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Abstract

A binary operator which takes two lists os ar-
guments is colled, multiscon if eaery element of the

first list must be considered, in conjunction with eu-
ery element of the second list in order to produce
the result. Seuerol problems such as the relat'i,onal
databose operators join, intersection, and, difference
can be expressed as specific instances of rnultiscan. In
this paper we consider a generic functional definition
of multiscan ond show how it can be implemented
as a network of communicating sequential processes
(CSP) with a ring configuration. We eaomine issues
which affect the perlonnance ol the parallel imple-
mentation and, identily two properties which, if pos-
sessed by a multiscan operator, allow the d,eriuation
of an efficient scalable parallel im9tlernentation on a
ring of processors. A practical illustration from the

field of relational data bases is giuen.

Keywords: F\rnctional programming; Generic
parallel algorithms; Communicating sequential pro-
cesses; Ring networks.

1 Introduction

Over the past decade, a fair amount of research
efforts have been directed at the development of par-
allel algorithms for a variety of application domains.
Parallelisation usually involves the introduction of
communication between parallel tasks. The commu-
nication cost is usually greater the more dependent
the tasks are. The communication structure of an al-
gorithm is directly dependent on the topology of the
underlying parallel hardware and thus algorithms are
associated with pipelines, rings, trees, hypercubes
etc.

Although individual applications are useful and
interesting per se, the generalisation and formal

Theoharis Theoharis

Department of Informatics
The Universitv of Athens

Panepistimioupolis, I577L Athens, Greece
email: theotheo@di.uoa.gr

treatment of each topology should help us to rapidly
answer questions such as:

o Is application A suitable for parallel implemen-
tation on topology T?

o How much do we expect to gain from the parallel
implementation of application A on topology T?

o Can a generic algorithm be constructed for com-
putation on topology T?

A formal treatment of the derivation of efficient
parallel algorithms from high-level functional spec-
ifications on pipeline topology, has been given in

[1, 2, 3]. The current paper addresses the ring topol-
ogy. This is not a simple extension of the pipe, as
the addition of a single link between the end elements
might suggest, for several reasons. Firstly, the sym-
metry of the ring imposes symmetry on the parallel
algorithms if they are to be efficient. Secondly, the
ring introduces the possibility of deadlock. Thirdly,
the result of the pipeline computation is normally
output by the final stage of the pipeline. In con-
trast, the result of a ring computation is distributed
among its processors, each storing in its local mem-
ory a part of the result.

This paper examines ring computation by mod-
eling the ring data elements as lists of a fixed length
p. It considers the parallel computation of a generic
functional form called multiscan (see Section 3) and
identifes two properties under rvhich the functional
form can be efficiently implemented as a ring network
of communicating sequential processes. A case study
from the field of relational databases illustrates the
approach.

2 Notation and Preliminaries

Throughout this paper, we use the functional no-
tation and calculus developed bv Bird and Meertens



[b, 6, 9] for specifying algorithmics and reasoning

about them and will use the CSP notation and its

calculus developed by Hoare [18] for specifying pro-

cesses and reasoning about them. We give a brief

summary of the notation and conventions used in this

paper. The reader is advised to consult the above

references for details.

Lists are finite sequences of values of the same

t_vpe. The list concatenation operator is denoted by
-r+ and the list construction operator is denoted by:.

The elements of a list are displayed between square

brackets and separated by comas. F\rnctions are usu-

ally defined using higher order functions or by sets

of recursive equations. The operator * (pronounced
"map") takes a function on the left and a list on the

right and applies the function to each element of the
list. InformallY, we have:

I  * l a t , a z , .  - . , a z f  :  [ . f ( " t ) ,  f ( o z ) , . . . , f ( o " ) ]

The operator / (pronounced "reduce") takes an as-
sociative binary operator on the left and a list on the
right. It can be informally described as follows

( @ ) /  l o r ,  a z , " ' , a n f  =  a r  @  a z  € E  " ' O  a '

The left reduction operator (g fe) is a special
<:ase of reduction in which the computation of a list
starts with e as an initial value and gradually accu-
rnulates the result by traversing the list from left to
Light .  In formal ly ,  (e h 

" ) lor ,o2, .  
-  . ,  cr , l  is :

( . . .  ( ( "  < o r r r )  e  o r )  e . . . )  O o ,

Given a binary operator (E, the zipwith operator
y9 takes two lists of the same length for,or,. . . ,apl
and [b1 ,b2, ' . . ,bo]  and returns the fo l lorv ing l is t :

lor e 6t , 0'2 (E bz, "' , an Q bo)

