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Abstract. The problem of reassembling an object from its parts or fragments has never been addressed with a unified 
computational approach, which depends on the pure geometric form of the parts and not application-specific features. 
We propose a method for the automatic reconstruction of a model based on the geometry of its parts, which may be 
computer-generated models or range-scanned models. The matching process can benefit from any other external 
constraint imposed by the specific application.       
 
Index Terms – Object reconstruction, complementary matching, depth buffer, virtual assemblage 
 
1   INTRODUCTION 
 
1.1 Related Work 
Up to now the application of pattern recognition and stochastic analysis techniques in three-dimensional 
computer graphics focuses on object recognition and classification [11], [17], [21], [23], [3]. On the other 
hand, almost no work has been conducted towards the identification of complementary objects, i.e. objects 
that can be assembled to form a new solid object. This need arises in various scientific areas, such as 
computer-aided manufacturing or archaeological applications where the problem is to reconstruct a complete 
object from its parts.  

In most cases the role of a computer in object reconstruction is limited to data acquisition, fragment 
visualization and manipulation, while the actual reconstruction process is supervised by the scientist [9], [8]. 
In the two-dimensional case, where the complementary matching is reduced to the “jigsaw puzzle” problem, 
many solutions have been proposed, as in [7], [6]. To our knowledge, the number of automatic or 
semiautomatic reconstruction algorithms in three dimensions developed up to now is extremely limited, 
while the techniques used are applicable only to specific types of object fragments. Some of these algorithms 
focus on the reconstruction of thin walled object fragments (like pots) and rely either on classification of 
certain qualitative features of the fragments, as in [19], or comparison of the broken surface boundary curves 
to match and align the pieces [22]. The first method assumes that the structure of the final, complete object is 
known a priori and fragments have to be extensively labeled and categorized beforehand. The second 
addresses the problem as boundary curve matching instead of full surface matching, and therefore cannot 
handle arbitrary object parts. 

Matching algorithms that operate on partial data in three dimensions mostly deal with the fusion of surface 
segments of the same object rather than perform a complementary matching, and are frequently intended for 
mesh generation from partial scans, as in [16], [5]. In [1], Barequet and Sharir introduced a robust and noise 
tolerant method for the matching of point clouds representing the shell or the volume of partially identical 
objects. This method is based on the geometric hashing paradigm [18], [7] and requires that user defined 
“footprints” are calculated for or assigned to the evenly distributed points of the data sets. 

 

1.2 Method Overview 
The general method proposed in this paper matches and glues fragments or parts belonging to an object, one 
against one, using only their surface geometry, assuming no information about the fragments’ origin, data set 
sampling distribution or the final model to be reconstructed.  The intrinsic geometric features of 3D objects 
have been also successfully used in algorithms for other applications like object recognition, as in [3] and 
[23]. The basic concept in our method is that, given two 3D models, the best fit is likely to occur at their 
relative pose, which minimizes the point-by-point distance between the mutually visible faces of the objects. 
For this reason, we introduce and calculate an error measure of the complementary matching between two 
object parts at a given relative pose, based on this point-by-point distance.  

This matching error is minimized, employing a standard global optimization scheme, to determine the 
relative positioning of the two fragments that corresponds to their best complementary fit. During the 
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automated assembly, it is assumed that the two object parts can be rigidly attached to one another without 
having to penetrate each other’s surface. For instance, the method cannot be used to connect two links of a 
chain. 

In contrast to [22], our method can handle arbitrary objects. It overcomes the constraint of [1] regarding the 
even spatial distribution of the input samples or the regular topology assumed by [16], by efficiently 
resampling the data during the evaluation of the matching cost function. In demanding application areas such 
as the assembling of archaeological finds and simulation, where highly detailed models are used, the 
regularity of the data sets cannot be guaranteed as the objects are densely sampled only in highly detailed 
areas, in order to reduce the processing time and storage requirements. 

We should note that the proposed scheme may be used without modifications for all types of three-
dimensional surface or volume data (analytical surfaces, polygonal models or voxelized objects). However, 
the implementation of the algorithm is optimized for polygonal data as in this way it takes advantage of 
commonly available graphics hardware to significantly accelerate the matching. 

Due to its generality, our algorithm can work independently, disregarding the morphology and structure of 
the object to be reconstructed. If additional information is available, e.g. material attributes or structure 
features, it can be incorporated in the method in the form of a set of constraints, to improve the overall 
performance.  

