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Abstract

The statistical properties of oligonucleotide appearances within long
DNA sequences often reveal useful characteristics of the corresponding
DNA areas. Two algorithms to statistically analyze oligonucleotide ap-
pearances within long DNA sequences in genome banks are presented. The
first algorithm determines statistical indices for arbitrary length oligonu-
cleotides within arbitrary length DNA sequences. The critical exponent µ

of the distance distribution between consecutive occurrences of the same
oligonucleotide is calculated and its value is shown to characterize the
functionality of the oligonucleotide. The second algorithm searches for
areas with variable homogeneity, based on the density of oligonucleotides.
The two algorithms have been applied to representative eucaryotes ( the
animal Mus musculus and the plant Arabidopsis thaliana) and interesting
results were obtained, confirmed by biological observations. All programs
are open source and publicly available on our web site.

1 Introduction

During the last few years new revolutionary experimental methods in molecu-
lar biology have been discovered. It is now possible to sequence DNA macro-
molecules with increased speed and accuracy. This has resulted in an explosive
growth of the amount of biological data being stored in biological databases
(such as [27, 6]). We now have complete genomic sequences, even for organ-
isms such as human (Homo sapiens) and mouse (Mus musculus) with extensive
genomes.
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It is anticipated that, at today’s rates, the amount of data inserted into
biological databases will double every 18 months. It is clear that this tremendous
amount of data is of no value, unless there exist tools for effectively searching
and manipulating it. For this reason various biological packages have been
developed, such as BLAST [3, 37], FASTA [23, 33], CLUSTAL [12, 34], while
other numerical approaches and algorithms are presented in [24, 10, 4, 5, 18, 9,
28, 14, 13, 15, 2, 8, 26, 1].

Most of the problems addressed by these packages deal with finding specific
patterns in DNA or protein sequences, searching for similarities between known
sequences, querying biological databases for similar sequences given an unknown
one, developing algorithms which try to reconstruct the 3D structure of a given
macromolecule, producing tools to automatically distinguish functional areas
(like coding/non-coding regions in DNA or topology prediction for proteins),
calculating various statistical and mathematical parameters etc. Despite the
increasing number of available tools, the problem of categorizing oligonucleotides
based on their statistical properties is still open. We propose two algorithms
which deal with small DNA sequences and their distribution across the whole
chromosome, in order to be able to categorize these sequences or DNA areas
only from their statistical properties and not by laboratory biological findings.

Let us first formalize the representation of the DNA sequences used in this
work. Genomic DNA sequences consist of the four nucleic acids; Adenine, Cy-
tosine, Guanine and Thymine:

Base = {A, C, G, T} (1)

although in other genomic macromolecules other bases are found as well (e.g.
Uracil - U in RNA). Inside the biological DNA databases only the above four
bases are stored. Thus, a DNA Sequence of length n can be described as:

Sequence(n) = Basen (2)

Inside the cell, there is usually more than one long DNA sequence. Each one
of these sequences is called a Chromosome, it is independent of the others and
usually includes different genomic information1.

Again, a chromosome can be represented as

Chromosome(c) = Basec (3)

where c would be in the range of a couple of thousand (for simpler organisms)
to hundreds of millions (for more complex organisms). If the size of the DNA
sequence is small, then this is called Oligonucleotide:

Oligonucleotide(m) = Sequence(m), where m << c (4)

1Sometimes during the life of the cell (e.g. mitosis metaphase), when the cell is going
to double, each one of these sequences doubles and there are two appearances of the same
sequence

2



Although the main operation of the DNA is to code for proteins, it is known
that, in higher eucaryotic organisms, only a small percentage of the DNA is
translated, in order to produce proteins. These areas are called coding areas.
The rest of the DNA has more structural than functional role and such areas
are called non-coding areas. In order for the coding areas to be distinguishable
by the enzyme which promotes the transcription 2, usually in the beginning
of the coding regions there is a special DNA sequence called the promoter.
Promoters usually have a length in the order of hundreds of bases. Between
two successive appearances of the promoter there are at least one coding and
one non coding sequence. Inside each promoter there are small oligonucleotides
of length m = 2..10, which are steadily present, called consensus sequences.
Known consensus sequences in eucaryotes are, among others, the CG and the
TATA sequences.

