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PTK: A Novel Depth Buffer-Based Shape Descriptor for
Three-Dimensional Object Retrieval

Abstract The increase in availability and use of digi-
tal three-dimensional (3D) synthetic or scanned objects,
makes necessary the availability of basic database oper-
ations, such as retrieval. Retrieval methods are based
on the extraction of a compact shape descriptor; the
challenge is to design a shape descriptor which describes
the original object in sufficient detail to make accurate
3D object retrieval possible. Building on previous work,
this paper proposes a novel depth buffer-based shape
descriptor (called PTK) which encompasses symmetry,
eigenvalue-related weighting and an object thickness re-
lated measure to provide accuracy that surpasses pre-
vious state-of-the-art methods. Evaluation of the novel
method’s parameters as well as a direct comparison to
other approaches is performed using publicly available
and widely used databases.

Keywords Depth buffer · Object Retrieval · Symmetry

1 Introduction

Databases of three-dimensional (3D) objects are becom-
ing increasingly available and include real-life objects
digitized with 3D scanners and synthetic objects pro-
duced by modeling software. The proliferation of such
databases on the internet is also increasing. As is the
case in relational, text and two-dimensional (2D) image
databases there are a number of basic operations that
must be available on 3D object databases; such oper-
ations include comparison, classification, and retrieval.
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However, 3D objects encode more information than pre-
vious objects, making these tasks more challenging.

3D object retrieval can be applied on a large num-
ber of important tasks, making it one of the most widely
researched topics. From web-based search engines (e.g.,
given a query object to find similar objects), to security
applications (e.g., given a human face dataset to find its
match in a database) there is a need for accurate and effi-
cient object retrieval. All object retrieval methods share
the same basic idea: a 3D object is processed once in
order to extract a compact and accurate description of
itself (called a descriptor); a database of descriptors is
thus created. When a query object is given, its descrip-
tor is extracted and compared against the database of
descriptors (using a distance metric such as L1 or L2) to
retrieve the most similar objects from the database.

The descriptor is thus an alternative representation
of the object that can be used in place of the original
(e.g. polygonal) representation. The main challenge is to
create a descriptor which results in accurate 3D object
retrieval.

1.1 Related Work

Three dimensional object representation techniques can
be categorized [8] into a) histogram-based, b) topology
based, c) view-based, and d) shape-based.

Histogram-based methods such as the ones proposed
by Osada et al. [13] and Ankerst et al. [2], even though
they have several advantages (e.g., noise robustness, ro-
tational invariance), in general are considered less de-
scriptive compared to shape-based methods. Topological
methods include Sundar et al. [19], who proposed the
use of the skeleton of an object for object retrieval, and
Hilaga et al. [7]. A drawback of topological methods is
that relatively small anomalies on the object’s surface
can have a significant impact on the topological proper-
ties of the object. Additionally different classes of objects
that share the same topology are difficult to discern us-
ing such methods.
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View-based methods [11,3] extract 2D views of the
objects and use them as features for retrieval purposes
(e.g., silhouettes). There is an unavoidable loss of de-
scriptiveness when projecting 3D geometry onto a 2D
view. In our previous work on object retrieval, we ex-
tended this idea to 3D views and presented a 3D rigid
object retrieval method which employs depth buffers for
representing and comparing the objects [20]. Specifically,
multiple depth buffers per object (computed from differ-
ent points of view) are compared for surface and volume
similarity. In this paper, we also propose a depth buffer-
based descriptor, which integrates part of our previous
work but it is improved significantly (see Sec. 1.2).

Frome et al. [5] introduced two shape descriptors,
3D shape contexts and harmonic shape contexts, and
used them for recognizing objects in noisy range images.
Kazhdan et al. [9,10] used spherical harmonics as shape
descriptors for 3D shape retrieval. Spherical harmonics
is an attractive mathematical tool for this task due to
its inherent rotationally invariant nature.