3 Efifrcient Implementation of Multi-
scan Operators on a Ring

3.1 The problem

. A binary operator I which takes two lists rs
and ys as arguments rvill be called multiscan if every
element in the list rs must be considered in conjunc-
iion rvith every element of l ist ys in order to produce
rne resuit. This term rvas coined in the relational
rratabase field [13]. A multiscan operator Ci is usu-
:litv computed using a simpler operator O as follorvs:

l r t , r r , " '  , x o l & y s  =  [ a r  O g s ,  x z O A s ,  " '  ,  x r @ y s ]

Formally, we have

cs I  ys = rs  Vo [ys I  i  <-  [ l . . f rs ]  ]

The elements of the result on the right hand side
of the above expression can be computed in parallel
on p processors by assigning the computation of c; O
ys to processor f.

Many important operators such as those used
in relational databases (join, intersection, difference)
and matrix manipulation (multiplication, closure)
belong to this class.

3.2 The issues

In order to efficiently perform the above parallel
computation we have to provide appropriate treat-
ments to the following issues:

L Comrnunication. The value of ys is required
by every processor and thus needs to be communi-
cated. Assuming the size of ys is n. a rotal of. rtp
values need to be communicatcd to rhc prot:essing
elemcnts. If the communication is not harrdlccl cff i-
ciently this could cost O(np) timc steps.

2. Computation/Communiail ion Sdndu,ling.
The communication and computation rnust l>r-' ar-
ranged so that a high proccssor rrt i l isation is
achieved. Typically, the total sequcntial (:omput:1,-

tion effort involved in executing c:l is ()(rrr) If conr-
munication is not properly intcrrvirrcd ',vith (:omplr-

tation thcre is danger of low proccssor rrri l isation riuc
to processors being idlc while waiting for rlata to lrc
communicated. In thc worst case l.hc parallcl irlgo-
rithm could take O(n2) time steps r,o cxccur,c.

3. Space. In many applicatiorrs, sucir :rs rlata
bases, the size of rs and ys can be verv Lirgc. Splce
then becomes an important practic;rl r:onsirlcration
for the choice of algorithm. In scalablc paralicl svs-
tems it is not reasonable to assurnc thar rhc suircc
available on cach element is enough to rrccornrnoclatc
all the data for the algorithm.

3.3 The Basic Solut ion

The basic solution is a parallcl composition of p
parallel processes with a ring configuration. It irs-
sumes that the l ists rs and ys havc the samc length.
say p, and the i'h elements of the iists rs :rnd ry.s
are stored in the it" processor in thc ring. Thc al-
gorithm consists of two phases. Thc first phase aims
at communicating the l ist ys to i i l l  r,hc proccssors.
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The second phase actually computes the result. To
communicate the list ys, we can take advantage of
the ring topology by utilizing all of the p ring links
in parallel so that the p2 values are communicated
in the ring in p time steps. At each step the list ys
is rotated clockwise around the ring of processors.
Care needs to be taken because the elements of ys
will be arriving in a different order at each processor.
This order is a circular shift of the original list. After
p - I such rotations the whole of the Iist ys will have
passed through and been stored by each processor.
At this point each processing element has all the rel-
evant data for the computation of the required part
of the result (i.e. ci and gs). Therefore, all the pro-
cessors can now proceed in parallel with the the ith
processor performing the computation of f it@As.

The ith ring process .R; holds two values r and, y,
being the ith elements of the lists cs and yE respec-
tively. Its main purpose is to compute r, the value of
the ith element of the resulting list. The behaviour
of .R; can be viewed as a sequence of two phases, Q
representing the communication phase and P; repre-
senting the processing phase. The behaviour of these
processes is formally captured as follows:

Rr(a ,a)
c  i ( y , a  s )

Pr(x)

:  C i (y , l ) ;  P ; (x )
= seatr (  (  $n?y'  -+ sKIP)

l l  (outty -+ SKIP));
A := ! / , ;  ys.( i  O j)  , :  a,)

=  r : = r @ A S

where the operator O is subtraction modulo p and
the notation s.i denotes the ith element of the list s.
The behaviour of the ring is just a parallel composi-
tion of the p ring processes.

The above computation will be completed in
O(p) time steps by all processors. Thus the total
time required by the algorithm is O(pc *p) where
c represents the cost of a communication step. It is
clear that the speedup of this algorithm is p.