In a recent work, the distance distribution between two consecutive appear-
ances of a given oligonucleotide has been calculated [16]. The investigation has
been performed on human chromosomes 21 and 22 for oligonucleotides of length
m = 5 and m = 6. It has been found that the oligonucleotides that contain
consensus sequences of promoters follow long tailed distributions

P (S) ∼ S−1−µ, 0 ≤ µ ≤ 2 (5)

where S is the distance between two consecutive occurrences of the same oligonu-
cleotide sequence, P (S) is the distribution of S and µ is called the power law or
critical exponent. In contrast, randomly generated oligonucleotides follow short
tailed distributions.

Encouraged by this finding, we decided to generalize the process; we created
two algorithms, the Oligonucleotide Process Algorithm (OPA) and the Statis-
tical Homogeneity Map (SHMap) algorithm. The former one (OPA) calculates
statistical indices of oligonucleotide distributions in long DNA sequences. Rep-
resentative indices are the frequency of appearance, the maximum distance, the
average distance, the distance deviation between two occurrences of the same
oligonucleotide and the power law exponent µ. The values of these indices
are shown to be associated with the degree of functionality of the correspond-
ing oligonucleotide indicating whether the particular oligonucleotide sequence
serves as promoter signature for this organism. The latter (SHMap) algorithm
maps areas in the DNA sequence which lack homogeneity, providing informa-
tion about the characteristics of the underlying DNA sequence and possibly
predicting its functionality.

Each one of these algorithms is applied to chromosomal data (DNA sequences
with c at least 103) and statistically manipulates these long sequences. A general
interface has been developed which is able to input a DNA sequence in either
plain text format, without any special coding, or in NCBI’s FASTA (FNA)
format [23]. All the code that resulted from this work are publicly available
under an open source licence (GNU GPL) through our web site [32].

2like RNA polymerase II
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In the next two sections we describe the OPA and the SHMap algorithms
respectively. In section 4 we discuss the applications of the two algorithms and
the external tools required. In section 5 we present interesting results from the
application of our algorithms to real biological data. Finally in section 6 we
discuss the results, address some open problems and propose future extensions.

2 Oligonucleotide Processing Algorithm (OPA)

Our aim here was to examine the statistical properties of oligonucleotides within
a given chromosome (sequence). To this end our algorithm aims to distinguish
oligonucleotides with special statistical properties. It is then extremely useful
to compare these results with experimentally determined oligonucleotides with
distinct biological function.

The main points of focus are the following:

• Distance Distribution of two consecutive appearances of the same Oligonu-
cleotide Sequence DDOS inside a give chromosome

• Determination of the power law exponent µ for each oligonucleotide

• Ordering of the results on any statistical parameter calculated above and
checking whether the ranking of oligonucleotides has functional meaning
or if there is any type of possible clustering between the oligonucleotides

In order to calculate the statistical properties of the oligonucleotides, pattern
matching in DNA sequences is needed. Apart from the four symbols which
represent the four nucleic acid bases (A, T, C and G), more symbols exist in
DNA databases, which are used to describe bases whose composition is not
fully sequenced. In the following algorithms we have used a generic approach,
where all these symbols are taken into account [20, 21, 22]. Table 1 gives the
truth matrix we constructed to decide whether two bases match.

To calculate the power law exponent µ we have followed two approaches,
depending on the method being used. The first approach relies on the observa-
tion that the DDOS for almost every oligonucleotide has a central linear part
in double logarithmic scale, usually found between fixed boundaries for a given
chromosome. Using this information it is possible to distinguish oligonucleotides
depending on their DDOS and their critical exponent µ, which is the slope of
this linear part (Equation 5). The algorithm variant used is the following:

DNA = load dna(’DNASequence.FNA’);

/* Provide the length M of the oligonucleotides */
M = input();

/* Create a list with all possible oligonucleotides of length M */
/* The list should have 4M items */
LIST = compute possible oligonucleotides (M);

/* Go through every item in the list */
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for (S in LIST) {
/* Search for the first occurrence of S in the DNA */
/* sequence (from position 0) */
POSITION1 = find(0, S, DNA);

