
Virtual Archaeologist: Assembling the past 
 
Georgios Papaioannou IEEE Member,  
Evaggelia-Aggeliki Karabassi IEEE Member, 
Theoharis Theoharis 
University of Athens  
 
 
 
Abstract This paper describes a semi-automatic system for the reconstruction of archaeological finds 
from their fragments. Virtual Archaeologist is a system that uses computer graphics to calculate a 
measure of complementary matching between scanned data and employs optimization algorithms in order 
to estimate the correct relative pose between fragments and cluster those fragments that belong to the 
same entity.  
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Reconstruction of archaeological monuments 
from fragments or parts found at the 
archaeological sites, is a tedious task requiring 
many hours of work from the archaeologists and 
restoration personnel.  

In case of large constructions, such as the 
Parthenon at the Acropolis of Athens, the 
restoration process takes considerably longer 
due to the large mass of the fragments. In order 
to test large building blocks against others for 
potential matching, archaeologists and site 
architects have to move the cumbersome stones 
sometimes 50 meters or more away from their 
original locations using cranes. Archaeological 
reconstruction is further hindered by missing or 
deteriorated fragments due to erosion or impact 
damage.  

   Up to now, computers have aided 
archaeologists by providing tools for the 
digitization and archiving of artifacts 1, 
visualization and virtual manipulation of 3D or 
2D scanned objects, visual representation of 
historical sites through VR 2, image processing 
and restoration of frescos 3.  

However, not much work has been conducted 
toward the automatic reconstruction of complete 
objects from arbitrary fragments. Existing 
algorithms focus on the reconstruction of vases 
and rely either on classification of certain 
qualitative features of the fragments, as in 4, or 
comparison of the broken surface boundary 
curves to match and align the vase pieces 5. The 

first method assumes that the structure of the 
final, complete object is known a priori and 
fragments have to be extensively labeled and 
categorized beforehand. The second completely 
disregards the interior of the broken surface and 
is therefore restricted to thin-walled objects. 

The Digital Michelangelo team 1 is currently 
investigating approaches to assemble the Forma 
Urbis Romae, a marble map of ancient Rome, 
from 1,163 fragments. The team is planning to 
face the problem as a jigsaw puzzle based on 
broken surface border signatures, while 
exploiting additional features of the fragments, 
such as thickness or marble veining. 
 

In the general case, the reconstruction of 
arbitrary objects from their fragments can be 
regarded as a 3D puzzle, taking into account the 
following considerations: 

 
 Parts (fragments) have arbitrary shape. 
 The shape and number of the final objects is 

unknown. 
 We have an arbitrary number of fractured 

faces per fragment. 
 Some fragments may be missing. 
 Surfaces are probably flawed or weathered.  
 There are no strict assemblage rules.  
 

In this article we present a complete method, 
encapsulated in our Virtual Archaeologist 
system, for the full reconstruction of 
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archaeological finds from 3D scanned 
fragments. Virtual Archaeologist has been 
designed to assist archaeologists in the 
reconstruction of monuments or smaller finds by 
providing the means to avoid unnecessary 
manual experimentation with fragile and often 
heavy fragments. An automated procedure can 
not completely replace the archaeology expert 
but provides a useful estimation of valid 
fragment combinations, as well as a tool for 
accurately measuring the matching between 
fragments. 

In Virtual Archaeologist, we regard the 
reconstruction problem from a general, 
geometric point of view that relies on the broken 
surface morphology to determine correct 
matches between fragments. This approach is 

abstracted from specific object information but 
is versatile enough to exploit any other data 
available. A brief preliminary sketch of the 
underlying algorithms used in Virtual 
Archaeologist has been presented in 6. 

The procedure involves the automatic 
detection of candidate fractured faces, the one-
by-one fragment matching and the final 
assemblage (clustering) of the fragments into 
complete or partially complete entities. The only 
input data required by our system are the 
polygonal meshes of the original fragments. 
These meshes are commonly acquired with a 3D 
scanner or digitizer though modeling and curve 
interpolation may be required in cases where 
only blueprints of cut-sections of the fragments 
are available as part of the standard archiving 
procedure. An optional set of constraints, such 
as material or structural fragment attributes 
which are often available, significantly improve 
the overall accuracy and performance. Human 
intervention is not required but can clarify the 
final reconstruction result by interactively fine-
tuning the final clustering and pose of the 
fragments.  

 
 
Archaeological reconstruction involves 
tedious and expensive efforts due to the large 
number of fragments (more than 10,000 
fragments have been collected only from the 
Acropolis site) and often their considerable 
size. Until now reconstruction is manual and 
the restoration specialist has to practically 
rely on his/her memory and intuition to 
discover the relation between various 
fragments. A tool that allows the quick 
browsing of the collection and the previewing 
of possible assemblage configurations is 
bound to significantly facilitate our work and 
speed up the whole process. 

