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Abstract

FlexParDB. a relational algebra query e.\ecution n'stenr is prcsented, rvhiclr combines intra-
query and operator parallelisrn. Intra-query parallelisnr is expressed in rhe $,avesets, rvhich
are a partition of the set of query-tree operators: valid $,avesets are consistent rvith the florv of
relational data front the leaves to the root of the query-tree. The rvavesets represent the query
execution plan. A simple script langrage for the description of a query-rree and its wavesets
has been developed. Wavesets are e\ecuted b1, parallel multiple execurions of PARDB. a
system supponing operator parallelisnr. FlexParDB lus been implenrented on a massively
parallel Transputer architecture.

l .  Introduction

There are three levels at which parallelism can be introduced in an RDBMS,
resulting respectively in qtrcry, operator and nplc parallelism. Qttery parallelism
can be divided into inter- and intra-query parallelism. The former involves the
processing of different queries in parallel, possibly on different partitions of the
data base, while the latter involves deciding how to best exploit the parallelism
within a query. For example, if a query involves the join of four relations Rl,
R2, R3 and R4, in a system exploiting intra-query parallelism the join of Rl and
R2 may be done in parallel with the join of R3 and R4 (followed by a join of the
two results). Operator parallelism arises when the function and data of a
relational operator is distributed among different processors. This involves the
partitioning of the data base over multiple secondary storage devices and leads
to the consideration of data distribution and load balancing issues.

In previous work operator parallelism and intra-query parallelism have
been separately investigated. Operator parallelism was employed in PARDB [7],
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a parallel RDBMS developed at the University of Athens based on Transputer
hardware [5].

An intra-query parallelism execution model which exploits pipelining,
the Tree Pipelining query execution model (TP) t8l, has been developed,
'*'hereby a query is transformed into a query-tree representation and pipelining
is determined by the query-tree structure. For query execution the nodes of the
tree represent processes of relational algebra operators and the arcs represent
communication of intermediate results from children to parent processes.
Processes are allocated to a number of processors. uti l ising the intrinsic
parallelism of the query tree: (i) leaf-processes, as they have the base relations
available, start execution immediately', they produce tuples of intermediate
relations and then propagate them to their parent processes; (ii) inner-processes
start execution in pipeline mode as soon as they have sufficient tuples to operate
on. The query tree is optimised before being submitted for execution. A cost
model for the estimation of communication and I/O costs in parallel execution
spaces according to TP has been used in exhaustive parallel optimisation and in
parallelized enhanced iterative improvement.

A query execution environment for TP [2] has been developed on the
Parix message passing environment running on Parsytec GC 3/512 massively
parallel Transputer architecture [5] The query tree is annotated with
implementation specific information. such as the allocation of processes to
processors. The annotated query tree structure is interpreted by a Loader
program, which composes a message passing program out of reusable library
components, each implementing a relational algebra operator. The composed
message passing program implements the pipeline execution of the query tree.
This composition is a special case of the composition of message passing
programsby theEnsemblemethodo |ogyonPar ix [3 ] .>

We would like to combine the advantages of operator parallelism in
PARDB and pipeline parallelism in TP to achieve more efficient parallel query
execution. By adding operator parallelism to TP we could control the flow of
relation tuples from the leafs to the root. As this flow depends on the
complexity of operators and the data volume to be processed, we could allocate
more processors to processes which slow the pipeline processing.

In TP the maximum number of processors required is equal to the
number of query-tree nodes and, if a suffrcient number of processors is
available, low processor utilisation will not influence the overall speedup. In
contrast, if operator parallelism is added, there is no bound on the number of
processors (even for a single operator) and we should seek the optimal
allocation to maximise utilisation of the available processors. Extending the
optimiser to cope with the extra parameter of operator parallelism is a complex
task in terms of its design and its execution complexity.

In the pipeline execution of a query tree there appear to be "waves of
activity" which begin at the query tree leaf nodes and, as intermediate results
become available, internal nodes are activated: if a full query tree is therefore
mapped onto parallel processes, a large proportion of them will be idle and
processor utilisation will be low.

d
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It therefore seems more efticient to allocate processors according to
waves of activity which are essentially sets of query-tree nodes (operators)
called wcvesets. We have developed the FlexParDB system which provides a
mechanism for the definition of wavesets with operator parallelism and their
execution. This entails the partitioning of the query-tree nodes into wavesets
and the allocation of the available processors to the operators in each waveset.
For the execution of wavesets, the PARDB system has been appropriately
extended and used as the basic building block of FlexParDB.