/* Initialize distances list */
DISTANCES = new list();

while (not end of ’DNA’) {
POSITION2 = find (POSITION1+M, S, DNA);

add distance to list(DISTANCES, POSITION2-POSITION1);

POSITION1 = POSITION2;

}
/* Calculate the various statistical parameters */
MAXDIST = calculate max distance(DISTANCES);

AVRDIST = calculate average distance(DISTANCES);

DISTDEV = calculate distance deviation(DISTANCES);

HISTOGRAM1 = calculate histogram (DISTANCES);

HISTOGRAM2 = calculate cumulative histogram (DISTANCES);

HISTOGRAM3 = convert to loglog (HISTOGRAM2);

/* Perform a line fitting over the HISTOGRAM, -1-m is the slope */
SLOPE = line fitting(HISTOGRAM3);

/* VAR is any statistical variable, such as MAXDIST, SLOPE, etc. */
sort (HISTOGRAM3, VAR);

save (HISTOGRAM3);

}

The complexity of this algorithm is O(4m ∗ c ∗m), where m is the length of
the search pattern and c is the length of the DNA sequence.

The least squares algorithm [25] has been used for the line fitting. The
results are ordered by the desired statistical parameter, and the oligonucleotides
which appear to have extreme values are exposed. For example, if the critical
exponent µ is used for sorting, oligonucleotides with small values of |µ| (follow
long range distributions) are expected to include consensus sequences, whereas
oligonucleotides with large values of |µ|, (follow short range distributions) have
no clear biological meaning. Interestingly, this ordering is in general robust, for
all statistical properties considered.

The second approach uses a general curve in order to fit the produced DDOS,
taking into account the whole histogram. We have selected a curve with an
exponential and a polynomial part, in order to be able to describe both power
law (long tails) and exponential (short tail) behavior of the distribution:

y(x) = Ax−1−je−kx (6)

This expression contains three independent parameters: A being a normal-
ization parameter, j being an intermediate scale and k being a large scale pa-
rameter. The parameter j corresponds to the critical exponent µ presented
above. The curve fitting algorithm which was used is a combined Levenberg-
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Marquardt [17, 19] with Gauss-Newton method. The curve fitting version of
the algorithm is:

/* Load the DNA into memory, input the length of the */
/* oligonucleotides and check every oligonucleotide in order */
DNA = load dna(’DNASequence.FNA’);

M = input();

LIST = compute possible oligonucleotides (M);

for (S in LIST) {
POSITION1 = find(0, S, ’DNA’);

DISTANCES = new list();

while (not end of DNA) {
POSITION2 = find (POSITION1+M, S, DNA);

add distance to list(DISTANCES, POSITION2-POSITION1);

POSITION1 = POSITION2;

}
/* Calculate the distance distribution of this oligonucleotide */
HISTOGRAM = calculate histogram (DISTANCES);

/* Convert the histogram in double logarithmic scale */
convert to loglog (HISTOGRAM);

save (HISTOGRAM);

}
/* Parse all histograms being produced */
for (H in HISTOGRAM files) {

/* Perform the curve fitting on this histogram */
curve fit (H);

/* Store the curve parameters */
store (A, j, k);

}
/* Perform a data clustering based on j,k */
find clustering(j,k);

display data();

The complexity of this algorithm is again O(4m ∗ c ∗ m) as in the previous
version of the algorithm.

This approach presents new views over the possible classification of the
oligonucleotides. By appropriately mapping the various parameters, cluster-
ing of oligonucleotides may appear, when statistically meaningful queries are
posed. In order to evaluate the produced results, we have taken into account
only the j and k parameters, since these describe the statistical behavior of the
result. As can be seen in section 5.2, two clearly distinct areas are visible and
this observation is robust in both chromosomes we have chosen.

We would like to note that the sequences which are found with this algorithm
do not appear solely inside the promoters, but can also be seen elsewhere in the
DNA, like inside exons, and thus do not appear exclusively at the beginning
of genes. Since this algorithm calculates statistical indices which refer mostly
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to the tails of the size distribution of these sequences, at least the consensus
sequences of the promoters which have large interdistances (i.e. separate mostly
intergenic regions) correspond to promoter sequences.