 
Method Overview 

The reconstruction is divided into three main 
stages (Figure 1). The first stage is the mesh 
segmentation. In order to minimize the search 
space when trying to “glue” two fragments 
together, we wish to restrict the matching 
between potentially “interesting” sides of the 
fragments. Based on the observation that 
fractured surfaces, even weathered ones, tend to 
be more rough and jagged, we segment each 
mesh into facets and only mark as candidates for 
matching those facets that exhibit relatively high 
coarseness.  

 
Nikolaos Toganidis 
Chief Architect 
Parthenon Restoration Project 

In the second stage (fragment matching), 
after having generated all valid fragment–pair 
combinations, we estimate the relative pose for 
all fragment pairs and all candidate facets at 
which a matching error is minimized. Each pair 
of fragments is examined in order to determine 
the relative orientation that corresponds to the 
best fit and therefore the minimal matching error 
per facet pair. Note that not all possible pairs of 
fragments enter this process, as many are 
discarded due to incompatible material or target 
structure, if such information is available 
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1 Virtual Archaeologist architecture and data flow. 

beforehand (see optional constraints in Figure 
1). 

The matching error estimator utilizes 
hardware accelerated 3D rendering of the 
fragments and operates on the depth buffers 
produced. In our application, rendering is not 
used just for visualization, but actively 
participates in the matching process. We present 
more details on this matter latter on.  

When all optimal pairwise (fragment facet by 
fragment facet) matching error values have been 
calculated and stored in a look-up table, the third 
stage (full reconstruction) selects those fragment 
combinations that minimize a global 
reconstruction error. This reconstruction error 
equals the sum of matching errors of a given set 
of fragment pairs.  

External constraints may contribute to this 
stage as well, in order to reduce the time needed 
to produce a correct fragment clustering by 

eliminating a large number of combinations.  
Both the mesh segmentation and fragment 

matching stages are off-line operations. Each 
time we add a new fragment mesh to the object 
database, it is segmented and the matching error 
values with respect to all other fragments are 
calculated and stored. An important reason why 
these procedures are not interactive is that 
although the segmentation of a mesh lasts no 
more than 2 seconds, fragment matching can 
take up to 30 seconds per facet pair. We should 
mention at this point that all times in this paper 
were measured on a Pentium III/450MHz 
equipped with a TNT2 Ultra/185MHz graphics 
accelerator. 
 
Mesh Segmentation 

A fragment mesh is first partitioned into 
areas of adjacent nearly coplanar polygons, 
corresponding to the facets of the object (Figure 
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2 Mesh segmentation and detection of broken sides.   

2). This surface segmentation process is 
accomplished, using a simple region-growing 
algorithm 7. The process begins with an arbitrary 
polygon. Neighboring polygons are classified to 
the same region if their normals do not deviate 
from the average region normal by more than a 
predefined threshold, otherwise a new region is 
formed.   

During the region growing process, small 
surface regions may be created within larger 
ones. As it is desirable to partition the mesh into 
“crude” facets, we apply a region merging stage 
to clean up the facets and eliminate small 
erroneous regions. A region is regarded as 
“small” if it covers less than 5% of the entire 
mesh surface area. The elimination of the 
insignificant regions is achieved by iteratively 
assigning the polygons of small surface areas to 
large adjacent regions. 

Having partitioned the fragment mesh into 
crude facets, we proceed by labeling as potential 
for matching those facets that exhibit higher 
coarseness. A facet’s bumpiness can not be 
accurately measured directly from the original 
mesh (unless the surface is uniformly sampled) 
because each facet consists of polygons of 
arbitrary connectivity and varying area. Instead, 
we use an image-based bumpiness measure 
calculated on the elevation map of the facet. 

 The elevation map is essentially a two-
dimensional array, representing the distance of 

the facet from a plane perpendicular to the 
average facet normal, measured at equidistant 
grid points. This map is easy to obtain as it 
equals the contents of the depth-buffer, when the 
facet triangles are rendered with the viewing 
direction parallel to the average facet normal 
(Figure 2). 

The bumpiness of a surface is associated 
with the rate of elevation variance and can be 
effectively estimated on the elevation map with 
an image filter, such as the Laplace image 
operator.  

Obviously, engraved sides of a fragment are 
inherently bumpy and are therefore marked as 
well. However, this is not a problem as these 
facets are incompatible with any other and will 
therefore produce a high matching error during 
the next stage. On the contrary, if the broken 
sides are very smooth, they may not be 
automatically marked and manual selection is 
required. 