The rest of this paper is structured as follows. Section 2 gives an outline
of PARDB and its extensions for FlexParDB, section 3 describes the
specification and the execution mechanism of alternative execution plans in
FlexParDB. System performance is discussed in section 4 and the conclusions
and future work are given in section 5.

2. PARDB: Operator Parallelism Unit

PARDB [7] provides operator parallelism within each node of the query tree.
All relations are horizontally partitioned among the Transputers. The original
implementation was on a Parsytec Multicluster under the Helios operating
system [6] but PARDB has now been ported to a Parsytec GC machine under
PARrx [s]

One Transputer is reserved to provide a unique external interface to
query processing applications and for delegating the work to the appropriate
slaves through message passing. This Transputer and the associated software is
the master. All other Transputers hold a partition of the database and are called
slaves: a slave independently manages its local data base partition and stores all
the relevant data (such as subindices and sequential RDBMS code-which has to
be duplicated at every slave). PARDB can comprise many slaves but only one
master (see fig. l).
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Figure 1. PARDB System Architecture
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onto the disk of each slave), Collect (dump a data base from the disk of each
slave onto a central disk), RmDupl (remove duplicate tuples that may exist
between different partitions of a relation) and Balance (redistribute the tuples
between partitions so that the difference between the partitions u,ith the
minimum and maximum number of tuples is no more than l).

The master reads script file commands, and sends messages to the slaves
which execute the commands (usually that simply involves broadcasting the
command and any arguments to the slaves). The master then waits for messages
from the slaves; the messages contain results and report successful termination
of a command. The master finally records any changes in a central data
structure, the relation table, which keeps the number of tuples per partition per
relation. Correspondingly upon receiving a command from the master, a slave
calls the appropriate sequential RDBMS routine to perform the necessary
processing on the local partition of the data base(s), it then exchanges partition
data with other slaves (for multiscan [4] operators) and sends a termination
message to the master.

The network architecture is determined by the pattern of interprocessor
communication requirements and the capabilities of the underlying hardware.
Most multiscan relational operations can be implemented on a parallel system
either by the global partitioning method or by the cycling method []. Global
partitioning algorithms redistribute the tuples of the operand relations, so that
the partitions of all operand relations that reside on the same processor have the
same range of values for the attribute of interest, the required sorting or hashing
step is made more efficient by minimising the network diameter (e g.
hypercube). By contrast, the cycling method performs an exhaustive comparison
and broadcasts every partition (of the smaller relation) from its host processor
to all other processors. This broadcast is easily implemented by "'cycling"
panitions around a ring, thus avoiding the necessity to hold the whole of one
relation at any one node and overlapping the VO of a partition with the
processing ofanother.

It is not easy to predetermine which method will achieve better
performance as it is dependent on factors such as the relative size of the
operand relations, whether they are balanced, the speed of the underlying
communication network etc. We have chosen to opt for the simpler ring
architecture and the cycling technique. Communication links between the master
and each slave also exist.

PARDB is fully scalable and can be configured to use any number of
slaves at run time (subject to system resources). This allows us to allocate a
number of processors to each query tree node which is proportional to the
complexity of the node; this number is currently a rough guess but in the future
it should be based on the output of a query optimiser (cost functions).

PARDB is the basic building block in FlexParDB. Each operator of the
query-tree will be performed by one execution instance of PARDB; for this
reason PARDB has been generalised to partition its output relation
parametrically to be used by parent-nodes, as each node in the query-tree may
be using a different numbers of processors (fig. 2). A node (execution of
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PARDB) must therefore be able to produce its output relation in any number of
partitions m which is possibly different to the number of partitions n of its input
relations. This is achieved by having all slaves send their output tuples to the
master who appends them (by round robin) to the m partitions of the output
relation.

of
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3. QuerT Execution Plans in FlexParDB

For the representation of queries in query-tree forms we have used recursive list
structures. For example the query-tree of figure 2 may be expressed by the list
structure