3 Statistical Homogeneity Map (SHMap)

The algorithms presented above give statistical information on various oligonu-
cleotide combinations. It is also useful to be able to map areas inside the
chromosome according to their statistical behavior. We thus consider another
biological observation; the lack of homogeneity within eucaryotic chromosomes.
Each eucaryotic chromosome consists of areas with different composition. Some
areas can be described as “random” from the statistical point of view, whereas
other areas have more “stable” consistency [26].

The algorithm proposed here marks areas of the chromosome according to
their “randomness”. As a base measure we employ all possible oligonucleotides
of length m. We distinguish the areas which are rich in different oligonucleotides,
and those which consist of only a few oligonucleotides. The algorithm is as
follows:

/* Load the DNA into memory, input the length of the */
/* oligonucleotides and check every oligonucleotide in order */
DNA = load dna(’DNASequence.FNA’);

/* Allocate memory in order to save the SHMap values */
MAP = allocate memory(size of(DNA);

clear memory (MAP);

M = input();

LIST = compute possible oligonucleotides (M);

for (S in LIST) {
POSITION1 = find(0, S, DNA);

while (not end of ’DNA’) {
POSITION2 = find (POSITION1+M, S, DNA);

DISTANCE = POSITION2-POSITION1;

/* Check if the distance between two consecutive appearances */
/* of an oligonucleotide are above a given threshold */
if (DISTANCE > THRESHOLD) {

/* Mark all positions between first and second */
/* appearance of the oligonucleotide */
for ( K between POSITION1 and POSITION2 ) {

MAP[K] = MAP[K]+1;

}
}
/* The second position becomes now the first */
POSITION1 = POSITION2;

}
}
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/* Normalize the MAP between the values 0 to 255 */
normalize map (MAP, 0, 255)

save map(MAP);

The result of this algorithm is a data file, with the same size as the input
DNA sequence; there is a one-to-one correspondence between chromosome bases
and values within this file (Figure 1). The complexity of this algorithm is
O(4m ∗ c ∗ m), since, for each one of the 4m oligonucleotides, the start of each
new search is the end of the previous one (where the oligonucleotide was last
found). In the end the entire genome c is traversed once.

The biological meaning of values within this file is as follows:

• a lower value implies that the distances between oligonucleotides in this
area are generally smaller than the given threshold. Having short distances
means that the possibility of finding any given combination, starting from
any position inside this area is high, or in other words, that most com-
binations are present and mixed in this area. Since this kind of behavior
resembles “random” distribution, it is also expected that these areas in-
clude mostly coding DNA sequences.

• a higher value implies long distances between oligonucleotides (above the
given threshold). Having long distances means that it is less probable
to find the next occurrence of a certain oligonucleotide inside this area.
Since we do not consider extensive DNA gaps in this implementation of
the algorithm, but there is a contiguous coverage of bases, the reason
for the long distances is the over-representation of few specific oligonu-
cleotide combinations in this area, forcing the remaining majority of the
oligonucleotides to be under-represented. This behavior is common in
non-coding DNA sequences, where the presence of structures like poly-A
(long sequences consisting only of adenine) are common.

The choice of the threshold is important, as it distinguishes whether the dis-
tance between two occurrences of an oligonucleotide is statistically insignificant
or not. As c is the length of the DNA sequence and m is the size of the oligonu-
cleotides, then the number of m-sized oligonucleotides inside c are c − m + 1.
Since the number of possible oligonucleotides is 4m, the expected number of
appearances of each oligonucleotide within a random DNA sequence of size c is
c−m+1

4m
. The average distance between two consecutive appearances of a specific

oligonucleotide is expected to be

Distance(c, m) =
c − m + 1

c−m+1

4m

= 4m (7)

In this study the threshold was set to 4m+d, where d is used to bring the
threshold well above the random probability of appearance (4m).

Using this algorithm it is possible to distinguish areas which are rich in
oligonucleotide combinations (lower value) from those which are poorer (higher
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values). Since the coding regions appear to be richer in oligonucleotide com-
binations, we expect them to be inside the areas with the lower values. A
visualized result of this algorithm is presented in section 5.3 (Figure 2). Since
this approach is statistical and not biochemical, there is less accuracy in the
positioning of the exons and introns. It can be used as a tool to point to DNA
areas which need to be further investigated by traditional biochemical methods.

