
Proceedings of the IASTED International Conference
Parallel and Distributed Computing and Systems
October 16-19,1996 Chicago, lllinois' USA

Ali E. Abdallah

Department of ComPuter Science
The UniversitY of Reading
Reading, RG6 6AY, UK

email: A.Abdallah@reading.ac.uk

Abstract

The purpose of this paper is to show how o

closs of recursiuely defined functional algorithms can

be efficientty implemented, as mossiaely parallel net-

works of Communicating Sequential Processes (CSP/'

The method oims ot achieuing effi,ciency by exploiting
pipelining parallelism which is inherent in functional
programs. The backbone of the method is o collection

of powerful transformotion rtles for unrolling recur-

sion. Each of these ru"les transforms o generic recur-

siue functional definition into o composition of a fired
number of simpler functions' Parallelism is 'etplicitly
reolizetl, in CSP bg implementing the composition of

functions as piping ol appropri'ote processes.
Keywords: F\rnctional programming; Program
transformation; Pipelined parallelism.

L lntroduction

Recursion plays an essential role in the design and

formulation of numerous algorithms. The prominent

role of recursion is most evident in the functional style

of programming where most non-trivial functions are

defined recursively. Often, recursive definitions are in-

terpreted in an inherently sequential manner which

does not allow substantial opportunities for paral-

Ielism. However, a deeper analysis based on new tech-

niques introduced in [1, 2] may reveal just the oppo-
site.

For example , rhe insertion sort algorithm which

is recursively defined as:

isqrt:: [c] -r [c]; insert:: o -+ [c] -r [a]
isort | = [
isort (a: s) = i'nsert a (isort s)

insertal = [o]
insert o (c: s) = n: insert a s,

: a i T i s l

254-251

i f r < a
otherwise

Synthesis of Massively Pipelined Algorithms from Recursive

Functional Programs

Theoharis Theoharis

Department of Informatics
The University of Athens

Panepistimioupolis, 1577 L Athens,
email: theotheo@di.uoa.gr

is usually regarded as inherently sequential and

cannot be effectively parallelized. Although, a data
parallel execution strategy for this algorithm may not

result in substantial gain in efficiency, a parallel execu-

tion stategy aimed at exploiting pipeline parallelism in

this algorithm is shown to be much more effective. It

results in transforming this quadratic time sequential

algorithm into a linear time parallel algorithm with a

linear number of concurrent processes' The algorithm

is scalable because communications between the pro'

cessing elements are local.

The purpose of this paper is to present a method

for systematically transforming certain recursive func-

tional programs into massively parallel networks of

processes. The method is based on several powerful re'

cursion unrolling transformation rules. Each of these

rules expresses a generic recursive functional definition

in an iterative form as a composition of a fixed num-

ber of simpler functions (a pipe pattern)' F\rnction

composition can be subsequently refined into process

piping and, therefore, the whole recursive functional

i.nnitiott is transformed into a massively pipelined

network of processes.

Starting from an initial recursive functional defini-

tion of the problem, the synthesis is done in two stages'

The first stage aims at identifying pipelined paral-

lelism in the functional definition. This is achieved

using one of the recursion unrolling rules which trans-

form-the specification into a pipe pattern (a composi-

tion of a fixed number of functions)' The second stage

troduced in [1, 7].

500

2 Notation

Throughout this paper, we use the functional no-

mtion and calculus developed by Bird and Meertens

[4, 5] for specifying algorithmics and reasoning about
them. We also use the CSP notation and its calculus
developed by Hoare [7] for specifying processes and

reasoning about them. We give a brief summary of
the notation and conventions used in this paper.

Lists are finite sequences of values of the same
type. The list concatenation operator is denoted by 1*
and the list construction operator is denoted by: (pro-

nounced "cons"). F\rnctional application is denoted by
a space and functional composition is denoted by o.
The operator * (pronounced "map") takes a function
on the left and a list on the right and maps the func-
tion to each element of the list. Informally, we have:

f * l o r , a2 , . . . , a2 f = [/ (" t) , l@z) , . . . , . f (o ")]

The operator / (pronounced "reduce") takes an as-
sociative binary operator on the left and a list on the
right and is informally described as follows

(g) / [a r , a 2 , . . . ' a n l = a r @ a z 6 " ' @ a '