Laga et al. [12] proposed the use of geometry images
for matching 3D objects. They apply the work of Gu et
al. [6] on geometry images to transform the 3D polyg-
onal data to geometry images. Before they convert an
object to its geometry image representation, they align
it using Principal Component Analysis. Unfortunately,
they evaluate their method using a limited dataset (120
models) without comparing it to other state-of-the-art
methods.

Vranic [22] proposed several shape descriptors, which
were depth buffer-based, silhouette-based, ray-based and
hybrid (based on the combination of the above descrip-
tors). Each shape descriptor produces a feature vector,
and vectors from different objects are compared using L1

or L2 distances to determine similarity. In Sec. 3.3 we
used Vranic’s 3D search engine website [21] to evaluate
the performance of our method and compare it against
previously proposed descriptors.

1.2 Shape Descriptors

Shape descriptors of the geometry of an object are an
alternative representation that encompasses information
about its shape that is independent of the original ob-
ject’s representation. A shape descriptor produces for
each object a set of coefficients that define a feature
vector : FV = {C1, C2, ..., Cn}. In order to be able to
directly compare two feature vectors from different ob-
jects, n must be constant and each coefficient Ci must
describe the same feature in both objects. The distance
of these two feature vectors using a specific metric (e.g.,
L1, L2) is correlated with the difference of the shape of
these two objects. According to [22] the desirable prop-
erties of a 3D shape descriptor are the following:

p. 1 non-restrictiveness to closed or orientable polygo-
nal meshes,

p. 2 invariance with respect to translation, rotation, scal-
ing and reflection of a 3D-object,

p. 3 robustness with respect to mesh anomalies (e.g.,
floating vertices, degenerate triangles),

p. 4 robustness with respect to levels-of-detail (e.g., dif-
ferent tessellation),

p. 5 robustness with respect to surface noise and out-
liers,

p. 6 multi-resolution feature representation,
p. 7 efficient feature extraction,
p. 8 compact representation,
p. 9 efficient search procedure and
p. 10 shape discrimination.

In this paper, we utilize depth buffers in order to
compute an estimate of the thickness of an object along a
given direction, and use this information to represent the
object and perform comparisons in the spectral domain.
Even though the depth buffer has already been used as
a shape descriptor, we propose a number of important
modifications such as the use of symmetry for alignment
and the use of eigenvalue-related weighting (see Sec. 2).
These modifications allow our novel method to outper-
form previous state-of-the-art in terms of performance,
as detailed in Sec. 3.

In our previous work [20], the depth buffer was not
used directly as a shape descriptor. It was produced at
the comparison step of the method, and for each pair
of objects that were compared, different depth buffers
were used. Therefore, they could not describe the ob-
ject in a unique way. In contrast, in methods where the
depth buffer is used as a shape descriptor (e.g., the pro-
posed method, Vranic’s method [22]), the depth buffers
are computed only once during an initialization step and
can then be used as an alternative to the polygonal rep-
resentation of the object.

The rest of the paper is organized as follows: Sec.
2 describes our method in detail, Sec. 3 presents our
evaluation results using publicly available databases, and
Sec. 4 provides a summary and proposes further work.

2 Method

The proposed method consists of two steps, a preprocess-
ing step that needs to be applied once on each object in
the database to produce a feature vector, and the re-
trieval step, where feature vectors from different objects
are compared to determine similarity.

– Preprocessing. For each object:
– Normalize the scale of the object and translate its

center of mass to (0, 0, 0).
– Align the object using symmetry information and

Principal Component Analysis.
– Acquire the depth buffers.
– Transform the buffers from the spatial to the spec-

tral domain.
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(a) (b)

Fig. 1 Computing the center of mass for non-regularly sam-
pled objects: (a) Un-weighted approach; (b) Weighted ap-
proach.

– Apply weighting to spectral coefficients produce
final feature vector.

– Retrieval. Compare two feature vectors by comput-
ing their difference using an L1 or L2 metric.