The paper is organized in the following manner. In section 2 the formulation of the problem is presented. 
Section 3 provides a theoretical analysis of the proposed matching error and also discusses its practical 
calculation. Section 4 explains how the matching error is used in conjunction with a global optimization 
method to solve the reconstruction problem in the general case, while in section 5 we discuss the adaptation 
of the algorithm to some cases of constrained matching. Finally, in section 6 some representative examples 
and applications of the method are provided and commented. 

 
2 PARAMETERIZATION OF THE PROBLEM      
 

For two arbitrary objects, assuming a fixed distance between their initial centroids 1 2,O O , one needs to 

define six degrees of freedom, namely 1 1 1, ,    and 2 2 2, ,   , in order for each model to be able to rotate 
arbitrarily around the three axes of its local orthogonal reference system (Fig. 1). Rotation angles are mapped 
to [0, 2 ] . For the comparison of the two objects, surface distances are measured along the direction of the 

line crossing the two centroids. In addition to the rotations, the models can slide relative to each other 

on a separating plane (p) perpendicular to . This relative displacement can be effectively modeled by 

the translation of one of the objects by t


= , assuming that objects are expressed with regard to 

local coordinate systems aligned with (p) as in Fig 1. The models are allowed to move at most by 10% of 
the maximum diameter of the both in each direction.     

1 2O O

1 2O O

( ,x y1 1,0)

According to the above, we apply one geometric transformation sequence to each object,  and  
respectively. These transformation sequences are the combination of a set of rotations, followed by a 
translation for the first object. Let  be the rotation transformation around an axis  by a radians and 

1M 2M

V
Tˆ,e aR ê   

the translation transformation. If we represent each transformation as a 44 homogeneous matrix, as is 
common in computer graphics and vision [4], a composite transformation can be written as a matrix 
multiplication. Assuming object points are represented as column vectors, the transformation sequences are: 

1 , 1 , 1z x yt , 1 M T R R R
 2 and 2 , 2 , 2 ,z x y  R RM R  (note that the leftmost matrices are applied last). In 

fact, if the transformations are applied in this order, the rotation , 2z R is redundant and the second 

transformation sequence can be reduced to 2 ,x 2 ,y 2 M R R .  

As a result, a seven-degrees-of-freedom bounded continuous search space  is defined. The set of 

relative pose parameters form a variable vector in : 

7S 7

7S  = [ ,1 1 1 1, , ,x y1 2 2, , ]     . 
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Fig. 1. Relative pose of the two meshes during the 
matching process. 

Fig. 2. The simplified two-dimensional case of the 
complementary matching problem. 
 

 
3   THE CALCULATION OF THE MATCHING ERROR RROR 
  
In this section the derivation of the matching error In this section the derivation of the matching error ( )d  is discussed. Our matching method is based on the 

geometric fitting of two objects, trying to imitate the way a human would attempt to piece together two 
objects, if no other evidence about the objects is available. The error at every positioning instance   is 
related to the point by point distance of the facing sides of the two objects. For simplicity of presentation, the 
error calculation for a two-dimensional case will be first derived and then the discussion will be extended to 
three dimensions. 
 
3.1 The Two-dimensional Case 
Let us consider the two-dimensional continuous case shown in Fig. 2. Each object, or rather flat shape, 
rotates around its center. Additionally, the first object can slide along a path perpendicular to the line 
crossing the two centers. This way, the vector   is reduced to 1 1 2[ , , ]y  . The mutually visible profiles of 

the facing sides of the two objects are represented as 1( , )h u   and 2 ( ,h u ) . The parameter u runs along a 
separating reference line (p) perpendicular to the line crossing the two objects’ centers. From Fig. 3a, the 
distance ( , )d u   between two facing points 1( , )h u   and 2 ( , )h u   on the object contours can be expressed 

with regard to the respective distances 1( , )d u   and 2 ( , )d u   of these points from the reference line (p):  

1 2( , ) ( , ) ( , )d u d u d u                                         (1) 

A naïve approach to the error estimation would be to integrate the distance ( , )d u   over the interval ( )S   
of (p) where the traces of the contours overlap (Fig. 2). However this integration would lead to a dependence 
of the error on the relative distance between the two objects’ centers. Worse, for a certain set of pose 
parameters at which the object contours would match perfectly, the error estimate could be large due to an 
improper initial placement of the objects. One such example is presented in Figure 4, where in case (a) the 
error is larger than the one in case (b), although only case (a) is a perfect match.  