In order to concisely describe structured networks of
processes we find it very convenient to use, in addi-
tion to the CSP notation, functions which return pro-
cesses and functional operators such as map (*) and
reduce (/). For example, if F is a function which re-
turns processes, O is an associative CSP operator and

lot, oz, . . . , anf is a l ist of values, we have

F x [4 1 , a 2 1 . . . , a 2] : [F (o t) , F (a r) , . . . , F (o ")]

@) l F * f a 1 , a 2 , . . . , a n) = F (a 1) O F (a 2) < E . . . O F (a ,)

In CSP, the notation P {. bool * I is just an infix
form for the traditional selection construct if Dool then
P else Q. In general, we use identifiers with lower case
letters to name functional values and with upper case
letters to name processes or types.

3 Refinement from Functions to Pro-
cesses

The refinement from functions to CSP processes is
based on the formal treatment given in [1]. In general,
there could be many semantically different sequential
processes which refine (or correctly implement) a given
function. Some of these processes are more suitable
than others in the context of parallel computations.
The most useful functions for designing algorithms as
networks of communicating processes are those which
manipulate lists. A function f :: lAl -) [B] can be

viewed as a specification of a pipe process which con-
sumes a stream of values (argument) on the input
channel and produces a stream of values (result) on
the output channel. By convention, the end of each
stream is denoted by a special symbol eot indicating
"end of transmission". In CSP, a pipe process Q is
said to refine a function f :: lAl + [B] itr for all lists s
drawn from the domain of /, the output stream of Q is
/(s) +r [eot] whenever the input stream is s r* [eot].
This concept is illustrated in Figure 1.

s l* [eot]->

Figure 1: A process Q refining a function /.

Formally, a pipe process Q is a refinement of a
function f :: lAl -) [B], written as (/ < Q), iff the
following condition holds:

Vs € dom I c Prd(s) D Q = Prd(f s)

The operator >, see [1] for full details, is similar
to the CSP piping operator > except that the left
operand of > is a producer (a process which can only
output). For any list s, the producer process Prd(s)
is defined by the equations

EOT = teot -+ SKIP
Prd f = EOT
Prd (x : s) = r.x -+ Prd(s)

For example the identity function over lists of val-
ues id1,r1 :: [A] -r [,4] can be refined by any bounded
buffer process and, in particular, by the process:

COPY - pX.?n + (EOT { .n - eo t } ! z + X)

4 Decomposition Strategies for
Pipelined Parallelism

Pipeline parallelism is a very effective means for
achieving efficiency in numerous algorithms. It is gen-
erally much harder to detect than data parallelism.
The function decomposition strategy aims at exhibit-
ing pipeline parallelism in functional programs. The
fundamental objective of this strategy is to transform
a given algorithmic expression into a new form in
which the dominant term is a composition of several
functions. To fully appreciate the usefulness of this
transformation, we will appeal to a basic result, shown

(/ s) + [eot]

501

in [l], that the composition of functions is naturally
refined in CSP by the piping operator as follows

f :: lAl + [B]; s :: lBl -+ lCl
9 0 1
+ f <FAg<G
F>> G

By an inductive argument, using the associativ-
ity of), this result can be generalised so that
the composition of any finite list of functions, say

lfr, f2,.., fn-r, .f '], is refined by piping the l ist of
processes lFn, Fn-t,.., F2, F1l where for each index
i, | < i I n, the process Fl is a refinement of the
function fi.

5 Parallelizing Tail Recursion

There are several general recursive functional
forms, cdled pipe patterns [1], which can be systemat-
ically transformed into networks of linearly connected
processes in CSP. These patterns encapsulate algorith-
mic definitions which are frequently encountered in
functional specifications. They are generally suitable
for massively parallel implementations. The first pat-
tern which will consider encapsulates the general form
of. tail recursion. It can be described as:

spec:i [,a] -+ [B]; f :: A -+ ([A] -+ [B]); e :: [B]
specl = e
spec (a: s) = f a (spec s)

where e and / are parameters. An alternative for-
mulation ofthis pattern can be captured by the higher
order function foldr as (spec s - foldr / e s). This
pattern has a high degree of implicit parallelism. The
parallelism can be clearly exhibited by using the func-
tion decomposition strategy. All we need is to trans-
form (spec s) into an expression in which the dominant
term is of the form (o)//s, for some list of functions

/s. This is achieved by using the following recursion
unroll ing rule:

(Recursion Unroll ing RUf)
spec i: [A] -+ [B]; f :: A -+ ([B] -+ [B]); e :: [B]
spec ll : s

is as follows:

spec s = spec la1 ,az , . . . ran j
t a1 (spec lor,o", . . . ,anl)

' ;

I a r U a 2 (s p e c [o s , . . . , a , ,]))
(f o r " f a2) (spec [ae , . . . ,a , .])