We will show that our method has all the desired
properties described in Sec. 1.2. None of the steps of the
proposed method has a requirement for closed or ori-
entable objects (p. 1). The normalization and alignment
of the objects (Sec. 2.1, 2.2) offer invariance with respect
to translation, rotation and scaling (p. 2).

The depth buffer (see Sec. 2.3), at high resolutions
can offer accurate shape discrimination (p. 10) and is
insensitive to the object’s tesselation since it regularly
resamples the object (p. 4). Additionally, mesh anomalies
have minimal impact on depth buffer computation (p. 3)
while the presence of surface noise can be addressed with
the application of a simple 2D denoising filter on the
depth images (p. 5). The depth buffers can be acquired
using specialized graphics hardware resulting in efficient
feature extraction (p. 7).

The spectral transform (see Sec. 2.4) offers an in-
herently compact and multi-resolution representation (p.
6,8), while it allows the direct comparison of the coeffi-
cients of the spectral domain resulting in efficient re-
trieval (p. 9). Additionally it is invariant to reflection (p.
2) which was not addressed in the alignment step.

2.1 Normalization

Since 3D objects found in databases can have arbitrary
translation and scaling parameters, the normalization
step scales them to a common reference volume and
translates them so that their center of mass is at (0, 0, 0)
in R3.

The straightforward method to compute the center of
mass is to sum all vertices of the polygonal mesh and di-
vide the sum by their number. This computation method
violates property 4 (Sec. 1.2), since areas of the object
with more detailed tessellation will have a higher con-
tribution. This is shown in Fig. 1(a) where the bottle’s
center of mass is not computed correctly.

To tackle this problem we employ a weighted ap-
proach. Instead of summing the vertices, we sum the
barycenter of each triangle multiplied by the area of the
triangle:

S =
∑

f

Af

AT

V a
f + V b

f + V c
f

3

where Af and V a
f , V b

f , V c
f are the area and vertices of tri-

angle f respectively while AT is the total area of the ob-
ject. With this approach, all areas of the object will con-
tribute to the center of mass independently of their tes-
sellation, since higher tessellation means more triangles
but less weight per triangle and vice versa. This is shown
in Fig. 1(b). Note that differences in tessellation may
still introduce discrepancies in the center of mass compu-
tation. However, our method overcomes these problems
since the absolute position of the center of mass does not
affect the difference nor the sum of the depth buffers (see
Sec. 2.3).

After the center of mass is translated to the origin,
we need to uniformly scale the object so that it fits in a
given space, such as the unit cube. This can be accom-
plished by finding the vertex with the maximum distance
from the center of mass, and dividing the coordinates of
all vertices by this distance. This method, however, is
very sensitive to the presence of outliers, thus violating
property 5 (Sec. 1.2).

Instead of setting the maximum distance of any ver-
tex equal to 1 we set the mean distance equal to 1. Again
we use a weighted approach to compute the mean dis-
tance (m):

m =
∑

f

Af

AT

∣∣∣∣∣V a
f + V b

f + V c
f

3

∣∣∣∣∣
and then divide all vertices with this value. Note that
this approach does not guarantee that the maximum dis-
tance is within a certain volume. The majority of the
vertices of any object will fit within a cube of a certain
size; we empirically set the edge of the cube equal to 5,
and disregard any vertex that lies outside this limit. The
size of the cube’s edge must be the same for all objects.
The selection of the size of the cube involves a trade-off:
larger cubes increase the percentage of vertices that lie
inside them, but decrease the actual volume that the ob-
ject occupies within the cube, making the method less
descriptive.

2.2 Alignment

All shape descriptors that do not have an inherent rota-
tion invariant representation (such as the one proposed
here) require an alignment step in order to position all
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Four objects from human class aligned with different
methods: (a,b,c,d) PCA; (e,f,g,h) Symmetry and PCA.

objects in a standard orientation. These descriptors, com-
pared to rotation invariant methods (e.g., spherical har-
monics [10]), have the drawback that they depend heav-
ily on the alignment step. Should this step fail to per-
form as expected on a specific object, it is likely that this
object will not be classified correctly. This drawback is
counterbalanced by the higher descriptiveness offered by
such shape descriptors (e.g., depth buffer-based descrip-
tor) [22].