In order to eliminate the dependence of the error on the absolute distance between the contours, we could 
subtract from each measured distance the minimum distance min ( )d   between the two profiles of the 
shapes: 

1 2 min( , ) ( , ) ( , ) ( )d u d u d u d                                    (2) 

The corresponding error for a given set of angles 1 2[ , ]    would be: 

 1 2 min

( )

1
( ) ( , ) ( , ) ( )d

S

d u d u du d
l 

               (3) 

where l the length of ( )S  . 
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Fig. 3.  Distance estimation in the two-dimensional case. (a) Distance of two object contours relative to a 
reference plane (p). (b) The derivatives of the object contours. 
 

Although this new error estimation is theoretically correct, it is ill-conditioned, as small changes in the object 
contours (caused for example by the presence of even the slightest jittering of contour points during 
sampling) affect the minimum distance min ( )d  , which in turn significantly alters the estimated error. To 

minimise the effect of slight alterations in data to ( )d   a different approach is necessary which compares 

the slopes of the contours, i.e. the derivatives of 1( , )h u  and 2 ( , )h u   instead of the actual contour 
distances. It can be easily seen (Fig. 3b) that matching parts have opposite slopes in corresponding points. 

The derivatives 1( , )h u

u




 and 2 ( , )h u

u




 are related to the derivatives of the object contour distances from 

the reference line ( )p  as follows (Fig. 3): 

 

1 1( , ) ( , )h u d u

u u

  
 

 
 and 2 2( , ) ( , )h u d u

u u

  
 

 
        (4) 

 

In other words, the distances 1( , )d u   and 2 ( , )d u   are differentiated with respect to u (Fig. 3b) and set the 

error ( )d  as: 

( )d  = 1 2

( )

1 ( , ) ( , )

S

d u d u
du

l u u

  


           (5) 

Let one of two nearly perfectly matching surfaces be distorted by a noise spike of length l  and amplitude 
d . The limit 

0
lim d

l
e





of the additional error de  as calculated in (5) is zero as l  decreases, in contrast to 

0
lim

l de d 


 when the direct distance error of eq. (3) is used. The new matching error behaves very well 

under the presence of noise or mismatching segments as any differences have local effect. 

 Fig. 5 plots the matching error ( )d   for the objects shown in Fig. 2. against 1 2[ ,0, ]   . Angles are 

sampled at 2o intervals. Local minima of the matching error are dense for non-trivial objects, therefore the 
probability of escaping them using a global optimization method, like simulated annealing, should be high at 
the beginning of the error minimization process. 
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Fig. 4. Naive error estimation in the two-dimensional 
case. The estimated error for two perfectly matching 
surfaces (a) can be greater than that for two 
mismatched surfaces (b). 

Fig. 5.  The matching error for the objects of figure 2 with 
respect to the rotation of the parts and fixed displacement.
 

3.2 The Three-dimensional Case 
To extend the matching error calculation to three-dimensional space, we need to compute the fitting error as 

an integral over the slope at every point of the facing surfaces of the two objects. Let 
( , , )h u v

u




 and 

( , , )h u v

v




 be the partial derivatives of an object surface ( , , )h u v   with regard to two parameters u and v 

respectively, where u, v define a plane (p) perpendicular to the line crossing the two object centers (Fig. 6). 

Similar to the two-dimensional case, 
( , , )h u v

u




and 
( , , )h u v

v




 are related to the partial derivatives 

( , , )d u v

u




, 
( , , )d u v

v




of the surface distance ( , , )d u v   of an object from (p) given a pose vector  :  

( , , )h u v

u




=
( , , )d u v

u





, 

( , , )h u v

v




=
( , , )d u v

v





                              (6) 

Therefore, by extending the definition of the matching error given in equation (5) to three dimensions we 
get: 

( )d  = 1 2 1 2

( )

1 ( , , ) ( , , ) ( , , ) ( , , )

s S

d u v d u v d u v d u v
dS

A u u v v

        
       

                (7) 

where   = [ ,1 1 1 1 1 2 2, , , , , ]x y     ,  As is the area of ( )S   and ( )S  is the collection of surfaces defined 

as the intersection of the projections of the two objects 1( )S   and 2 ( )S   on the plane (p), (Fig. 6): 

( )S  = 1( )S   2 ( )S                         (8) 

Note that the quantities 1( , , )d u v

u





2 ( , , )d u v

u




and 1( , , )d u v

v





2 ( , , )d u v

v




 are both zero in the 

case of a point by point perfect match. 