= (f o r " f a z o . . .
" I a ") (s p e c [)

= (@ l f * f a 1 , a 2 , . . . , a " 1) e
= ((o) / f * s) e . . . :

A formal proof of this recursion unrolling rule is
straightforward by induction. Now provided that
J < F, spec(s) can be refined into the following net-
work of communicating processes

SPEC(s) = Prd(e) > (>)l F *(reuerse s)

The proof of this result directly follows from the re-
finement of function composition and the refinement
of function application. If the list s contains n values,
that is s = [or , az, . . . ,ar] , then spec s can be imple-
mented as a pipe of (n* l) processes. Processes in the
pipe are mainly instantiations of a single process [.
The network SPEC([a1,a2, . . . , o ,]) , can be p ic tured
as depicted in Figure 2.

In order to ensure efficiency of the resulting paral-
lel implementation S P EC (1a1, a2 t . . ., o,]), the func-
tion / must have an on-line implementation.

5.1 Example: Parallel Insert Sort

The recursive functional definition of the insertion
sort algorithm isort introduced in Section 1 is just a
special case of the tail recursion form. In this case we
have the starting value e is I and the step function / is
insert. Therefore, it follows from the previous section
that for all lists s, isort(s) can be implemented as the
following network:

ISORT(s) = EOT > ((>)l IN SERT *(reuerse s))

where for all values a, the sequential process
I N S E RT (a) is a refinement of the function (insert a).
Here is a possible definition of INSERT(a):

p,X c ?x -+ (!a -r teot -+ SKIP {r = eot}
l n - + X * r < o *
la -+ l r -+ COPY)

The diagram in Figure 3 depicts how the network
ISORT(15,4,8,9,3,5,8]) may evolve wi th t ime by i l -
lustrating the timed behaviour of the individual pro-

cesses in the network. This animation is based on [3].
Note that the input stream for each process in the net-
work is displayed on the horizontal line below it and
its output stream is displayed on the line above it.

Communications can only take place between neigh-
bouring processes in a synchronized fashion, that is

the output of each process is simultanously input to

the process above it.

spec (a: s) =
"f a (spec s)

+
s p e c s = ((.) / f * s) e

The informal justification for this transformation

502

specla2. . .anl

Prd(e)

To analyse the time complexity of the network
ISORT(s) for a list of length n, say T7s6py(n), ob-
serve that the first element of the result is output on
the external channel after n computational steps, af-
ter which the remaining elements of the sorted list will
successively appear on the output channel after two
steps each (one communication and one comparison).
Hence, Trsonr(n) = O(n). Therefore, using n pro-
cesses, the parallel implementation of isort(s) shows
an ideal O(n) speed up over the sequential implemen-
tation.

6 Parallelizing Recursion with Param-
eter Accumulation

Parameter accumulotion is one of the basic tech-
niques for achieving efficiency, in the serial sense, in
functional programs [6]. The definition of a function is
usually modified so that it takes an extra parameter
for accumulating the result after each recursive call.
Typically, the computation of a list of values usually
starts from the first element and proceeds towards the
last. This is in contrast with tail recursion where com-

F(o.) F(4" - r) F(az) F (a r)

Figure 2: SPEC(lar,a2,. . . ,an))

channels

t ro t rs tzo Time

Figure 3: Time diagram depicting the pipelined computation of ISORT(15,4,8,9,3,5,8])

putation starts from the last element of the list and
proceeds towards the first. The general functional pat-
tern which is used for this purpose has the following
form:

specii [f] -+ [,a] + [B]; add:: A -i [B] -+ [B]
spec t f = t
spec t (a: s) = spec (add a t) s