The most commonly used technique for alignment is
Principal Component Analysis (PCA) [18]. Each object
is analyzed in three principal axes (or eigenvectors), and
according to their eigenvalues these vectors are mapped
to the X,Y,Z axes. As in the normalization step, we use
the barycenters of the triangles, multiplied by their cor-
responding area, instead of the vertices themselves in or-
der to be independent of the object’s tessellation. Note
that only the computation of the covariance matrix is
changed, the rest of the method remains unaffected.

PCA is generally considered to work well for a vari-
ety of classes. There are cases, however, where it fails,
and this failure cannot be compensated for in later steps
of the method. The problem is caused when two ob-
jects that belong on the same class, have different princi-
pal axes with respect to their distinctive shape features.
There are a number of reasons behind this, such as defor-
mations, different aspect ratio of object parts, movement
of limbs, etc. In Fig. 2(a, b, c, d) this is shown for ob-
jects belonging to the human class. The most important
eigenvector in all four cases is the one from head to toes,
but the second and third most important eigenvectors
are switched in cases (c,d) compared to (a,b).

To overcome some of the limitations of PCA we pro-
pose a method of alignment which incorporates symme-
try. This novel method is based on the fact that most real
life objects are symmetrical with respect to a plane. Ad-
ditionally, this plane of symmetry is expected to be sim-
ilar for objects belonging to the same class, and it gen-
erally remains unaffected by small scale deformations.

Even if these deformations introduce a certain amount of
asymmetry, usually it is not sufficient to change the ori-
entation of the plane radically, allowing the application
of this approach in databases containing both symmetric
and asymmetric objects (such as the ones utilized in this
paper). In cases of object classes that have more than one
plane of symmetry we select the plane with the maximum
symmetry, in some framework of measurement.

A single plane is not enough to solve the alignment
problem as we need three orthocanonical vectors to com-
pletely define an orientation. The perpendicular vector
to the plane of symmetry is used as the first one and for
the remaining two we use the eigenvectors acquired by
projecting all vertices onto the plane of symmetry and
performing a 2D PCA. Note that this approach does not
determine whether the perpendicular vector should be
mapped to +X or -X axis (the same for the two eigen-
vectors and +Y,-Y,+Z,-Z axes). However, the spectral
transform that we employ in Sec. 2.4 is invariant to these
issues. In Fig. 2(e, f, g, h) the misalignment caused by
the PCA-only approach is corrected by our novel sym-
metry approach, since the human’s plane of symmetry is
hardly affected by the movement of limbs. Our approach
performed well even in the fourth case, where the model
is asymmetric.

2.2.1 Determining Symmetry Planes

Given a plane in R3 we measure the object’s symmetry
along this plane by computing the difference between the
front and back depth buffers that were acquired using a
projection parallel to this plane. For example, in Fig. 3,
the symmetry along X direction is defined as the differ-
ence between the x1 and x2 depth buffers. Our goal is to
find the plane that minimizes this difference.

To this end, we employ a general optimization tech-
nique known as Enhanced Simulated Annealing (ESA)
[17]. ESA has the advantage that it globally minimizes
functions that have an arbitrary number of continuous
variables, without requiring knowledge of the function’s
derivatives. Its non-deterministic nature does not guar-
antee optimal results, but in general, ESA is unlikely
to be trapped in local minima. To completely eliminate
the local minima problem, the process can be repeated a
few times, each time starting with different initial condi-
tions and keeping only the best solution. The time ESA
needs to converge varies, since it depends on the object’s
resolution. On average, symmetry computation takes ap-
proximately 1 sec for each object of the databases.