 
Fragment Matching 

In order to examine if two fragments are 
complementary, we seek the best match between 
them with respect to their relative pose and 
calculate a corresponding matching error. This 
process is repeated for all marked facet pairs of 
all fragment combinations.  

The two fragments are positioned in a way 
that two of their broken facets are facing each 
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other (Figure 3), i.e. the average facet normals 
are aligned. A set of seven pose parameters is 
adequate for the alignment of the two fragments. 
More specifically, the first object is allowed to 
perform a full circle around the axis of 
alignment 1( ) , deviate from this axis 1 1( , )   
by up to 10o and slide along the broken facet 

1 1( , )x y . The ability to slide is essential in 
locating potential partial matches between facets 
of different size or shape. The second object 
need only diverge from the axis of alignment by 
up to 10o 2 2( , )  . Although the last rotations are 
theoretically redundant, they improve the 
convergence of the search for the optimal 
matching.  

3 Fragment pose parameters for the 
matching error calculation.  

 Ideally, if the broken surfaces of the 
fragments are complementary, the matching 
error should be zero for a relative pose of the 
two pieces where they “fit” together. For all 
other placement configurations or for 
incompatible fragments, there is a significant 
matching error between the fragment facets. 

A naïve way to estimate the matching error 
for each set of pose parameters would be to sum 
all point-to-point distances between 
corresponding points on the facing surfaces of 
the two fragments. Unfortunately, due to its 
dependence on the closest distance between the 
two fragments, this solution is very sensitive to 
noisy data. Worse, small variations of the pose 
parameters produce drastic changes to the 
resulting error, making this measure unreliable 
and difficult to optimize.   

4 Point-to-point distance calculation with t
depth buffer. 

he 

Instead of using the point-to-point distances 
directly, we work on their derivatives, i.e. the 
curvature of the surfaces as measured from a 
uniform grid on a plane (p). (p) is positioned  
between the fragments and is perpendicular to 
the original average normal axes (Figure 3). The 
resulting matching error d  for two facets is: 

d = 1 2( , ) ( , )1

s S

d u v d u v

A u u

  
   

  

               1 2( , ) ( , )d u v d u v
dS

v v

 
   

 

where and are the distances of the two 
surfaces from the separating plane (p), S is the 
region of overlap between the surface 

projections on (p) and  is the corresponding 
area of overlap.  

1d 2d

SA

Small isolated surface flaws or sampling 
errors have a local effect on the resulting error 
because of its differential form, thus rendering 
the method tolerant to noisy input data.   

 
In practice, the matching error is measured 

using the depth buffer. Imagine an observer 
looking at the two fragments through a viewing 
plane coincident with the separating plane (p), as 
illustrated in figure 4. Rendering separately each 
fragment, we obtain two depth buffers  1 ,Z i j  

and  2 ,Z i j , 1,...,  ui N , . Surface 

curvature for corresponding points on the 
fragments is uniformly sampled and easily 

1,.., vj  N
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5 Fragment matching examples for scanned objects. The top row presents correct matches 
along with the corresponding error measures and success rates. The bottom row shows the 
most frequent erroneous results.  

obtained from the derivatives of these two 
buffers with respect to u and v. The partial 
derivatives of the continuous error measure are 
replaced by forward differences on the depth 
buffers:  

( , ) ( 1, ) ( , )uZ i j Z i j Z i j     
( , ) ( , 1) ( , )vZ i j Z i j Z i j     

 
The matching error is evaluated as: 

   
1 2

( , )

1 2

1
( ( , ) ( , )

                      ( , ) ( , ) )

d u u
i j SS

v v

Z i j Z i j
A

Z i j Z i j




   

  

 
 

In the above equation, S is the set of depth 
buffer cells where both depth buffers have non-
infinite values and is the number of elements 
in S. 

SA

 
The error is minimized over the set of pose 

parameters using a global optimization method. 
In our system, we implemented Enhanced SA, a 
variation of Simulated Annealing (SA) 8, which 
produces good results (average optimum pose 
detection rate 85%). The details of SA are 
beyond the scope of this article but the interested 
reader can refer to any combinatorial 
optimization or search methods book for details 
on SA, as well as to 9 for the Enhanced SA 
method we adopted for our application.  Some 
representative examples are shown in Figure 5. 
 

The Full Reconstruction 
For the final assemblage of the fragments, 

we seek to minimize a global reconstruction 
error, which is the sum of the matching errors of 
the individual combinations currently active. 
The fragment assemblage is governed by 4 
principal rules (Figure 6): 

 
1. A fragment can be linked to as many other 

objects as the number of its facets marked as 
broken.  

