Proceedings of the IASTED International Conference
Parallel and Distributed Systems - Euro-PDS '97
June 9-11, 1997 - Barcelona, Spain

Derivation of Efficient Parallel Algorithms on a Ring of Processors

Ali E. Abdallah

Department of Computer Science
The University of Reading
Reading, RG6 6AY, UK
email: A.Abdallah@reading.ac.uk

Abstract

A binary operator which takes two lists as ar-
guments is called multiscan if every element of the
first list must be considered in conjunction with ev-
ery element of the second list in order to produce
the result. Several problems such as the relational
database operators join, intersection, and difference
can be expressed as specific instances of multiscan. In
this paper we consider a generic functional definition
of multiscan and show how it can be implemented
as a network of communicating sequential processes
(CSP) with a ring configuration. We ezamine issues
which affect the performance of the parallel imple-
mentation and identify two properties which, if pos-
sessed by a multiscan operator, allow the derivation
of an efficient scalable parallel implementation on a
ring of processors. A practical illustration from the
field of relational data bases is given.

Keywords: Functional programming; Generic
parallel algorithms; Communicating sequential pro-
cesses; Ring networks.

1 Introduction

Over the past decade, a fair amount of research
efforts have been directed at the development of par-
allel algorithms for a variety of application domains.
Parallelisation usually involves the introduction of
communication between parallel tasks. The commu-
nication cost is usually greater the more dependent
the tasks are. The communication structure of an al-
gorithm is directly dependent on the topology of the
underlying parallel hardware and thus algorithms are
associated with pipelines, rings, trees, hypercubes
etc.

Although individual applications are useful and
interesting per se, the generalisation and formal

264-240

-60-

Theoharis Theoharis 8

Department of Informatics
The University of Athens

Panepistimioupolis, 15771 Athens, Greece‘-

email: theotheo@di.uoa.gr

treatment of each topology should help us to rapidly
answer questions such as:

e Is application A suitable for parallel implemen-
tation on topology T?

¢ How much do we expect to gain from the parallel
implementation of application A on topology T?

e Can a generic algorithm be constructed for com-
putation on topology T?

A formal treatment of the derivation of efficient
parallel algorithms from high-level functional spec-
ifications on pipeline topology, has been given in
[1, 2, 3]. The current paper addresses the ring topol-
ogy. This is not a simple extension of the pipe, as
the addition of a single link between the end elements
might suggest, for several reasons. Firstly, the sym-
metry of the ring imposes symmetry on the parallel
algorithms if they are to be efficient. Secondly, the
ring introduces the possibility of deadlock. Thirdly,
the result of the pipeline computation is normally
output by the final stage of the pipeline. In con-
trast, the result of a ring computation is distributed
among its processors, each storing in its local mem-
ory a part of the result.

This paper examines ring computation by mod-
eling the ring data elements as lists of a fixed length
p. It considers the parallel computation of a generic
functional form called multiscan (see Section 3) and
identifes two properties under which the functional
form can be efficiently implemented as a ring network
of communicating sequential processes. A case study
from the field of relational databases illustrates the
approach.

2 Notation and Preliminaries

Throughout this paper, we use the functional no-
tation and calculus developed by Bird and Meertens

ik

Nl

cn

5, 6, 9] for specifying algorithmics and reasoning
about them and will use the CSP notation and its
calculus developed by Hoare [18] for specifying pro-
cesses and reasoning about them. We give a brief
summary of the notation and conventions used in this
paper. The reader is advised to consult the above
references for details.

Lists are finite sequences of values of the same
type. The list concatenation operator is denoted by
+ and the list construction operator is denoted by :.
The elements of a list are displayed between square
brackets and separated by comas. Functions are usu-
ally defined using higher order functions or by sets
of recursive equations. The operator * (pronounced
“map”) takes a function on the left and a list on the
right and applies the function to each element of the
list. Informally, we have:

[f(a1), f(a2), -+, f(an)]

The operator / (pronounced “reduce”) takes an as-
sociative binary operator on the left and a list on the
right. It can be informally described as follows

f*la1,a2,--+,a2] =

(e)/[alraaa"',an] = a;®ayd---Bay,

The left reduction operator (¢ /e) is a special
case of reduction in which the computation of a list
starts with e as an initial value and gradually accu-
mulates the result by traversing the list from left to
right. Informally, (& /4 e)lai,az, -+, an] is:

(- ((ea1)Da)®-)Da,

Given a binary operator ¢, the zipwith operator
Ve takes two lists of the same length (a1, as, - - -, ap]
and [by, by, - -, b,] and returns the following list:

a1 @by, a2 ® by, -+, ap B by)

3 Efficient Implementation of Multi-
scan Operators on a Ring

3.1 The problem

A binary operator ® which takes two lists zs
and ys as arguments will be called multiscan if every
C‘_lement in the list s must be considered in conjunc-
“lon with every element of list ys in order to produce
the result. This term was coined in the relational
ﬂlatabase field [13]. A multiscan operator ® is usu-
adly computed using a simpler operator & as follows:

-61-

[1511132,"';‘5;:]@1/3 = [z1®ysa 12®ysy T Ip®ys]

Formally, we have
TS®YS =125 Ve [ys | i + [1..#zs]]

The elements of the result on the right hand side
of the above expression can be computed in parallel
on p processors by assigning the computation of z; &
yS tO Processor i.

Many important operators such as those used
in relational databases (join, intersection, difference)
and matrix manipulation (multiplication. closure)
belong to this class.

3.2 The issues

In order to efficiently perform the above parallel
computation we have to provide appropriate treat-
ments to the following issues:

1. Communication. The value of ys is required
by every processor and thus needs to be communi-
cated. Assuming the size of ys is n, a total of np
values need to be communicated to the processing
elements. If the communication is not handled effi-
ciently this could cost O(np) time steps.

2. Computation/Communication Scheduling.
The communication and computation must be ar-
ranged so that a high processor utilisation is
achieved. Typically, the total sequential computa-
tion effort involved in executing ¢ is O(n?). If com-
munication is not properly interwined with compu-
tation there is danger of low processor ntilisation due
to processors being idle while waiting for data to be
communicated. In the worst case the parallel algo-
rithm could take O(n?) time steps to exccute.

3. Space. In many applications, such as data
bases, the size of zs and ys can be very large. Space
then becomes an important practical consideration
for the choice of algorithm. In scalable parallel sys-
tems it is not reasonable to assume that the space
available on cach element is enough to accommodate
all the data for the algorithm.

3.3 The Basic Solution

The basic solution is a parallel composition of p
parallel processes with a ring configuration. It as-
sumes that the lists zs and ys have the same length.
say p, and the " elements of the lists s and ys
are stored in the i*" processor in the ring. The al-
gorithm consists of two phases. The first phase aims

at communicating the list ys to all the processors.

The second phase actually computes the result. To
communicate the list ys, we can take advantage of
the ring topology by utilizing all of the p ring links
in parallel so that the p? values are communicated
in the ring in p time steps. At each step the list ys
is rotated clockwise around the ring of processors.
Care needs to be taken because the elements of ys
will be arriving in a different order at each processor.
This order is a circular shift of the original list. After
p — 1 such rotations the whole of the list ys will have
passed through and been stored by each processor.
At this point each processing element has all the rel-
evant data for the computation of the required part
of the result (i.e. z; and ys). Therefore, all the pro-
cessors can now proceed in parallel with the the it*
processor performing the computation of z; @ ys.

The i** ring process R; holds two values z and Y,
being the i*" elements of the lists zs and ys respec-
tively. Its main purpose is to compute r, the value of
the it* element of the resulting list. The behaviour
of R; can be viewed as a sequence of two phases, C;
representing the communication phase and P; repre-
senting the processing phase. The behaviour of these
processes is formally captured as follows:

Ri(z,y) = Ci(y,[); A=)
Ci(y’ys) = squ?:l (((in?y' — SKIP)
| (outly = SKIP));
y:=y5 ys.(iej):=y")
P;(z) = r:=z®yYs

where the operator & is subtraction modulo p and

the notation s.i denotes the i** element of the list s.
The behaviour of the ring is just a parallel composi-
tion of the p ring processes.

The above computation will be completed in
O(p) time steps by all processors. Thus the total
time required by the algorithm is O(pc + p) where
c represents the cost of a communication step. It is
clear that the speedup of this algorithm is p.

This algorithm provides good solutions to the
first two issues mentioned above. However, there
are two important drawbacks. First, each proces-
sor must have sufficient space to store the whole of
the list ys. Second, there is high latency before start-
ing the generation of the result because this cannot
commence until the expensive communication phase
has completely finished.