In our case, the objective function computes the dif-
ference between two depth buffers and uses four variables
in order to describe arbitrary orientations with quater-
nions [1]. A quaternion is defined as q = (s,−→v ), where s
is a scalar, and −→v is a vector (−→v = (x, y, z)). A rotation
about a unit vector −→n by an angle θ can be computed
using the quaternion q = (cos θ

2 , sin θ
2
−→n ). Quaternions

were preferred over Euler angles because they do not
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Fig. 3 3D object with its depth buffers along X,Y,Z direc-
tions.

suffer from problems like gimbal lock (where the rota-
tion around one axis is cancelled by the rotation around
the remaining two). In our previous work [14], the combi-
nation of ESA with depth buffers was also employed suc-
cessfully in matching complementary 3D rigid objects.

2.3 Depth Buffer Acquisition

After the object is normalized and aligned, we acquire
the depth buffers. The depth buffer is a regular grid of
scalar values that holds the distance between the near
clipping plane and the object’s surface. It is acquired
by rendering the object using an orthographic projec-
tion which uses as clipping planes the faces of the cube
described in Sec. 2.1. As shown in [15], in order to de-
scribe most objects accurately we need front and back
depth buffers from three orthocanonical directions (Fig.
3). Note that we already used depth buffers for determin-
ing the symmetry plane, but these depth buffers were of
extremely low resolution, and therefore useless as shape
descriptors.

Previous depth buffer-based approaches directly use
these depth buffers [22,20]. We propose the following
novel modification: instead of storing the front and back
depth buffers along each direction, we store their differ-
ence and their sum. For example, for the X direction,
we store Dx

dif = Dx
f − Dx

b and Dx
sum = Dx

f + Dx
b . The

two new depth buffers (Dx
dif , Dx

sum) require the same
storage space as the original two (Dx

f , Dx
b ) and there is

no information gain or loss since we can produce the one
pair from the other. The difference lies in the fact that
the Ddif holds the thickness of the object at each pixel,
not the distance of the object’s surface from the near
clipping plane. This value is insensitive to errors in the
translation of the object along the direction of projec-
tion, making it more suitable for comparison purposes.
In contrast, Dsum has no such property and no physical
meaning, it is used only as a complement to Ddif and
therefore is considered less important and it is assigned
lower weights as shown in Sec. 2.5.

(a) (b) (c)

Fig. 4 (a) Object from car class; (b) Depth buffer along Y
direction after alignment; (c) FFT of the depth buffer.

2.4 Spectral Transform

For a given object, the depth buffers acquired in the pre-
vious step are highly descriptive but not suitable for di-
rect comparison with the buffers from another object.
The spectral domain is more suitable and robust for
such purposes; we therefore apply a spectral transform
on these buffers. The discrete 2D fourier transform (Fd)
of the depth buffer D of size S is given by:

Fd(m,n) =
S−1∑
x=0

S−1∑
y=0

D(x, y)e−j2π mx+ny
S

In practice we use the FFT algorithm (denoted with
Ff )instead of DFT due to its lower computational cost.
The only restriction that it imposes is that the buffers
must have power-of-two dimensions.

As shown in Fig. 4(c) most information is concen-
trated on the four corners of the image. For a SxS depth
buffer we keep KxK coefficients as follows:

F (m,n) = |Ff (m,n)|+ |Ff (m,S − n− 1)|+
|Ff (S −m− 1, n)|+
|Ff (S −m− 1, S − n− 1)|

for m,n = 0..K − 1. We sum the norm of the coeffi-
cients (since FFT produces complex numbers) from all
four corners in order to have a reflection invariant rep-
resentation.

Additionally, we apply individual weights on the FFT
coefficients depending on their position in the buffer:

Fw(m,n) =
2K − i− j

2K
F (m,n)

where Fw is the weighted version of F , both of dimension
KxK. This innovation is based on the idea that lower fre-
quency coefficients hold more important information and
should be assigned a higher weight. In contrast, higher
frequency coefficients are suppressed since they are more
sensitive to noise.