(Join [f l, f i ] (Project [f l, f2] (Union [dbasel, dbase2]))
(Select [condition(dbase3 f2)]) )

in which the root of the query-tree is the Join operator on attribute fl of the
output relation from its left child with attribute fl of the output from its right
child; the left child is a Project operator and its right child a Select operator. For
these list structures to become query execution plans in FlexParDB two
elements have to be specified for each operator. the order of execution and the
number of its allocated processors. For example we would like to speciff the
execution plan that corresponds to figure 2:

I
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We maintain the recursive list structure above but for each operator we
also indicate its order of execution and the processor allocation following its
parameters "OPERATOR Iparameters] ORDER:ALLOCATIONP', where
ORDER and ALLOCATION are positive integers, indicating the execution step
at which an operator wil l be init iated and the number of processors allocated in
the form (slaves + master), respectively. In this notation, the above execution
plan u'ill be expressed by the script S I :

(Jo in  [ f l ,  f l i ]3 : (4+1;
(Project  t f l ,  f2 l  2:(2+ l )  (Union [dbasel ,  dbase2] l : (4+l)))
(Select [condition(dbase3.f2) 2:(2+l)]) )

We may allocate 3 and I slave processors to the Project and Select
operators, respecrively, by script S2:

(Jo in  [ f l ,  f i ]  3 : (4+1;
(Project  l f l ,  f2]  2 ' . (3+l)  (Union Idbasel ,  dbase2] l : (a; l ) ) )
(Select  [condi t ion(dbase3.f2) 2:( l  +1 ) ] )  )

or, \^/e may specifo that Project and Select are performed in different steps
allocating to each of them 4 slave processors by the script 53:

(Join [ f l .  f l ]  a:(a+l)
(Project  l f l ,  f2]  3:(4+l)  (Union Idbasel ,  dbase2] l : (4+t; ; ;
(Select  fcondi t ion(dbase3 f2) 2:(a+l) ] )  )

Operators having the same order are said to belong to the samewcn,eset.
Let Ol and 02 be the order of operators OPI and OP2; then Ol:O2 iffthere
exists a waveset W such that OPl, OP2 belong to W. For a script to be valid its
wavesets and the operators in them must satis! a number of properties.

1. the partition propcrty: Wavesets are a partition of the set of the query tree
operators, Nodeset, that is to say they are pairwise disjoint and their union is
equal to Nodeset.

2. the strict wcwe form property'. As we do not permit pipelining in FlexParDB
no ancestors or descendants of any operator must coexist in the same waveset.
This property implies that the number of wavesets is greater than or equal to the
height of the query tree.

3. the query tree compatibility property. The order of execution of operators
must be compatible with the order of the flow of intermediate relations from the
leafsto the root. If operator OPI is an ancestor of operator OP2 then Ol>O2,
where Ol, 02 are the respective orders of OP I and OP2.

4. the allocatiort properly: The total number of processors allocated
operators in the same waveset should be less than or equal to the number
available processors.

Query execution is perfiormed in two phases, script pre-processing and
waveset executions.In phase A the script is pre-processed in order to prepare
the explicit parameters for each PARDB execution, as follows:

to
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l. Ordered wavesets are constructed and validated according to the above
properties. 2. Intermediate relations, between nodes of the query-tree, are
stored in temporary files whose names are internally generated. A producing
operator prepares its output relation in as many partitions as the processor
allocation of its consuming operator. The number of output partitions is implicit
in the query-tree script, determined by the nesting of subtrees. However, each
PARDB execution requires explicit parameters for the input file name(s), the
output file name and the number of output partitions. Therefore, for each
waveset we construct simple individual waveset execution plans which explicitly
speciff all parameters of each PARDB execution as follows:

OPERATOR [parameters] Allocation /* as in script */

[Input File Name(s)]
[Output File Name, #partitions ] l* generated file names */

For example, the complete waveset execution plans for script S I are the
following:

Waveset I UNION [dbasel, dbase2] 5 [dbasel, dbasel] [Rl, 2]
Waveset 2 PROJECT [fi, f2] 3 [Rl] [R3, 4]

SELECT [condition(dbase3.f2)] 3 [dbase3] [R2, 4]
Waveset 3 JOIN [n, fl] 5 [R3, R2] [R4, l]
The sequence of waveset executions implements a particular execution

plan of a query. PARIX reserves a fixed number of processors throughout the
execution of a user program, e.g. FlexParDB executing a query plan. Therefore
all wavesets have the same number of processors at their disposal. We next
describe the execution of a waveset on N processors.