 
3.3 Discrete Error Calculation   
For the discretization of the matching error given in (7), the distance between each object and the reference 
plane (p) is uniformly sampled over the areas 1( )S   and 2 ( )S  for the first and second object respectively. 
This process can be thought of as casting parallel rays from equidistant locations (i,j), i=1,…,Nu, j=1,…,Nv , 
lying on a grid on (p), towards both objects. Distances d1(i,j), d2(i,j) are the distances measured between the 
ray’s origin (i,j) on (p) and the point of the first hit of the ray on each object (Fig. 7). The intersection of the 
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Fig. 6. The error calculation in the 3D case of the 
matching algorithm. 

Fig. 7. Discrete error calculation. Object distances from 
the reference plane (p) are estimated using ray casting. 

  

object projection areas ( )S  consists of all the locations on plane (p) from which cast rays have successfully 
intersected both objects.  

If the partial derivatives 1( , , )d u v

u




, 1( , , )d u v

v




, 2 ( , , )d u v

u




, 2 ( , , )d u v

v




 of equation (7) are 

approximated by forward differences  

1( , )ud i j = d i , = 1 1) (j d i ( 1, , )j 1( , )vd i j 1 1( , 1) ( , )d i j d i j  ,  

2 ( , )ud i j = d i , = 2 2)j d ( 1, ( , )i j 2 ( , )vd i j 2 2( , 1) ( , )d i j d i j    

and the integration over the area ( )S   is replaced by summation, then the error becomes: 
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1 2 1 2
( , ) ( )

1
( , ) ( , ) ( , ) ( , ) )d d u v v

i j SS

e i j d i j d i j d i j
N 




        ( ud      (9) 

where ( )S  ={(i,j) : i=1,…,Nu, j=1,…,Nv, 1( , )d i j   , 1( 1, )d i j  
, 1)j

, }  {(i,j) : 

i=1,…,Nu, j=1,…,Nv, , , 
1, ( , 1)d i j   

2 ( , )d i j   2 ( 1d i , )j   2, (d i    },  allowing only non-infinite values 

of the forward differences, and NS is the cardinality of the set ( )S  . 

 
3.4 Error Calculation using the z-buffer 
In most applications where object matching is needed, objects are arbitrarily shaped  (e.g. scanned 
fragments) and can not be approximated by analytical surfaces. In such cases, as in almost every modern 
three-dimensional computer graphics application, the commonest object representation used is the polygonal 
mesh. The distance measurement described above incorporates ray casting and intersection tests between 
every ray cast and every polygon in order to find the intersection point which is closer to the ray’s origin; 
this is a time-consuming calculation in non-convex arbitrary polyhedra.  

On the other hand, efficient computer graphics techniques have been developed for the calculation of the 
distance between the view plane and each visible point on the object surfaces, during the rendering phase. 
The most widely used algorithm is the z-buffer [2], [4], which is today hardwired even in low-cost home 
computer graphics boards. The z-buffer algorithm produces a two-dimensional buffer (the z-buffer or depth-
buffer), whose dimensions match those of the view plane. Each value of the z-buffer represents the distance 
between a pixel on the view plane and the corresponding point on the object, which is closest to the view 
plane. Assuming that the view plane is parallel to the XY plane, the z-buffer values are the Z coordinates of 
the object points closest to the view plane. 



Fig. 9. The use of material axis as a restrictive matching 
constraint. Objects are shown after rotations around all 
three axes have been performed. 

Fig. 8. The use of z-buffer to calculate the point-to-point 
distances for the matching. The z-buffers for the two 
objects are shown at the bottom left and right. 
 

In our method, we consider the reference plane (p) as the view plane and exploit the z-buffer algorithm (and 
widely available hardware) for the distance calculations. Each object is rendered separately, in a right-
handed coordinate system, with the Z-axis pointing towards (p) (Fig. 8). The resolution NuNv at which the 
objects are rendered, represents the coarseness of the discretization approximation (which equals the 
resolution of the z-buffer and the grid mentioned in paragraph 3.3). As a result we obtain two z-buffers, Z1 

and Z2, for each rotation vector  , whose elements correspond to the distances between the reference plane 
(p) and the surface points on objects 1 and 2 respectively. It can be verified from Fig. 8 that the following 
relations exist between the distance functions and the z-buffers: 

1 1( , ) ( , )d i j Z i j                                (10a) 

2 2( , ) ( , )ud i j Z N i j                                            (10b) 

The inversion in the i indices of (10b) is due to the fact that the X-axes of the two local rendering coordinate 
systems are looking in opposite directions. 

To put together all the above analysis, the practical algorithm for the estimation of the matching error is as 
follows: 

 
Initialization 
1. Calculate the maximum diameter R of the two object parts 1 2,h h . 