This algorithm provides good solutions to the
first two issues mentioned above. However, there
are two important drawbacks. First, each proces-
sor must have sufficient space to store the rvhole of
the list ys. Second, there is high latency before start-
ing the generation of the result because this cannot
commence until the expensive communication phase
has completely finished.

3.4 An Improved Solution

In the previous algorithm the behaviour of each
ring process was split into two separate phases. The
first is dedicated to communication and the second is
dedicated to computation. Often ring computation

can be improved by carefully interwining computa-
tion and communication so that each ring station
makes some computational progress after each com-
munication. This is only possible if the multiscan
operator O satisfies certain conditions. To deter-
mine these conditions let us carefully consider the
behaviour of each ring process i.e. the list of values
it receives and the result it computes.

Clearly the ith ring process Ri receives as input
the elements of the list gs in a certain orderl , see
Figure 1. This order is captured by the function
rot i defined as follows:

rot i s = reu (take i s) +F reu (drop i s)

rot i is the function which gives the ith rota-
tion (clockwise circular shift) of its Iist argument
and can be informally defined as rot i [s1,s2...s0] =

[8 i ,  S ; -1 . . . 81  ,  so ,  sp - r . . . s ;+ t ] .
The result which should be computed by ring

station i is rt O ys. In order to avoid the storage
of the whole list ys in station i the result should be
accumulated on the fly. Station i receives a rotation
of the list gs and computes:

x; 6t rot i Us

The oparator 6i should be defined so that

ti Q; rot i ys = xt (E lts (CL)

A binary operator @ is called rotation inaariant
if its result is independent of the particular rotation
of its right hand side list argument. Formally:

n @ y s = r 0 r o t  i A s ,  V i  e  { 1 . . . p }

If g is rotation invariant then condition Cl can
easily be satisfied by simply taking 6r = 0.

It is highly desirable that the operator @ is incre-
mentally cornputable (C2) i:e. part of the result can
be computed as soon as an element of ys becomes
available. Typically, although not exclusively, an in-
crementally computable operator O can be described
as a left reduction on u,s as follows:

x e A s = ( O , j e , ) U s

where O, is a binary operator rvhich depends on the
value c and e, is the initial value of the computation.
This property has two advantages. Firstly, storage
for only one element of gs per ring station is required
and secondly, the result is incrementally built-up and

lAs can be seen in the CSP descr ipt ion below, th is can be
optimised as a station does not need to receive the element of
the list which resides in itself.



'  ( i-t) ty|-ml

Ri

n=xi @ roti  [yt -W]

tot 'p [y1 ..W]

Figure 1: Computation and Communication on a Ring (the list rot' i s is rot i s without the ilh clement).

can thus be incrementally extracted; this is attrac-
tive in systems where multiple I/O operations can
proceed in parallel or where I/O and computation
can be overlapped (e.g. Transputer systems).

Ring processing, as defined above, requires p -
I parallel communication operations, reducing the
total communication cost to O(p).

Let us now describe the functionality of a ring
station. A ring station performs alternatelv:

o one step of ring communication (input from left
and output to right)

. one computation step rvhich updates the cum_
mulative result for the ncrv inout

The above steps are repeated p- I times i.e. as many
as are necessary to correctly compute the final result.

A typical ring station B holding a binary opera-
tor O for the reduction computation, an initial value
r for accumulation of the result, and a value y for the
nost recent input can be depicted as in Figure 2.

Figure 2: A Ring Starion

Its behaviour can be captrrred in CSP ;w follorvs:

aR = { in,out l

1?(<), r, g) = r := r O y; seql=rt ST EP

STEP = (in?y' -+ SKIP) ll (outty -+ .9h /p) ;
lJ i= l l , ;  r  i= r () l l

The final ralue of r residing in thc ring station
ls :

(o+r)  ( rot  i  ys)

The whole ring .RING(rs,ys) O,e) l ' i th p stations
can be described as

;f ?- r,R(o"r, e,i, yi)lci f inr c(i+r )mod o I ou.t)

where ni and yi are the ith elements of the lists *s
and ys respectively, O, is a binary operator rvhich

t n



may depend on o, and e, is the initial value for com-
puting the reduction. Figure 3 gives an illustration
of the sequence of steps performed in ring processing.