4 Implementation

An integrated application under an open source licence (GNU GPL) implements
the above algorithms. It is console-based, although some components (such
as the display of various plots) produce graphical output. Our development
environment was a Linux single processor (Intel) system. We used the ANSI
C++ language under the GNU G++ compiler in order for the source code
to be portable [29]. We have also tested it under Windows 98 and Windows
XP environments using cygwin/mingw32 tools. Other tools used include the
BASH shell [35] to manage and sort the results, the GNUPLOT utility [36] to
graphically present the results and the GRACE application [31] to perform the
curve fitting over the data.

Depending on the amount of computation and the plan of work, it can be
used in either interactive or batch mode.

4.1 Interactive

This mode is the default. The user is able to interactively perform various
exploratory statistical tests in real time. Typically a single oligonucleotide is
tested at a time. The input DNA sequence is either in plain text or in FNA for-
mat. A search pattern is specified and statistical information is displayed in real
time, such as frequency of appearance, maximum and average distance, distance
deviation and the critical exponent µ. It is also possible to calculate simple or
cumulative distributions and to graphically display a plot of distances for the
given oligonucleotide combination or the DDOS together with the calculated
slope.

4.2 Batch

This mode is useful for collecting statistical data on multiple oligonucleotides.
The algorithms described in the previous sections are implemented in batch
mode. Both the OPA (with line or curve fitting) and the SHMap algorithm can
be executed on data provided by the user at run time. For the visual display of
the clustering of oligonucleotides, the sequences can be split according to a reg-
ular expression (RegExp [7]), as shown in Figures 3 and 4. The computational
cost of each algorithm on a Pentium 4 PC (2,5GHz) for quintuplet processing
on Chromosome 19 of Mus musculus (about 60 Mbases) was of the order of 1
hour.
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In addition to the presented algorithms, a few extra facilities are also avail-
able. It is possible to calculate all histograms for an oligonucleotide string of
a specified length and store the results in a single file. The scales of the his-
tograms are not normalized (top part of Figure 5). A 2D matrix is created
whose horizontal dimension contains the size distribution values and the ver-
tical dimension indexes the oligonucleotide. It is also possible to calculate all
histograms in normalized scales (bottom part of Figure 5). This is useful for
comparing the shape of the histograms for different oligonucleotides.

5 Application to biological data

To test the usability and effectiveness of the proposed algorithms, we performed
tests on biological data. Fully sequenced chromosomes from the NCBI genome
bank were obtained [30]. The organisms which were used are the animal Mus
musculus (mouse) and the plant Arabidopsis thaliana.

5.1 Long range distribution of oligonucleotides

In this study, reference chromosomes 1, 15 and 19 of Mus musculus and chromo-
somes 1, 2 and 3 of Arabidopsis thaliana from the NCBI database were tested.
The line fitting variation of the OPA algorithm was employed to calculate the
critical exponent. The linear regions taken into account were in the range 2−6 of
the P (S) in double logarithmic scale. Quadruplets (oligonucleotides of m = 4)
and quintuplets (oligonucleotides of m = 5) were considered. The oligonu-
cleotides were sorted according to the value of their critical exponent µ and the
combinations with the lowest and the highest values of µ are presented here.
An example of the produced output can be seen in Table 2.

In all tested chromosomes of Mus musculus it can be seen that in general
the quintuplets with the smallest absolute value of µ are those which contain
the sequence CG twice. Various combinations of this basic pattern appear to
belong to this group, such as TCGCG and CGCGA (which are complementary),
CGCGT and ACGCG (complementary), CGTCG and CGACG (complementary) and
a few others. Following the same pattern, the quadruplet with the smallest
absolute value of µ is the one with the double CG sequence, namely the CGCG. The
oligonucleotides with the highest value of |µ| do not appear to have any specific
pattern. We note here that the complex CG is a consensus sequence of the RNA
polymerase II promoter in some organisms. The OPA algorithm, without any
input about promoter structure, solely based on distance distribution between
various oligonucleotides has sorted out all the oligonucleotides which contain
the signature of the promoter of the polymerase.