2. Move the parts so that their centers 1O  and 2O  reside on the coordinate system origin and rotate them so 
that the X axes of their local reference frame points in opposite directions: 

     
1

1 1
,

2
Oy

h h 
  R T  , 

2
2 2

,
2

Oy
h h 
  R T   

3. Prepare the rendering hardware for the acquisition of the u vN N  sized depth images and restrict the 

viewable area to an RR Rf f f   sized cube centered at the coordinate system origin, where 

1.3Rf R  . 
 
Matching error estimation for a pose   
1. Perform the rigid transformation that defines the given pose  : 
      ,   

1 11 ( , ,0) , 1 , 1 , 1x y z x yh h    T R R R 1 22 , 2 , 2x yh h   R R

2. Render the transformed object parts one at a time and store the correponding z-buffer values, 1( , )Z i j , 

2 ( , )Z i j . 
3. Calculate the matching error using equations (9) and (10): 
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      1 2 1 2
( , ) ( )

1
( ( , ) ( , ) ( , ) ( ,d u u u v v u

i j SS

) )Z i j Z N i j Z i j Z N i j
N 




           

 

The performance of this error estimation technique is extremely high, as all the rendering and z-buffer 
creation procedures are supported by hardware graphics accelerators, leading to a large number of error 
calculations per second (approx. 45 matching error values per second, for 6464 z-buffer resolution, 16-bit 
accuracy and 10,000 polygons on a Pentium II at 400MHz). 

  
 
4 MINIMIZATION OF THE MATCHING ERROR 
 
For the determination of the best fit between the objects, we need to find the global matching error. In case 
of an exhaustive search for the global minimum over the search space, assuming even a coarse quantization 

(increments of 2o for each angle and 0.5% for the displacement), more than  of error values should 
be estimated, rendering the approach impractical. Since the exact form of the cost function to be minimized 
is not known, only a probabilistic cost minimization scheme can be applied.  

1275 10

Any global optimization method can be applied, assuming the cost function to minimize to be the matching 
error ( )d  . The minimization is performed over a seven-degrees-of-freedom search space, the variable 

vector being  1 1 1 1 1 2 2[ , , , , , , ]x y      . Rotation angles 1 1 1 2 2( , , , , )      are wrapped around in  the 

range [0,2 ] , while 1x and  are allowed values in [1y 0.1 ,0.1 ]r r   , where r is  the maximum diameter of 
both objects.     

In our implementation, we adopted a variation of the Simulated Annealing algorithm (SA) [10], the 
Enhanced Simulated Annealing (ESA) by Siarry et al [20]. In brief, the ESA algorithm is as follows: 

1. Estimate a good initial temperature T= 0T  

2. Initialize the parameter vector   and set best   

3. Calculate the initial value of the cost function 0d  . Set best d  . 

4. Randomly perturb the parameter vector   by   to get a new vector  and calculate the new value of 
the cost function newe . 

5. If 0new d       : 

Accept the new vector: new   and new  . 

        If best  , set: best   and best d  . 

        Else if 0  : 

Accept the new vector ( new  and new  ) with probability exp( )
T


  

6. Repeat steps 4-5, until equilibrium is reached at temperature T. 

7. Lower the temperature: 

      Calculate the average and minimum error values min ( )T  and ave ( )T  at T. 

      Adjust the temperature decrease rate   min ave max minmax min ( ) ( ) , ,a T T a  a . 

      Set T a . T 
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8. Repeat steps 4-7 until T reaches a predetermined minimum value Tstop , Nfail subsequent temperature 
states fail to produce a new best  value or the maximum number of iterations Niter is reached. 

9. Return best . 

The above algorithm modifies the well known SA method by introducing an adaptive cooling scheme, a 
search space partitioning strategy and a Monte Carlo method for estimating the initial and final temperature 
(convergence control parameters).  

The adaptive cooling scheme adjusts the rate of decrease a of the temperature according to the success rate 
of the previous temperature stage (Step 7). a is initially set to min 0.6a   while . The initial 

(higher) temperature parameter  and the lower one  are derived from the Metropolis [12] criterion by 

performing a fixed number of transitions of increasing cost (50 in our implementation) and setting:  

max 0.9a 

0T minT

( )

0
0ln( )

uphill
aveT
P


  , 

6 ( )

min 6 8
0

10 10

ln(10 10 )

uphill
aveT
P
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)

 

where  is the desired initial acceptance probability for uphill transitions and  is the average 

increase of the measured cost. The suggested value for  is 0.5. The minimum-cost parameter vector of this 

stage is used for the initialization of the annealing process.  