3.4 An Improved Solution

In the previous algorithm the behaviour of each
ring process was split into two separate phases. The
first is dedicated to communication and the second is
dedicated to computation. Often ring computation

-62-

can be improved by carefully interwining computa-
tion and communication so that each ring station
makes some computational progress after each com-
munication. This is only possible if the multiscan
operator @ satisfies certain conditions. To deter-
mine these conditions let us carefully consider the
behaviour of each ring process i.e. the list of values
it receives and the result it computes.

Clearly the i** ring process R; receives as input
the elements of the list ys in a certain order!, see
Figure 1. This order is captured by the function
rot 1 defined as follows:

rot i s = rev (take i s) + rev (drop i s)

rot i is the function which gives the i** rota-
tion (clockwise circular shift) of its list argument
and can be informally defined as rot 7 [s1, s3...5p] =
[Si, 8i—1...81, Sp, Sp—l---si+1]~

The result which should be computed by ring
station 7 is z; @ ys. In order to avoid the storage
of the whole list ys in station 7 the result should be
accumulated on the fly. Station i receives a rotation
of the list ys and computes:

z; &; rot i Ys
The oparator &; should be defined so that

T D;rotiys =z; Dys (C1)

A binary operator ® is called rotation invariant
if its result is independent of the particular rotation
of its right hand side list argument. Formally:

zQys=z®rotiys, Vie {l.p}

If @ is rotation invariant then condition C1 can
easily be satisfied by simply taking ®; = @.

It is highly desirable that the operator ® is incre-
mentally computable (C2) ie. part of the result can
be computed as soon as an element of ys becomes
available. Typically, although not exclusively, an in-
crementally computable operator & can be described
as a left reduction on ys as follows:

TBYs = (Oz7res) ys

where @, is a binary operator which depends on the
value z and e is the initial value of the computation.
This property has two advantages. Firstly, storage
for only one element of ys per ring station is required
and secondly, the result is incrementally built-up and

1As can be seen in the CSP description below, this can be
optimised as a station does not need to receive the element of
the list which resides in itself.

R2 rot ' 2 [yt .yn]
S
=
r2=x2 @ rot2 [yt .yn] ~
rot"1 [yl .,y/
t' (i-1) [y1.yn]
R1 Ri
I =x1@ rot 1 [yt .yn Tli=xi @ roti [y1.yn]
rot‘p [y1..yn]
rot' i [y1..ynf
Rp
-
I'p=x1 @ rot 1 [yl .yn] = - -
rot' 1 [y1.yn]

Figure 1: Computation and Communication on a Ring (the list rot' i s is rot ¢ s without the it? element).

can thus be incrementally extracted; this is attrac-
tive in systems where multiple I/O operations can
proceed in parallel or where I/O and computation
can be overlapped (e.g. Transputer systems).

Ring processing, as defined above, requires p—
1 parallel communication operations, reducing the
total communication cost to O(p).

Let us now describe the functionality of a ring
station. A ring station performs alternately:

* one step of ring communication (input from left
and output to right)

® one computation step which updates the cum-
mulative result for the new input

The above steps are repeated p—~1 times i.e. as many
as are necessary to correctly compute the final result.

A typical ring station R holding a binary opera-
for @ for the reduction computation, an initial value
r for accumulation of the result, and a value y for the
ost recent input can be depicted as in Figure 2.

n out

R(&,r,y)

Figure 2: A Ring Station

Its behaviour can be captured in CSP as follows:

aR = {in,out}
R(O,r,y) = r:=roy;seql ! STEP
STEP = (in?' - SKIP) || (outly - SKIP) ;

y:=ysri=roy

The final value of r residing in the ring station
is:
(©hr) (rot i ys)
The whole ring RING(zs,ys,®,¢) with p stations
can be described as

-, R(®gs, €zi, yi)[ci/in, ¢(it1)moa p/out]

where zi and yi are the i*" elements of the lists zs
and ys respectively, ®, is a binary operator which

-63-

may depend on z, and e, is the initial value for com-
puting the reduction. Figure 3 gives an illustration
of the sequence of steps performed in ring processing.

Deadlock is avoided by not ordering the input
and output phases of each ring station i.e. executing
input and output in parallel using double-buffering.
The parallel functioning of communication links is
increasingly available on modern processors used for
building parallel systems.