2.5 Weighting Scheme

The feature vector is the concatenation of the coefficients
from the spectral transforms of the six buffers. For each
direction (X,Y,Z) we produce spectral coefficients from
the sum and difference of the depth buffers. On previous
depth buffer-based descriptors the coefficients from each
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direction were treated equally, based on the assumption
that they encode the same amount of information on
average.

We propose a novel weighting scheme that is contrary
to this assumption: each direction is given an eigenvalue-
related weight, which is applied to all of its coefficients.
The idea is that if a direction encodes more informa-
tion, then it should be assigned a higher weight. For an
object aligned using PCA, there are three eigenvectors
E1, E2, E3 with increasing eigenvalues. The X direction
is coaxial with E1, meaning that E2 and E3 are ”visible”
in the depth buffer, encoding the maximum amount of in-
formation. The Y direction is coaxial with E2 and Z with
E3. The final weights were empirically set to (3, 2, 1) for
the X,Y and Z directions. If our symmetry modification
is used instead of the standard PCA, the second weight
is assigned to the vector perpendicular to the plane of
symmetry, while the remaining two weights are assigned
to the two eigenvectors obtained from the 2D PCA. This
redistribution of weights was selected empirically, based
on how much information we expect to be encoded along
the direction perpendicular to the plane of symmetry.

The coefficients produced from the buffer that holds
the depth difference are more important than the ones
produced from the buffer that holds the depth sum (see
Sec. 2.3). We therefore decrease the weights of the buffers
that hold the sums (relative to the buffers that hold the
differences) by approximately 70%.

3 Results

We first analyze the proposed method’s behavior for dif-
ferent settings and subsequently evaluate it by compar-
ing it with other state-of-the-art methods. Additionally,
we show the performance gain for each of the innova-
tions introduced in Sec. 2. The results are compared in
precision-recall curves. For each shape descriptor three
numbers are provided, in addition to its curve. The first
is the average precision for recall 5% to 50%, the sec-
ond is the average precision for recall 5% to 100% and
the third is the percentage of correctly classified near-
est neighbors. The third number represents the percent-
age of the queries where the best match that is reported
belongs in the same class with the query object. In all
figures, for our method, we use a depth buffer resolu-
tion of 128× 128, K = 48, a L1 distance metric, and all
modifications enabled, unless stated otherwise.

3.1 Databases

We utilized two publicly available and well known data-
bases in order to evaluate our method by comparing it
againt other state-of-the-art shape descriptors on the
same databases. The first database is provided by the
Princeton Shape Benchmark [16], includes a total of 1814

(a) (b) (c)

(d) (e) (f)

Fig. 5 Two object classes from the KN database: (a,b,c)
examples from the car class; (d,e,f) examples from the bottle
class.

Fig. 6 Variable depth buffer resolutions. Performance re-
ported on KN database.

objects, and it is divided into two subsets of 907 objects
each (test and training), which will be referred to as PR1
and PR2 respectively. The second database is provided
by Vranic’s 3D Search Engine [21], includes 1841 ob-
jects, and will be referred to as KN. The objects in these
databases are given in a 3D polygonal representation,
have arbitrary orientation and scaling, and they are not
necessarily closed. Along with each database, a classifi-
cation is provided, which groups objects that belong to
the same class. Examples of these classes are given in
Fig. 5.

3.2 Efficiency and Robustness Evaluation

In this section the behavior of our method is analyzed for
different settings. The effect of depth buffer resolutions
is depicted in Fig. 6, which shows the precision-recall
curves for resolutions from 64× 64 to 512× 512. Perfor-
mance is not significantly affected by depth buffer resolu-
tion, proving the robustness of our method with respect
to this parameter. Additionally, for resolutions higher
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Fig. 7 Different K parameter settings (see Sec. 2.4). Perfor-
mance reported on KN database.

