustrate the P-R plots for the com-
plete TOSCA dataset for the proposed (ConTopo) non-rigid
descriptor, the discrete Conformal Factor descriptor and two
state-of-the-art rigid descriptors: the LightField (LF) and the
Spherical Harmonics (SH) descriptor. The P-R scores of the
methods clearly illustrate the increased accuracy of Con-
Topo. Furthermore, Figure7 shows the corresponding P-R
scores for the same methods of representative classes of the
TOSCA dataset.

According to the SHREC’07 classification scheme, the
dataset, composed of 400 3D objects, is classified into 20
classes, each of which contains 20 objects. Figure6 illus-
trates the P-R plot for the complete dataset and Figure8
shows the P-R plots for some of its classes. These plots il-
lustrate that the proposed method performs better than the
discrete Conformal Factor approach while its performance
against aMRG is mixed.
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Figure 6: The average P-R scores for the SHREC’07 dataset.
Illustrated methods are the proposed non-rigid descriptor
(ConTopo), the discrete Conformal Factor (CF) and the
aMRG method.

The proposed method was tested on a Core2Quad
2.5 GHz system, with 6 GB of RAM, running Matlab
R2010b. The average computational time for a 10,000 ver-
tex 3D mesh is about 0.6 seconds. The search in SHREC’07
dataset, is completed in about 210 seconds.

5. Conclusions

We have presented a new approach on non-rigid 3D shape
descriptors by utilizing the properties of both the discrete
conformal factor and graphs. The proposed method shows
improved performance over the discrete Conformal Factor,
as well as state-of-the-art rigid descriptors, like LightField
and Spherical Harmonics on the TOSCA dataset. Its results
are competitive against the Multiresolution Reeb Graph ap-
proach on the SHREC’07 dataset.
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