In Arabidopsis th. the situation is more complicated. In chromosome 1 the
quadruplet with the smallest value of |µ| is the TATA, which is different to the
one found for Mus m. In quintuplets we have a similar situation. The sequences
with the smallest value of |µ| are those which have the TATA sequence or point
mutations of it. Sequences with large values of |µ| do not appear to follow any
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special pattern, although some of the oligonucleotides appear to have A and T,
but with different ordering than the one described above.

In chromosomes 2 and 3 the quadruplets with the smallest value of |µ| are
the CGCG and GCGC sequences. The results are similar for quintuplets; sequences
with the smallest value of |µ| appear to contain the CG sequence twice. These
sequences are CGCGC, GCGCG and point mutations of them, rich in cytosine and
guanine. Although at first sight the results appear to contradict (since in both
organisms it is the same enzyme which promotes the production of mRNA) they
can easily be explained in biological terms. It has been found that in mammals
and other higher organisms, the consensus sequence of the promoter includes
the CG sequence. However in Arabidopsis th. the TATA oligonucleotide is an
important consensus sequence, in addition to CG. Our algorithms confirm this
biological particularity.

From our current and previous studies we have seen that the sequences which
follow long-range distributions were found to correspond to consensus sequences
of DNA promoters. Thus at this stage the OPA algorithm might be used to
predict possible consensus promoter sequences in long DNA sequences.

5.2 Clustering of oligonucleotides

In this test we perform curve fitting over the DDOS. We have used the SHMap
algorithm over chromosomes 18 and 19 of Mus musculus and taken into account
quintuplets and hexaplets (m = 5 and m = 6 respectively). The results can be
seen in Figures 3 and 4. Each scatter plot depicts the two main parameters
−1 − j and −k. Every plotted symbol corresponds to a single oligonucleotide.
We have divided the 4m oligonucleotides in two sets, the first set α (marker X)
consists exclusively of oligonucleotides which include the CG sequence, and the
second set β (marker O) contains all other oligonucleotides.

The result is rather amazing. Two clearly separated clusters are visible
in every plot, one consisting solely of oligonucleotides belonging to set α on
the right part of the graph, and the other consisting solely of oligonucleotides
belonging to set β, on the left part. The existence of the CG sequence is the
characteristic differentiator of these clusters; CG is known to be a consensus
sequence of the promoter for this organism. This clustering is more prominent
in mammals and is less evident in plants and lower eucaryotes.

5.3 SHMap

We have used SHMap to calculate the statistical homogeneity map of chromo-
some 1 of Mus musculus. An example output of the algorithm can be seen in
Figure 2 using oligonucleotides of size m = 5. In this example we have focused
on the NT 039170 area of this chromosome. Since the whole data sequence is of
the order of 107, only a specific region is shown in the example (namely bases
11730700−11813700). The threshold being used is 4m+d = 45+2 = 16384. This
area corresponds to the Dst gene, which produces the dystonin protein.
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The diagram shows some peaks and some valleys. The peaks characterize
low diversity for the underlying DNA sequence and in this example correspond
to non-translated areas. The deeper valleys are found to correspond to ar-
eas of the gene rich in exons, which means that they are part of the coding
regions of this DNA sequence. The algorithm thus has predictive power in non-
annotated sequences. It would be interesting to further investigate this behavior
and compare it against biological data regarding the functionality of the given
chromosomal areas.

At this point we should note that in chromosomes which are not fully se-
quenced, an artifact may appear. If the DNA sequences have areas of unknown
base consistency (e.g. having the symbol N), the unknown bases will not match
with any given sequence and will produce false high peaks.

6 Conclusions and open problems

We present a set of algorithms for the statistical analysis of DNA data. Interest-
ingly the use of our algorithms over laboratory biological data revealed a specific
behavior related to functionality. Although the approach was completely based
on mathematical terms, the sequences which stand out are those which have
specific biological meaning (e.g. consensus sequences of promoters). This is im-
portant, not only because it is a different kind of proof for the special function
of these sequences, but also because they could be used on organisms for which
we have the DNA sequence but do not know much about the functionality of
their genome.