0P (uphill
ave

0P

An important feature of the ESA technique is the search space partitioning. Instead of perturbing all variables 

1,... N   of NS , the transition affects only M of them, M<<N. At each transition the M variables are 

selected by the “least frequently used first” rule. M is fixed throughout the execution of the algorithm. After 
many experiments we concluded that the best performance for this application was achieved with M=2. 

In most implementations, it is assumed that equilibrium is reached at a temperature T if a predefined number 
Nattempted of perturbations has been attempted at T or a predefined number Naccepted of perturbed vectors has 
been accepted at T. In our implementation, we use both criteria for thermal equilibrium and we set Nattempted = 
80 and Naccepted = 8.  

For the stopping criterion, we set Nfail = 4 and Niter=2000.  

Note that the above parameter values were selected after exhaustive experimentation with many test models 
to achieve as fast convergence as possible. This parameter set worked seamlessly and performed well for all 
categories of test objects, so no case-specific parameterization was needed. For more ESA implementation 
details, the interested reader should refer to the original ESA paper. 

 

5. CONSTRAINED MATCHING 
 
Up to this point, we have assumed that both objects are allowed to freely rotate around all three axes, 
resulting in an unconstrained matching scheme, applicable to all three-dimensional object-matching 
problems. However in many applications, additional information is available about the objects to be 
combined. Such information includes material attributes, a priori knowledge of the final reconstructed object 
shape or constraints in the object matching directions. These features can be used in two ways: to bias the 
final result or act as restrictive constraints, reducing the search space of the matching algorithm, as will be 
shown in this section.  

 
5.1 Biasing Constraints 
In the case of biasing constraints, the matching process is identical to the one described in the previous 
sections, but an additional weight is added to the estimated error. For example, certain materials (such as 
marble or wood) are characterized by veins, which define a “material axis” [15]. The degree of coincidence 
of the material axes of the two fragments can be used as an additional factor in the error estimation, biasing 
the result towards pose vectors   at which the material axes are parallel. The error expression would then 
become: 
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1 2(1 )d d mate e a a    
 

                                         (11) 

In (11) ed is the matching error from (9), 1a


and 2a


are the material axes for each object and d , mat are 

weights depending on the amount of bias desired. Usually, d  is close to unit, while (1 )dmat   . In 

cases of reconstruction of archaeological data with marked marble vein directions, material likeness is an 
important parameter of the matching process, so d  and mat  must be roughly equal.  

Regardless of the contribution of the material factor to the matching error, d  can b odified to incorporate 

a bias towards tighter fitting between the surfaces to be matched. Setting d

e m

 1 2min( , )S S

S

A A

A
 e 

1,S SA A e measured areas of the projected surfaces of 1 2,h h  o , the optimization scheme favors 

solutions of maximum surface overlap between the objects. Notice that if one of the projected areas 1S  or 

 falls completely inside the other, d

, wher

2 are th n ( 

2S

p)

 =1 and tends to infinity as the two traces get separated. This 

particular rule for d  in conjunction with the directionally restrictive constraint discussed in 5.2.2 has been 

successfully applied in the reconstruction of scanned objects.  

 
5.2 Restrictive Constraints 
Restrictive constraints are used to increase the effectiveness of the matching process by reducing the search 
space. This is accomplished either by reducing the number of degrees of freedom of the objects or by 
limiting the range of acceptable values for each state variable.  

 
5.2.1 The material axis as a restrictive constraint 
Let us examine the use of the material axis as a restrictive constraint. The demand we can impose on the 
matching problem is for the two material axes to be parallel at all object poses. The objects should rotate 
freely around the material axis direction but any other rotation applied to them has to be equal for both parts, 
in order for the material axes vectors to remain collinear. The matching algorithm can be modified in the 
following way (Fig. 9): 

a) An original orientation of the two objects is selected, which meets the material axes collinearity 
constraint. For simplicity, the objects are rotated so that the material axes initially coincide with the Z-
axes of the two local coordinate systems. 

b) Rotation angles 1 1,   and 2 2,   are locked together so that the material axes remain collinear during 

this rotations. More specifically, 2 1    and 2 1    . 

c) The order of the transformation applied to the first object is altered so that the rotation around Z-axis is 
performed first: 

1 11 ( , ,0) , 1 , 1 ,x y x y z 1  M T R R R  

By locking the X and Y rotations for the two parts, we reduce the search space dimension by two, resulting in 

the variable vector  = 1 1 1 1 1 2 2[ , , , , , , ]x y     =  1 1, , , , , ,x y       . Of course, the material axis is 

not always measured accurately and therefore it could be useful to add a small jitter to the   and   angles, 

to allow for a small random deviation from the collinearity condition (5o is usually enough). 