4 Applications

In a parallel relational database system using p
processors, each relation r is normally partitioned
into p pairwise disjoint parts which physically reside
in the local storage units of p processor modules.
This is refered to as a horizontal partitioning and is
extensively used in concrete parallel databases such
as [12, 25]. At an abstract level, we can view this as
changing the representation of relations from a single
set of tuples to a fixed number p of such sets. For this
representation, the definitions of several relational
operators such as intersection, difference, and join
can be naturally expressed as multiscan operators as
defined in Section 3. For example, the intersection
operator over two horizontally partitioned relations,
say = [r1,72,..Tp—1,Tp] and s = [s1,S2,..5p—1, Sp),
is defined as:

TAS={ridsrads, -, 1,D s

where the operator b is described as:

p
€& [s1,52,.,8p] =N U S;

A=l

It is clear that relational intersection N is a mul-
tiscan operator such that

TONsS=rTels, ..
N —

p times

The operator ¢ can be easily described as a left re-
duction and is thus, incrementally computable. We
have:

a®s=(Qp{})s

where £ ®, b = z U (a N b). Finally, & is rotation
invariant due to the commutativity of N. Therefore,
a highly parallel algorithm for this problem can be
derived by simply instantiating the generic solution
on the ring with the specific values of the parameters
©®, and e. Figure 3 depicts the execution of the in-
tersection algorithm for two horizontally partitioned

-64-

sets over three processors, z = {[2, 5], [1, 4], [0, 3]] and
y = [[5,3],[9,8],[2,0]], with the final result being
stored in r.

The database operators difference and join can
be defined as different instances of the ring pattern
which satisfy the two required conditions. Hence,
efficient parallel ring algorithms can be synthesized.

Many other problems can be described as in-
stances of the ring pattern including the cartesian
product of two sets, matrix multiplication and ma-
trix closure algorithms.

5 Related Work

This paper has been profoundly influenced by
the work of Bird and Meertens [5, 6, 7, 8] on devel-
oping a calculus for program synthesis and the work
of Hoare [18] on developing a calculus for commu-
nicating sequential processes. It fits extremly well
with ideas advocated by several other researchers
such as Cole [10], Skillicorn [23], Darlington [11],
Lenguaer and Gorlatch [15] and Misra [21] which at-
tempt at describing parallel algorithms at a high level
of abstraction and use program transformation tech-
niques to derive efficeint parallel implementations for
specific architectures. Skillicorn [22] proposed Bird-
Meertens Formalism (BMF) as a coherent approach
to the development of data parallel algorithms. Gor-
latch [16] showed how BMF can be used to derive ef-
ficient parallel implementation schema of distributed
homomorphisms on a hypercube of processors. Misra
[21] introduced a data structure called powerlist to-
gether with its algebra, and used it within a func-
tional setting to elegantly describe several divide-
and-conquer data-parallel algorithms. Darlington,
Kelly [11, 19], Mou and Huddak [20], Harrison and
Guzman [17] have used functional notations and al-
gebraic laws to develop parallel functional programs.
Our work goes a step further in refining the final
functional version into networks of CSP processes.

6 Conclusion

We have given a generic functional definition of
multiscan operators and showed how it can be im-
plemented as a ring network of communicating pro-
cesses in CSP. We have examined communication is-
sues in the network which can drastically reduce its
performance. We have identified two conditions on
the parameters of the functional form which guaran-
tee its efficient and scalable parallel implementation

Xl =[2,5]
=031 | rl = (5] | [n =6 ’![5 |rf = [5, H‘
rl =[] T] : !
: ;s 3l P o
X2 =[1,4] I
| ﬁ:’;g’ r =1 |run| B-HI
................. ,g oo ﬁ ... b
Ad = [03] ' E E
Zj :[[2]-01 [rs = (0] | | ri = [0] } [r; =!m..w| |
t1 12 t3 f; t5 I tfr;t;t’

Figure 3: Timing diagram for set intersection

on a ring of processors. The parameters of the func-
tional form can be instantiated to efficiently imple-
ment a number of multiscan operators provided that
they are rotation invariant and incrementally com-
putable. Several useful applications can be defined in
terms of such operators.

Acknowledgements

The authors would like to thank The British
Council for financially supporting their joint re-
search proramme between The University of Reading
and Athens University. The second author is sup-
ported by The University of Athens research grant
70/4/2401.

References

1] A.E. Abdallah, Derivation of Parallel Algorithms
from Functional Specifications to CSP Processes,
in: Bernhard Méller, ed., Mathematics of Pro-
gram Construction, LNCS 947, (Springer Verlag,
1995) 67-96.

2] A E. Abdallah, Synthesis of Massively Pipelined
Algorithms for List Manipulation, in L. Bouge

-65-

(3!