We would like to note that in this analysis we do not presume the existence of
promoters. We have focused only on calculating statistics of long DNA sequences
and estimating the size distribution between oligonucleotides. It is true that
there can be more than one promoter consensus sequence even for the same
RNA polymerase. This situation is depicted in Arabidopsis th. where both
TATA and CG sequences appear. However since the treatment is statistical, only
the prominent promoter consensus sequences dominate. Sequences which appear
sporadically do not contribute significantly to statistics and thus may not appear
in the top places of the results.

We have to stress that apart from the requirement of long DNA sequences,
our algorithms are neither organism nor data specific. They can equally be
applied to eucaryotes or procaryotes, ‘higher’ or ‘lower’ organisms. It is expected
that the results will vary according to the selection of organism, since each
organism might have different enzymes and biological pathways. The main
principles of the algorithms will remain, only the biological interpretation of the
data will change.

OPA algorithm seems to distinguish the promoter consensus sequences from
other oligonucleotides, since these sequences appear to have the smallest abso-
lute value of µ. It may be possible to use this algorithm in order to predict
possible promoter consensus sequences in unknown long DNA sequences. In the
current work we have focused on making statistical tools which can be used to
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analyze any sequence in the statistical sense of searching for oligonucleotides.
Although it would be possible to modify these algorithms in order to ignore

consecutive repeats of oligonucleotides, the statistics will change. The repeats
are an important element in the structure of intergenic regions and in non-coding
DNA sequences and they have been produced by evolutionary forces. For this
reason they drastically contribute to the statistics of the tails of the sequences
and they induce long range properties.

Finally it would be interesting to extend our system so as to be able to
zoom in various levels on the map and display specific DNA ranges. It is also
important to tag these DNA areas with information such as which known genes
are inside this area or which parts consist mainly of exons or introns. An
implementation under the GRID [11] would allow the separation of logically
distinct parts of our system (data banks, processing, display) and speed up the
batch mode through distributed processing.

The algorithms developed can be downloaded and tested from our website
[32] under an open source licence (GNU GPL).
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Table 1

A B C D G H K M N R S T V W Y

A 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0

B 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

C 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1

D 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

G 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0

H 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

K 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0

M 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0

N 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

R 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0

S 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0

T 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1

V 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

W 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0

Y 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1

The DNA base matching matrix of two nucleic acid symbols. The symbols
in the vertical axis represent the bases found inside the DNA sequence being
searched and the symbols in the horizontal axis represent the bases found in the
search pattern (’1’=match, ’0’=no match). We note that most of these symbols
match with more than one symbol. The generic symbols match the more specific
ones only when the former appear in the search pattern, not inside the long DNA
sequence. The representation of each symbol is as follows: G for Guanine, A
for Adenine, T for Thymine, C for Cytosine, R for G or A (puRine), Y for T or
C (pYrimidine), M for A or C (aMino), K for G or T (Keto), S for G or C, W
for A or T, H for A or C or T, B for G or T or C, V for G or C or A, D for G
or A or T, and N for G or A or T or C. [20, 21, 22].
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Table 2

% SEQ FREQ AVG MAX STDDEV FIT CFIT LNFIT

CTCA 17856 239 2503 252.545 0.0388571 -0.00792694 -5.85913

AGAG 22392 190 2724 225.815 -0.0166103 -0.0120101 -5.81601

TCAG 17476 244 2856 255.668 -0.0175687 -0.00545257 -5.79798

AGGT 12641 338 4149 351.576 0.0434072 -0.00367821 -5.65297

CTGA 17755 240 2404 248.927 -0.00226716 -0.00842822 -5.58917

AAGC 11951 357 3730 387.117 0.0109258 -0.0405405 -5.56692

ACTT 14646 291 3229 306.616 -0.00621426 -0.0154523 -5.56439

GTGA 12892 331 4088 343.58 -0.0101775 -0.00443319 -5.52546

AGGA 19309 221 2576 248.277 -0.00600354 -0.00443272 -5.52412

TGAG 18476 231 2325 248.305 0.02659 -0.0109548 -5.50157

... ... ... ... ... ... ... ...