 
5.2.2 Fracture direction constraints 
Perhaps the most useful constraint, particularly suitable for archaeological fragment reconstruction 
applications, is the enforcement of a “matching direction” for each object part during the matching process.  

Let  and , , , be a set of direction vectors for the first and second fragment 

respectively, that correspond to the average normal vectors of the fractured faces of each object part. M and 
N are the total number of marked directions on the first and the second object part. The search for the best fit 
should ideally be restricted to those poses at which 

1mv


2nv


1,...,m M 1,...,n  N

1mv


 and 2nv


are opposite, modifying the rotation vector 
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Fig. 10. The object fragments setup for the direction-
constrained reconstruction. 

Fig. 11. The combination chart of the various constraints 
discussed in this paper.  

  to [ 1 1 10,0, , , 0,0,0]x y , assuming that 1mv


 and v2n


are aligned with the Z-axes. However, since, in 

realistic applications, directions  and are not likely to be accurately measured, a small deviation from 

this alignment should be permitted, resulting in the original form for the parameter vector: 
1mv


2nv


 =[ ,1 1 1 1 1 2 2, , , , , ]x y     . Note that this time angles 1 1 2, ,    and 2  are limited to a small range 

, where  is the directional tolerance which depends on the measurement accuracy and is usually 
less than 10o.  Fig. 10 presents the object part configuration for the fracture direction constrained matching.  
[ ,a a] a

Taking into account the necessary modifications of the reconstruction method, the algorithm for the 
direction-constrained matching can be summarized in the following steps: 

a) Given the direction vectors 1mv


 and 2nv


and the directional tolerance values 1ma , 2na  for the first and 

second object part respectively, align each direction vector with the Z-axis of the local coordinate 
system of the object part and choose the  axial tolerance a=max{ 1ma , 2na }. 

b) Maximize the area ( )S   by shifting appropriately the first object along the X and Y axes. This can be 

done by cross-correlating the area of the projections 1( )S   and 2 ( )S  on the reference plane (p) and 
finding the position of maximum cross-correlation. 

c) Perform the matching error optimization on the set of variables 1 2 2{ , , }1 1 1 1, , , ,x y     , 

[ , ]1 1 2 2, , ,      .  

d) Repeat steps (a) and (b) and (c) for every combination of 1mv


 and 2nv


, 1,...,m M , 1,..., . n N

Fig. 11 summarizes the type of constrained matching paradigm to use, according to what constraints are 
available. Notice that the material axis acts as a restrictive constraint when applied alone, but is used as a 
biasing constrained if it is combined with another constraint. The bias toward maximum surface can be 
combined with both the unconstrained and constrained matching cases. 

 
6. TESTS AND RESULTS 
 
We have tested our reconstruction method on many object models, both computer generated and 3D-
digitized models of real object fragments, in various levels of polygonal mesh detail (64 - 25.000 polygons 
per fragment). Multiple tests were performed with the fragments of all our evaluation objects and the 
matching error was estimated using z-buffer resolutions between 6464 and 256256 pixels, depending on 
the level of accuracy desired. Larger z-buffer resolutions correspond to longer error estimation time. We 
found that a good trade-off between accuracy and execution time was achieved for a 128128 rendering 
resolution. 
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6.1 Unconstrained Matching Results 
For the unconstrained matching of object parts, we have used both computer generated and digitized 
polygonal objects. Simple computer generated models with many similar faces (e.g. cubes, pyramids etc) 
have been avoided, as there is more than one combination of their parts that is an acceptable match.  

Fig. 12 displays a list of representative examples of object parts that have been tested with the unconstrained 
matching algorithm. The first column shows the initial arbitrary (but fixed) position of the parts. The second 
and third columns present the correct solution corr  and the most frequent erroneous result mfe  respectively 

(5% RMS deviation from corr  or mfe  is allowed). The average measured error is included in both cases. 

Example (a) and (b) demonstrate the effectiveness of the algorithm for both smooth and irregular surfaces. 
The third example shows a computer-generated ring with cavities where a small ball is supposed to fit. In 
this example we deliberately chose the worst initial pose where the ball is tested against the void space inside 
the ring. All experiments resulted in the ball fitting precisely in one of the eight cavities.   