2. The bond between two fragments is unique,  
3. Fragment pairs that yield a smaller matching 

error must be favored. 
4. Fragments may exist that do not belong to a 

valid reconstructed object and must be 
isolated. 
 
A link between two fragments corresponds 

to a combination of fragment facets whose 
matching error and relative pose have been 
precalculated. The globally optimized 
assemblage of the fragments is formed by a 
kernel that generates and rearranges the links in 
a sub-second time. This is an important feature 
because the user is able to experiment with the 
fragments and shape the final result interactively 
by explicitly joining or separating them.  

If the number of fragments in the data set is 
fairly small (fewer than 30 pieces), the set of 
fragment combinations that yields the smallest 
reconstruction error is determined using 
exhaustive search. As exhaustive search leads to 
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6 Full reconstruction stage assemblage rules. 

exponential increase of execution time, with 
respect to the number of fragments, for large 
data sets we use a genetic algorithm to reduce 
the number of iterations needed (Figure 7).  

In the case of the genetic algorithm, the 
currently active set of combinations is 
repeatedly mutated by crossing-over 
combinations. The new set of combinations that 
is produced may be accepted or rejected 
according to the new reconstruction error. The 
algorithm terminates when a set of combinations 
is fit enough (has prevailed long enough). More 
details on the specific algorithm may be found in 
6. 
 
System Implementation 

Virtual Archaeologist is implemented in 
three modules, one for each stage, so that they 
can work independently.  

We perform the preprocessing once, after 
the polygonal data acquisition and the 
segmentation information is stored in the mesh 
file. We used OpenGL for the calculation of the 
facet elevation maps and the segmentation lasts 
no more than 2 seconds even for complex 
models (~90,000 triangles) for 128128 depth 
buffer resolution.  

The fragment matching module uses 
hardware accelerated OpenGL rendering for the 
error estimation achieving an average of 10 
matching error samples per second. Depth buffer 
resolution can be adjusted to trade off accuracy 
for computation speed, according to the graphics 
hardware rendering throughput. Typical 

dimensions for the depth buffer in this 
application are between 100100 and 256256 
pixels. Matching lasts between 15 and 40 
seconds per facet pair, depending on the mesh 
triangle count. As fragment matching is 
computationally expensive, it is invoked 
incrementally to update the file of matching 
errors when a new piece is added to the 
collection.  

The interactive full reconstruction is 
performed in a 3D environment as depicted in 
figure 8. This allows the user to edit the final 
result by providing standard manipulation 
functionality (fragment position and rotation), as 
well as additional tools via the user interface. 
These include the linking and separation of 

7 Full reconstruction stage execution 
time. 
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8 The virtual Archaeologist desktop in action. 

fragments, the real-time matching error 
measurement between two fragments and the 
automatic pose calculation for the reconstructed 
objects. 
 
Case Studies 

The use of range scanners has been only 
recently introduced to field archaeology; 
archaeological sites, such as the Athens 
Acropolis, do not yet have the necessary 
equipment to create databases of scanned finds. 
We have tested Virtual Archaeologist with 3D-
digitized plaster scale models of objects, mostly 
building block replicas, and ceramic pot 
fragments. 

The majority of the fragments were not well 
preserved and the broken surfaces were 
smoothed out. Even on sharp edged pieces, 
protrusions have been deliberately chipped off 
during the experiments, to simulate 
deterioration. In general, we had no fragments 
that could match perfectly and this is a fact that 
is evident in all archaeological finds. The 
fragment collections we have used, ranged from 
3 to 35 pieces.    

Unsupervised reconstruction (no user 
intervention) resulted in correct reconstruction 

for 90% of the original objects. We used a 
simple, yet effective constraint in the final 
reconstruction stage, the broken surface area 
similarity. If the area of the broken facets differs 
by more than 20%, the system prohibits this 
combination. The existence and the parameters 
of this constraint can be adjusted from the user 
interface.     

In experiments where many surfaces were 
similar to each other and the matching error 
variations small, some fragments failed to 
match. Practically, it was sometimes difficult 
even for a human to match these fragments 
(Figure 9). Moreover, as the automatic 
assembling algorithm does not have knowledge 
about the expected shape of the reconstructed 
object, in some cases the fragment combinations 
that minimized the matching error did not 
correspond to valid objects. Manual linking of 
the fragments resolved the above ambiguities, 
during the interactive reconstruction stage. 

To demonstrate our system’s ability to 
perform 3D assemblage based only on geometric 
information, without any constraints, we include 
the small 3D-puzzle example of figure 10. The 
pieces of this puzzle were produced with a 
modeling package and Virtual Archaeologist 
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9 10 Simple 3D puzzle: a non archaeo-
logical case study. 

 Reconstruction example with 
possible ambiguities. 

matched them perfectly.   
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