An alternative formulation of this pattern can be
captured using the higher order function foldl as
spec t s -

f oldl add t s, for details see Bird and
Wadler's book [5]. It is a well known fact that the
computation of the above pattern can be efficiently
achieved using a stack machine [6]. At first glance,
there seems to be no serious opportunities for exhibit-
ing parallel computation in this pattern. However, a
deeper examination reveals just the opposite. Our ob-
jective is to show how the above pattern can be trans-
formed into a highly parallel network of communicat-
ing processes. We aim to achieve this by transforming
spec into a pipe pattern. To do so, we define a new
function h as follows

503

h t s = ((o) l add,*(reaerse s)) t

lnformally, we have

h t fa1,a2, ,a* f = ((add ap)o . . . o (add a1)) t

The function h is clearly expressed as a pipe pattern.
The surprising thing is that the functions spec and
h are identical. The proof of this claim is done by
induction.

The corresponding CSP implementation of. spect s
is as follows

SPEC(t,s) = Prd,(t) > ((>>)/ ADD * s)

where the process ADD(a) refines the function add(a)
for all values of the parameter o. This parallel imple-
mentation of. spec can be substantially more efficient
than the sequential one provided that, for any given a,
the function (add a) is incrementally computable. Fi-
nally, we can encapsulate the whole derivation in the
following transformation rule:

(Recursion Unrolling RU2)
specii [a] -i [A] + [B]; add:: A + [B] -r [B]
spec t I L

spec t (a: s) = spec (add a t) s

spec t s = ((o)l add* (reuerse s)) t

6.1 Example: Converting lists to bags

The function mlebag converts a list into a bag. For
any list ns, (mlcbag cs) is a list of pairs. Each pair has
the form (r,i) where z is an elememt of ss and i is
a positive number indicating the count of occurrences
of c in the list zs. For example, we have:

mkbag "pa ra l l e l " = [(p , 1) , (a ,2) , (r , 1) , (1 ,3) , (e , 1)]

The function mkbag can be defined recursively as
follows:

rnkbag:: [c] -+ [(a,nun)]
mkbag s : mkbag' ll s
mkbag ' t l l = t
mkbag' t (c: .s) = mkbag' (add a t) s

add :: a + [(o, num)) + [(o, num)l
add r ll = [(r , 1) jadd r ((y,i): ys))

= lI,,?*tr\.;,r, :lr:,f,X"
The function rnkbag' matches the recursive defi-

nition of spec with parameter accumulation. There-
fore, provided that the process ADD(r) correctly im-
plements the function add x, mkbag s can be im-
plemented as the following pipelined network of pro-
CESSCS:

MKBAG(s) = Prd([) > (>>)/ ADD+s

For all c, the process ADD(r) can be defined as
follows:

p,Xo?z + (l(r,l) -+ EOT *z = eot*
l (a , i r l) + C O P Y { r = y *tz _+ X)
where z = (y, i)

Assuming that the length of the list s is n, the se-
quential implementation of mkbag@) requires O(n2)
steps but the parallel implementation is linear.

References

[1] A. E. Abdallah, Derivation of Parallel Algorithms
from F\-rnctional Specifications to CSP Processes,
in: Bernhard M6ller, ed., Mathematics of Program
Construction, LNCS 947, (Springer Verlag, 1995)
67-96.

A. E. Abdallah, Synthesis of Massively Pipelined
Algorithms for List Manipulation, Proceedings of
the European Conference on Parallel Processing,
EuroPar'96, LNCS 1024, (Springer Verlag, 1996),
pp 911-920.

A. E. Abdallah, Visualisation and Animation of
Networks of Communicating Processes, Proceed-
ings of the Eighth IASTED International Confer-
ence on Parallel and Distributed Computing and
Systems, Chicago, USA, October 1996.

R. S. Bird, An Introduction to the Theory of Lists,
in M. Broy, ed., Logic of Programming and Calculi
of Discreet Design, (Springer, Berlin, L987) 3-42.

R. S. Bird, and P. Wadler, Introduction to Func'
tional Programming, (Prenticc-Hall, 1988).

P. Henderson, Functional Programrning: Applica-
tion and Implementation. Prentice-Hall, 1980.

C. A. R. Hoare, Communicating Sequenticl Pro-
cesses. (Prentice-Hall, 1985).

tzl

t3l

[4]

r F l

toJ

t6l

t7l

504