In the following three examples we applied the unconstrained matching algorithm on digitized object 
fragments. The fragments in case (d) belong to a 422211cm ornamental building block. Many minor 
fragments have been chipped off because of the breaking impact, so the fractured facets cannot perfectly 
match. The same thing has happened to the fragments of examples (e), (f) where clay pot fragments and 
pieces of an 111418cm plaster head model have been used. Actually, in application areas like 
archaeology, a matching algorithm is expected to operate on fragments in bad condition. The tests run with 

Fig. 12. Reconstruction examples for the unconstrained matching case. 
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Fig. 13. Representative examples of object reconstruction using the directional constraint and the maximum surface 
overlap bias. 

these fragments, as well as with other similar ones, show that the unconstrained matching favors “trivial 
solutions” in the case of real objects. Such solutions are relative poses that minimize the matching error 
between large, smooth portions of the fragments. Although far from the desired results, these trivial solutions 
are theoretically correct. The unconstrained method has no knowledge to discard a side-by-side match as in 
case (e). Note also that the probability for a minimization algorithm to converge to a trivial solution becomes 
higher as the corresponding sides of the fragments become larger and smoother.   

Fortunately, real objects frequently have attributes that can be exploited to aid the reconstruction process and 
therefore, constrained reconstruction is more suitable for them. 

 
6.2 Constrained Matching Results 
For the constrained matching tests, we have used the direction-constrained algorithm. The method has been 
tested mostly with real objects. The directional constraint significantly increases the performance for all 
types of objects. With the use of an appropriate criterion to restrict the matching to certain directions, the 
trivial solutions of the unconstrained matching are avoided. Such a criterion is suggested in [14] where 
arbitrary meshes are segmented into crude compact facets and the algorithm marks as candidate directions 
for matching the average normal vectors of the most irregular facets. This algorithm is well suited for 3D 
scanned objects and performs particularly well on types of fragments encountered in archaeological 
applications.  

 Fig. 13 presents some examples of directional matching. As the pose parameters are initialized according to 
one or more predefined candidate directions, the initial pose column of Fig. 12 has no meaning here. The 
candidate directions were selected using the criterion described above, except in case (a), where a single 
direction was manually selected. 

The first example demonstrates the improvement of the matching performance for the parts of Fig. 12b 
where unconstrained matching was used. In the second example, 2-3 directions were marked for each 
fragment, corresponding to the fractured and decorated facets. The facets with the curved designs produced 
high matching error when examined against other selected sides because they are not complementary with 
them. As a result, the range of solutions was restricted to those involving the two fractured sides. Most tests 
were successful although some times the optimization algorithm failed to reach the global error minimum.  
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For example, in (c), (d) and (e) we used fragments from the same class of flat-surfaced objects but with no 
decorations. We had the fractured surfaces of these plaster scale models manually punctured and then 
smoothed out in many places to introduce external error in the process. The pieces in example (d) and (e) 
come from the same object and we tried to match the smaller ones against the large piece. The smallest piece 
(case e) failed to produce a correct reconstruction in most cases, as the fracture was badly distorted with 
respect to its size. In fact, these two fragments had inadequate support even for manual gluing.  

In Fig. 13f-g, the matching and gluing between relatively flat pot fragments is demonstrated. The fragments 
of case (f) are the same we used in the example (e) of Fig. 12. This time, the inner (smooth) walls of the pot 
are not selected for matching and therefore the trivial solutions are avoided. The results for case (f) are very 
interesting as both solutions presented here are almost perfect. We had to manually test the actual fragments 
in order to conclude on which one was the desired solution. 

Overall we were satisfied with the results and we were encouraged to apply our complementary matching 
method to problems where more than one target object must be reconstructed from multiple parts. Such a 
method is proposed in [13] where the direction-constrained matching and the direction selection criterion of 
[14] are used for the matching error evaluation between each pair of fragments. Additionally, the 
maximization of surface overlap and the material axis are used as biasing constraints. A real-time genetic 
optimization algorithm generates the final part combinations based on the precalculated matching errors and 
a small but expandable set of rules.   

 
7. CONCLUSIONS AND FUTURE WORK 
 
An innovative method has been presented for the combination of three-dimensional object parts to 
reconstruct the original objects. The matching algorithm is based on geometric features of the fragments, but 
it can also exploit additional knowledge; it can therefore be combined with other classification methods. The 
core of the method is a matching error estimation algorithm based on the distance between the facing 
fragment sides. When a global optimization algorithm is used with this error estimator as a cost function, the 
resulting method locates a relative pose of the two object parts at which there is a good complementary 
match. Our method takes advantage of widely available low-cost hardware to accelerate the process.  

We are currently working on the combination of the method proposed here with other, feature-based 
methods, like the ones listed in the introduction section, in order to investigate the possibility of a reliable 
and fully automatic object reconstruction procedure. 
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