In phase B, the Waveset Execution, we initiate as many parallel PARDB
executions as the number of elements in each waveset. Each PARDB executes
one operator in the waveset. A termination mechanism decides when all
PARDB executions of a waveset have terminated. so that the next waveset can
be activated.

4. Performance

The perforrnance of FlexParDB strongly depends on the performance of its
building block, PARDB. PARDB executions for the same waveset have no data
dependencies and do not require any communication. Therefore the time
required for the execution of a waveset is equal to the time required for the
slowest PARDB execution. The optimiser should ensure that processor numbers
are allocated to the operators in proportion to their complexities and data
volumes. In the rest of this section we shall therefore deal with the performance
of individual PARDB executions.

We present performance measurements flor two representative
operators, select (uniscan) and join (multiscan). Graph I shows the select
speedup in the case of an aggregatibn operator (a), a selection with lo
selectivity (b). a selection with l0%o selectivity (c) and an indexed selection with

I
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100% selectivity (d). Theywere all executed on a partit ioned l00K-tuple relation
and it can be seen that speedup is almost l inear in all cases except the indexed
one, even in this case, where the sequential algorithrn is very efficient, there is
significant speedup as the major cost in data base processing is disk VO and this
is divided amons the multiole hard disks.

Processors
(a) Select Average

O) Select l ' ith selectivi\, lYo

(c) Select with selectivin' l0%,

A (d) Selecr u'ith selectiviqv l0% index

Graph l. Select Speedup

Graph 2 shows join operator speedup on partitioned lKxl0K-tuple
relations. Here the high communication cost involved in exchanging partitions
(oin is a multiscan operator) limits the value of the speedup. Hash or bucket-
based join algorithms could eliminate the need for communication during the
join but it is doubtful whether they could significantly improve performance as
the sorting step necessary before the join requires hearry communication.

Finally Graph 3 shows the results of a join scaleup experiment with
relation sizes lKxl0K, 2KxlOK, 4Kxl0K, 6Kxl0K and 8KxlOK giving join
computational complexity proportional to the number of processors used in
each case. The results again reflect the fact that data base operators are heavily
VO based: thus increasing the I/O throughput in line with relation size results in
near-linear scaleup. The above measurements were conducted on a Parsytec
Multicluster with l6 T800 Transputers.
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5. Conclusions and Future Work

FlexParDB combines intra-query and operator parallelism. Intra-query
parallelism is expressed in the wavesets, which are a partition of the set of
query-tree operators; valid wavesets are consistent with the flow of relational
data from the leaves to the root of the query-tree. The wavesets represent the
query execution plan. We have developed a script language for the description
of a query-tree and its wavesets. Wavesets are executed by parallet multiple
executions of PARDB, a system suppofting operator parallelism.

FlexParDB fully controls the utilisation of a given number of processors.
Any valid waveset and associated processor allocation can be described through
our script language. A query optimiser can readily be integrated in FlexParDB
through our flexible script language. The optimiser should produce the script
and the associated wavesers which minimise the total query execution time.

The minimisation of total execution time in FlexParDB may be achieved
by deciding on two interdependent factors: the wavesets and the allocation of
processors to the operators within a waveset. Two criteria may be used: the
processor utilisation criterion, requiring that all operators in a waveset
terminate at the same time and the collective speed-up criterion, requiring that
utilised processors be used efficiently to obtain the maximum speed-up. These
are currently under investigation.

As a future step we envisage allowing pipeline processing within a wave
set. We may describe such wavesets by the present script language; these are
not currently valid due to the strict wave form property of section 3. We may
relax this property by the complete sub-path property. stating that if an operator
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and one ascendant coexist in a waveset, then all ascendants of the operator in-
between must also exist in the waveset. No other changes are necessary to the
pre-processing phase of query execution. The PARDB system should be
extended to deal with pipeline processing, by having as input and/or output
either communication channels or files. A PARDB execution of an operator
would therefore pass its output directly, via communication channels instead of
files, to its parent PARDB execution, if they coexist in the same waveset. The
technical feasibility has been demonstrated in the implementation of the Tree
Pipelining query execution model [2]. We do not envisage that the extension of
FlexParDB to include pipelining will raise significant problems, the design of an
optimiser for a pipelined FlexParDB system is a challenging task. However, a
solution should be obtained by combining results in Tree Pipelining optimisation
and ongoing optimisation work for FlexParDB.
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