Deadlock is avoided by not ordering the input
and output phases of each ring station i.e. executing
input and output in parallel using double-buffering.
The parallel functioning of communication links is
increasingly available on modern processors used for
building parallel systems.

4 Applications

In a parallel relational database system using p
processors, each relation r is normally partitioned
into p pairwise disjoint parts which physically reside
in the Iocal storage units of p processor modules.
This is refered to as a horizontal partitioning and is
extensively used in concrete parallel databases such
as [12, 25]. At an abstract level, we can view this as
changing the representation of relations from a single
set of tuples to a fixed number p of such sets. For this
representation, the definitions of several relational
operators such as intersection, difference, and join
can be naturally expressed as multiscan operators as
defined in Section 3. For example, the intersection
operator over two horizontally partitioned relations,
say  r  :  l r r , r " ,  . . r p -L t r r ]  and  

"  
=  l t t ,  s2 ,  . . s r -1 ,  sp ] ,

is defined as:

^ f ^ 1
f  I  I  S  =  

[ f 1  t H , S , T . 2  t D  S t . ' . , r r ?  $  S l

where the operator rE is <lescribed as:

p

r  t u  [ s1 , . s2 ,  . . . $p ]  =  ; r  i  [ . J  ' s i
t = l

It is clear that relational intersection O is a mul-
tiscan operator such that

r O .s = r' y,9 [.s, s, .., s]

The operator ql carr be easily described as a left re-
duction and is thus, incrcmentallv computable. We
have:

o o s : ( o " / { } )  ,

rvhere r Oo b = r U (an b). Finally, O is rotation
invariant due to the commutativity of fi. Therefore,
a highly parallel algorithm for this problem can be
derived by simply instantiating the generic solution
on the ring with the specific values of the parameters
O, and e. Figure 3 depicts the execution of the in-
tersection algorithm for two horizontally partitioned

p t lmes

sets over three processors, o = [[2,5], [1,4], [0,3]] and
y = [ [5 ,3] , [9 ,8] , [2 ,0] ] ,  wi th the f ina l  resul t  being
stored in r.

The database operators difference and join can
be defined as different instances of the ring pattern
which satisfy the two required conditions. Hence,
efficient parallel ring algorithms can be synthesized.

Many other problems can be described as in-
stances of the ring pattern including the cartesian
product of two sets, matrix multiplication and ma-
trix closure algorithms.

5 Related Work

This paper has been profoundly influenced by
the work of Bird and Meertens [5, 6, 7, 8] on devel-
oping a calculus for program synthesis and the work
of Hoare [18] on developing a calculus for commu-
nicating sequential processes. It fits extremly well
with ideas advocated by several other researchers
such as Cole [10], Skil l icorn [23], Darlington [11],
Lenguaer and Gorlatch [15] and Misra [21] which at-
tempt at describing parallel algorithms at a high level
of abstraction and use program transformation tech-
niques to derive efficeint parallel implementations for
specific architectures. Skillicorn [22] proposed Bird-
Mcertcns Formalism (BN4F) as a cohercnt approach
to the development of data parallel algorithms. Gor-
latch [16] showed how BIUF can bc rrsed to derive ef-
ficient parallel implementation schema ol i,istributed
Itomomorph,isrns on a irypercube of processors. Misra

[21] introduccd a data structurc called powerli.st to-
gethcr rvith its algebra, and used it rvithin a func-
tional setting to elegantiy describe several <livide-
and-conquer data-parallel algorithms. Darlington,
I(elly [11, 19], Mou and Huddak [20], Harrison and
Guzman [17] have used functional notations and al-
gebraic laws to develop parallel functional programs.
Our rvork goes a step further in refining the final
functionai version into networks of CSP Drocesses.

6 Conclusion

We irave given a generic functionai definition of
rnultiscan operators and showed how it can be im-
plemented as a ring network of communicating pro-
cesses in CSP. We have cxamined communication is-
sues in the network rvhich can drastically reduce its
performance. We have identified two conditions on
the parameters of the functional form which guaran-
tee its efficient and scalable parallel implementation



xI = [2,5]
yr = ts,31
r t = [ ]

x2 = II,4l
y2 = te,81
1 2 = t l

y3 = t2,01
rt = tl

Figure 3: Timing diagram for set intersection

on a ring of processors. The parameters of the func-
tional form can be instantiated to efficiently imple-
ment a number of multiscan operators provided that
they are rotation inuariant and, incrementolly com-
putable. Several useful applications can be defined in
terms of such operators.
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