Fig. 8 Effect of proposed innovations over original depth
buffer shape descriptor performance on the KN database.
From bottom up, each modification is added, increasing the
cumulative performance.

than 128× 128 there is no performance gain, while there
is an increased computational cost. Fig. 7 depicts the per-
formance of our method with respect to the K parameter
(see Sec. 2.4). Again, the results consistency show that
we can increase the efficiency of our method (in terms
of storage space and retrieval time) without a significant
performance penalty. For example, a K value equal to 16
produces a feature vector of size 16 · 16 · 6 = 1536. This
is only 11% of the size of the feature vector for which we
get the peak performance (48 · 48 · 6 = 13824). Note that
for extremely low K values (lower than 10) our perfor-
mance starts to deteriorate as the descriptive power is
significantly reduced.

Fig. 8 shows the effect of the innovations proposed
in this paper individually, in terms of performance gain.
Using our implementation of the original depth buffer-
based shape descriptor [22] we get 62.3% correctly clas-
sified nearest neighbors (Fig. 8, No mod). By using the
sum and difference of the depth buffers instead of the
buffers themselves, as described in Sec. 2.3, this num-
ber is increased to 65.3% (Fig. 8, Z Diff). A further in-
crease to 67.2% results from using the weights described
in Sec. 2.4 (Fig. 8, FFT Weights). If the weighting

Fig. 9 Our method versus state-of-the-art using the KN
database.

Fig. 10 Our method versus state-of-the-art using the PR1
database.

Fig. 11 Our method versus state-of-the-art using the PR2
database.

scheme of Sec. 2.5 is also used, we get 68.9% (Fig. 8,
Axis Weights), and by introducing the final modifi-
cation (symmetry-based alignment, Sec. 2.2), the peak
performance of 69.7% is achieved (Fig. 8, Symmetry).

3.3 Performance Evaluation

In this section, we compare our method against state-
of-the-art shape descriptors. In Figs. 9, 10 and 11, DBD
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refers to the original depth buffer based descriptor, SIL
refers to a silhouette-based descriptor, RSH refers to a
ray-based feature vector and HYBRID DSR refers to a
hybrid descriptor that combines coefficients from the pre-
vious three. These descriptors were computed using the
publicly available software found in [21] and they are de-
scribed in detail in [22]. In addition, in Figs. 10 and 11 we
also report the performance of the spherical harmonics
method (SHAR) presented by Kazhdan et al. [9]. Our
method is referred to as PTK. We also combined our
method with the hybrid descriptor by replacing the co-
efficients from the original depth buffer-based descriptor
with the coefficients from our method. This is referred
to as HYBRID PTK and shows the overall performance
benefit that can be achieved by the hybrid descriptor if
the previous method is replaced with the one proposed
here.

Figs. 9, 10 and 11 report the performance on KN,
PR1 and PR2 databases respectively. All descriptors per-
form similarly across all three databases, indicating that
the databases are of similar difficulty. In all three cases
our method (PTK ) clearly outperforms the original depth
buffer-based descriptor (DBD). The average percentage
of correctly classified nearest neighbors is 69.1% for our
method against 61.5% for DBD. In fact, our method’s
performance alone is close to the previously proposed
hybrid method in all cases (69.1% against 69.2% on av-
erage). Additionally, with the exception of PR2, the new
hybrid descriptor (HYBRID PTK ) outperforms the orig-
inal one (HYBRID DSR), with the average percentage
of correctly classified nearest neighbors percentage equal
to 71.5% against 69.2%.

Note that the new hybrid descriptor has not bene-
fited greatly from the proposed method (based on the
performance gap between the old and new depth buffer
descriptors). The reason behind this is that the origi-
nal hybrid descriptor was optimized (weights, number
of coefficients) for the DBD descriptor. We did not op-
timize the hybrid descriptor for our method; we simply
replaced the DBD coefficients with the PTK coefficients,
as the main objective of this paper is to compare the
proposed method against the previously proposed depth
buffer descriptor and other basic state-of-the-art descrip-
tors, rather than to propose a novel hybrid descriptor.