TCGG 1757 2433 28958 3072.47 -0.000182006 -0.00024667 -2.30993

GGCG 1976 2164 38312 3337.87 -0.00177118 -0.00043499 -2.30579

CACA 22612 189 5063 257.518 -0.0078082 -0.00230276 -2.25369

CGGA 1940 2203 28078 2976.34 0.000635356 -0.000635895 -2.22556

CGGC 1836 2329 34029 3510.3 -0.000213448 -0.000323557 -2.21539

ACGC 1648 2593 27919 3340.61 -0.00113418 -0.00101467 -2.19301

CGCC 1971 2168 41934 3379.38 8.54279e-05 -0.000357682 -2.05837

CCGC 1642 2602 45587 4017.48 -3.65871e-05 -0.00047312 -2.01543

GCGC 1449 2950 57166 4963.49 -0.000699545 -0.000175142 -2.01383

CGCG 533 7998 108882 14786.1 -0.000275482 -0.000127624 -1.16537

Sample output of the OPA algorithm for Mus musculus chromosome 18. The
columns are, from left to right, the current oligonucleotide sequence (SEQ), the
frequency of appearance (FREQ), the average distance (AVG), the maximum
distance (MAX), the deviation of the distances (STDDEV), the slope of the
histogram (FIT), the slope of the cumulative histogram (CFIT) and the slope
of the cumulative histogram in double logarithmic scale (LNFIT) which is also
the value of the critical exponent (−1 − µ). The data is sorted according to
the critical exponent values. Only the extreme parts of the list are shown. The
oligonucleotide with the smallest value of |µ| is the CGCG sequence.
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Figure 1: Schema of the SHMap algorithm. Top lines contain the DNA sequence
and bottom lines contain the MAP values. In this example we consider for sim-
plicity single-base nucleotides (mononucleotides, m = 1) and thus the number
of possible oligonucleotides are 4m = 41 = 4. The four sequences are A, C, G
and T respectively. The threshold in this example is 4m+d = 4, taken m = 1
and d = 0 (Equation 7). Each new row in this schema depicts the status of
the MAP after a step of the algorithm for the respective oligonucleotide (shown
on the left of the table). The bases in italics mark the positions in the DNA
sequence which will be incremented.
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Figure 2: Application of the SHMap algorithm over chromosome 1 of Mus mus-
culus in the NT 039170 area. The size of the oligonucleotide being used was
m = 5. The region between 11730700−11813700 is displayed. Some of the peaks
appear to be in the regions 11740900−11742700 (P1), 11760000−11763500 (P2),
11775800−11776800 (P3), 11793000−11794100 (P4) and some of the lowest val-
leys appear to be in the regions 11748600−11750200 (V1), 11753400−11755000
(V2), 11765500−11766700 (V3) and 11798000−11800000 (V4). By direct com-
parison with the NCBI gene database it is found that in general the peaks
correspond to the introns, while the valleys correspond to regions rich in ex-
ons of the Dst gene. The corresponding regions (which include the identi-
fied peaks) are (11740853 − 11742704) for P1, (11754490 − 11763711) for P2,
(11775756− 11776896) for P3 and (11792763− 11794229) for P4. The valleys
correspond to several exons each, with statistically insignificant small introns
between them: [11748859− 11749016], [11749445− 11749623] and [11750055−
11750193] for V1, [11753810 − 11753917] and [11754392 − 11754490] for V2,
[11765657−11765745] and [11766514−11766646] for V3, [11798030−11798271]
and [11799091− 11799220] for V4.
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Figure 3: Application of the OPA algorithm over chromosome 18 of Mus muscu-
lus. The axes plot (−1− j) against −k. Two clearly separated areas are visible;
on one side are oligonucleotides with at least one occurrence of the CG sequence
(X) and on the other all other oligonucleotides (O).
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Figure 4: Application of the OPA algorithm over chromosome 19 of Mus muscu-
lus. As in Figure 3, two areas are again visible, on the right are oligonucleotides
with at least one occurrence of the CG pattern (X) and on the left all other
oligonucleotides (O).
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Figure 5: Calculation of multiple histograms. The top plot displays the unnor-
malized and the bottom the normalized histograms. For clarity of presentation
only two of the 256 histograms are shown (the actual number of histograms
calculated are 4m, where m = 4 in the case of quadruplets). The displayed
oligonucleotides are ACTA and TCGC from the 10th chromosome of Mus muscu-
lus.
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