[4]

(5]

[6]

(7]

and P. Fraigniaud and A. Mignotte and
Y. Robert (eds), Proceedings of the European
Conference on Parallel Processing, EuroPar’96,
LNCS 1024, (Springer Verlag, 1996), pp 911-920.

A. E. Abdallah, and T. Theoharis, Synthe-
sis of Massively Pipelined Algorithms from Re-
cursive Functional Programs, in: K. Li, T.S.
Abdelrahman, E. Luque, eds., Proccedings of
the Eighth IASTED International Conference on
Parallel and Distributed Computing and Sys-
tems, Chicago, USA, (IASTED/ACTA press, Oc-
tober 1996), 500-504.

G.S. Almasi and A. Gottlieb, Highly Perallel
Computing, 2nd Edition, (Benjamin/Cummings
Publishing Company, 1994).

R. S. Bird, An Introduction to the Theory of
Lists, in M. Broy, ed., Logic of Programming
and Calculi of Discreet Design, (Springer, Berlin.
1987) 3-42.

R. S. Bird, Functional Algorithm Design, in:
Bernhard Madller, ed., Mathematics of Pro-
gram Construction, LNCS 947, (Springer Verlag,
1995) 2-17.

R. S. Bird, and L. G. L. T. Meertens, Two Exer-
cices Found in a Book on Algorithmics. in L. G.

L. T. Meertens, ed., Program Specification and
Transformation. (North Holland, 1986)

{8] R. S. Bird, and O. de Moor, The Algebra of Pro-
gramming, (Prentice-Hall, 1996).

[9] R. S. Bird, and P. Wadler, Introduction to Func-
tional Programmang, (Prentice-Hall, 1988).

[10] M. Cole, Algorithmic Skeletons: Structured
Management of Parallel Computation (Pitman,
1989).

[11] J. Darlington, A. J. Field, P.G. Harrison, and
P.H.J. Kelly, Q. Wu, and R.L. While, Paral-
lel Programming Using Skeletons Functions, in
PARLE93, Parallel Architectures and Languages
Europe LNCS | (Springer-Verlag, 93).

[12] D. DeWitt, et al., Tha Gamma Database Ma-
chine Project, IEEE Trans. on Knowledge and
Data Engineering, Vol. 2, no. 1, March 1990,
pp.44-61.

[13] O. Frieder, Multiprocessor Algorithms for
Relational-Database Operators on Hypercube
Systems IEEE Computer, November 1990, pp.13-
28.

[14] 1. Foster, Designing and Building Parallel Pro-
grams (Addison Wesley, 1995).

[15] S. Gorlatch and C. Lengauer, Parallelization of
Divide-and-Conquer in the Bird-Meertens For-
malism, Formal Aspects of Computing 7 (6)
(1995) 663-682.

[16] S. Gorlatch Systematic Efficient Parallelization
of Scan and Other List Homomorphisms, in
L. Bouge and P. Fraigniaud and A. Mignotte and
Y. Robert (eds), Proceedings of the European
Conference on Parallel Processing, Euro-Par’96,
LNCS 1124, (Springer-Verlag, 96) 401-408.

[17] I. P. de Guzman, P.G. Harrison, and E. Medina,
Pipelines for Divide-and-Conquer Functions, The
Computer Journal, 36 (3) (1993).

[18] C. A. R. Hoare, Communicating Sequential Pro-
cesses. (Prentice-Hall, 1985).

[19] Paul Kelly, Func-
tional Programming for Loosley-Coupled Multi-
processors. Research Monographs in Parallel and
Distributed Computing, (Pitman, 1989).

[20] Z.G. Mou, and M. Hudak, An Algebraic Model
for Divide-and-Conquer Algorithms and its Par-
allelism, Journal of Supercomputing, 2 (3) (1988).

[21] J. Misra, Powerlist: A Structure for Parallel Re-
cursion, ACM TOPLAS 16 (6) (1994).

[22] D. B. Skillicorn, Models for Practical Parallel
Computation, International Journal of Parallel
Programming 20 (2) (1991) 133-158.

[23] D. B. Skillicorn, Foundations of Parallel Pro-
gramming, (Cambridge University Press, 1994).

[24] M. Stonebraker, The Case for Shared Nothing,
IEEE Database Engineering, March 1986, pp. 4-
9.

[25] T. Theoharis and A. Paraskevopoulos, PARDB:
Design, Algorithms and Performance of a Trans-
puter Based Parallel Relational DBMS, submitted
to Transputer Communications,