To measure computational time, we used the KN
database (containing 1841 objects) and compared our
method against the original depth buffer based approach
proposed by Vranic. In order to process the whole data-
base, our method without the symmetry-based align-
ment needed 2 minutes, with the symmetry-based align-
ment it needed 39 minutes, while the original depth buffer
approach needed 11 minutes (results were measured on
a 3Ghz Pentium IV with 1GB of RAM). The symmetry-
based alignment adds a significant computational cost
but needs to be performed only once for each new ob-
ject that is inserted into the database. Therefore, it does
not hinder performance during the retrieval phase. More-

over, our method without the symmetry step was able
to outperform the original depth buffer-based approach
by a large margin.

4 Conclusion/Future Work

A novel depth buffer-based shape descriptor was pre-
sented. The proposed method takes advantage of the ob-
ject’s symmetry to perform better alignment, combines
the depth buffers from each direction in a novel way (by
computing their difference and sum) and incorporates a
weighting scheme for the spectral coefficients. Each one
of these modifications offers a performance gain. Their
combined use results in an improved descriptor that out-
performs current state-of-the-art non-hybrid shape de-
scriptors. When combined with other descriptors, an im-
proved hybrid descriptor can be created which outper-
forms the best published hybrid descriptor.

As explained in Sec. 3.3 the improved hybrid descrip-
tor is not optimized. Further research could result in an
optimum hybrid descriptor that combines the ideal num-
ber of coefficients from the proposed depth buffer de-
scriptor with coefficients from other descriptors, in order
to achieve the highest possible performance.

Another possible improvement to the performance of
our method may result from the use of a more accu-
rate technique for the computation of the object’s thick-
ness in each axis. In Sec. 2.3 the object’s thickness is
only approximated, since only two outer depth buffers
are used. To accurately compute the thickness we need
to employ an arbitrary number of layered depth buffers
using a technique known as depth peeling [4]. This mod-
ification however, may introduce errors when used with
non-closed objects.

5 Acknowledgments

G. Passalis would like to acknowledge financial support
from the Greek General Secretariat for Research and
Technology (GSRT) under the PENED program.

References

1. http://mathworld.wolfram.com/
2. Ankerst, M., Kastenmüller, G., Kriegel, H.P., , Seidl, T.:

3D shape histograms for similarity search and classifica-
tion in spatial databases. In: Proc. of 6th International
Symposium on Spatial Databases, pp. 207–226. Hong-
Kong, China (1999)

3. Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On visual
similarity based 3D model retrieval. Eurographics 22(3),
223–232 (2003)

4. Everitt, C.: Interactive order-independent transparency.
Tech. rep., NVIDIA Corporation (2001)

5. Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.:
Recognizing objects in range data using regional point
descriptors. In: Proc. of the European Conference on
Computer Vision (2004)



PTK: A Novel Depth Buffer-Based Shape Descriptor for Three-Dimensional Object Retrieval 9

6. Gu, X., Gortler, S., Hoppe, H.: Geometry images. In:
Proc. of SIGGRAPH, pp. 355–361. San Antonio, TX
(2002)

7. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.:
Topology matching for fully automatic similarity estima-
tion of 3D shapes. In: Proc. of SIGGRAPH, pp. 203–212.
Los Angeles, CA (2001)

8. Hlavaty, T., Skala, V.: A survey of methods for 3D model
feature extraction. Seminar on Geometry and Graphics
in Teaching Contemporary Engineer (2003)

9. Kazhdan, M.: Shape representations and algorithms for
3D model retrieval. Ph.D. thesis, Princeton University
(2004)

10. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rota-
tion invariant spherical harmonic representation of 3D
shape descriptors. In: Proc. of Eurographics Symposium
on Geometry Processing, pp. 167–175. Aachen, Germany
(2003)
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