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Intra-class retrieval of non-rigid 3D objects:
Application to Face Recognition

Georgios Passalis†‡, Ioannis A. Kakadiaris†, Member, IEEE,and Theoharis Theoharis†‡

Abstract— As the size of the available collections of 3D ob-
jects grows, database transactions become essential for their
management, with the key operation being retrieval (query).
Large collections are also pre-categorized into classes, so that
a single class contains objects of the same type (e.g., human
faces, cars, four-legged animals). It is shown that general object
retrieval methods are inadequate for intra-class retrieval tasks.
We advocate that such intra-class problems require a specialized
method that can exploit the basic class characteristics in order
to achieve higher accuracy. A novel 3D object retrieval method
is presented which uses a Parameterized Annotated Model of
the shape of the objects in a class incorporating its main
characteristics. The annotated subdivision-based model is fitted
onto objects of the class using a deformable model framework,
converted to a geometry image and transformed into the wavelet
domain. Object retrieval takes place in the wavelet domain.
The method does not require user interaction, achieves high
accuracy, it is efficient for use with large databases, and it is
suitable for non-rigid object classes. We apply our method to the
face recognition domain, one of the most challenging intra-class
retrieval tasks. We utilized the Face Recognition Grand Challenge
database, yielding an average verification rate of95.2% at 10−3

false accept rate.

Index Terms— H.3.3 Information Search and Retrieval, I.5.4d
Face and gesture recognition

I. I NTRODUCTION

T HREE dimensional (3D) object representations offer a
new level of complexity and descriptive power compared

to traditional 2D images. The introduction of cost effective
3D scanners has resulted in an explosion of the collection of
available 3D objects. Database transactions on such collec-
tions, for examplecategorization(automatically dividing the
database into meaningful categories for storage purposes) and
retrieval (given a query object, search the database for similar
objects) are thus becoming increasingly important. Retrieval
is a key operation which must be performed accurately and
efficiently for any large database to be useful. Moreover, it is
usually the case that a large collection of objects will contain
groups of similar objects, as a result of categorization. Such
intra-class1 retrieval problems more difficult, because of the
similarity between the objects within a class.

Object retrieval can be applied to a large number of impor-
tant tasks, making it one of the most widely researched topics.
From web-based search engines, to security applications such
as face recognition for access control, there is a need for
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1In this paper, intra-class refers to retrieval on a database containing objects

of the same class, while inter-class refers to retrieval on a database containing
objects of multiple classes.

efficient and robust object retrieval methods. To this end,
many approaches have been proposed with the usual trade-
off between retrieval accuracy and efficiency. These two goals
often conflict as accuracy requires an object description that
focuses on detail, while efficiency requires a more abstract
and compact representation. In this paper, we focus on intra-
class object retrieval problems, and more specifically on face
recognition. By considering the human face as a class of
objects, the task of verifying a person’s identity can be
expressed as an intra-class retrieval operation.

II. RELATED WORK

A. Object Retrieval

Three dimensional object representation techniques can be
divided into four categories according to a survey by Hlavatyet
al. [1]: a) topology-based, b) histogram-based, c) view-based,
and d) shape-based.

Topological methods include the work of Sundaret al. [2]
who proposed the use of the skeleton of an object for object
retrieval and the work of Hilagaet al. [3] who proposed the use
of medial surfaces. Topological methods are the less suitable
for intra-class object retrieval problems, since all instances of
a single class have identical topology. The same holds true
for histogram-based methods such as the ones proposed by
Osadaet al. [4] and Ankerstet al. [5]. Shape histograms
are almost identical on classes with relatively homogeneous
objects, such as human faces.

View-based methods [6], [7] extract 2D views of the objects
and use them as features for retrieval purposes. There is an
unavoidable loss of descriptive power when projecting 3D
geometry onto a 2D view. In our previous work on object
retrieval, we extended this idea to 3D views and presented a 3D
rigid object retrieval method which employs depth buffers for
representing and comparing the objects [8]. Specifically, mul-
tiple depth buffers per object (computed from different points
of view) are compared for surface and volume similarity,
inspired by our previous work on matching 3D complementary
fragments of fractured objects [9].

Frome et al. [10] introduced two shape descriptors, 3D
shape contexts and harmonic shape contexts, and used them
in recognizing objects in a noisy range image. Kazhdanet
al. [11], [12] used spherical harmonics as shape descriptors
for 3D shape retrieval. Spherical harmonics is an attractive
mathematical tool for this task due to its inherent rotationally
invariant nature. Vranic [13] proposed several shape descrip-
tors, including depth buffer-based, silhouette-based and ray-
based. Each shape descriptor produces a feature vector, and
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vectors from different objects are compared usingL1 or L2

distances to determine similarity.
Laga et al. [14] proposed the use of geometry images for

matching 3D objects. They applied the work of Hoppeet
al. [15], [16] on geometry images to transform the 3D polyg-
onal data to geometry images. They use the principal axis
of the object to make their method rotationally invariant and
evaluate it using a limited dataset (120 models). Although both
this method and the proposed method utilize geometry images,
they do not share the same goal, as the former is aimed at
inter-class retrieval and the latter at intra-class retrieval.

The majority of the work conducted in 3D object retrieval
concentrates on retrieving objects that belong to the same class
while querying a multi-class database. Our work focuses on
intra-class object retrieval, which has a different nature as a
problem. The goal is not to describe the general shape that
all objects within a class share so as to discern them from
objects of a different class, but to find subtle differences and
similarities among objects that share many common features.
Therefore, even though both problems belong to the object
retrieval domain, the methods that tackle them have different
focus.

B. Face Recognition

Face recognition is one of the most challenging intra-
class retrieval problems since human faces are non-rigid and
relatively similar to each other. Also, face recognition has to
compete with the accuracy of other biometric technologies.
Hence the primary goal of face recognition is accuracy. Effi-
ciency, which is the main goal in other retrieval applications,
is secondary in face recognition.

Initially researchers concentrated on two-dimensional face
recognition. Despite the introduction of commercial grade 2D
face recognition systems, face recognition remains unreliable.
Extensive experiments conducted using the FERET dataset
[17], [18] and during the Face Recognition Vendor Test
(FRVT) 2002 [19] study indicate that the success rate is not
sufficient for critical applications. It appears that most 2D face
recognition techniques stumble on the inherent problems of the
2D modality (e.g., pose, illumination).

Recently there has been an expansion of face recognition
research to include 3D and multi-modal approaches due to
the decrease of the cost of the acquisition hardware and
expected gains in retrieval accuracy. Three-dimensional ap-
proaches utilize laser or optical (stereo vision) scanners to
acquire the geometry of the human face, and multi-modal
approaches combine different modalities (e.g., 2D, 3D and
infrared). There is a constant research interest [20], [21], [22],
[23] in all of these modalities. Excellent overviews of the
research conducted on this field have been given by Changet
al. [24], [25], Bowyeret al. [26] and Zhaoet al. [27].

In order to stimulate the development and evaluate the
various face recognition approaches, the National Institute of
Standards and Technology (NIST) set up the Face Recognition
Grand Challenge (FRGC) in 2004 which aims to improve
performance of face recognition systems by an order of
magnitude [28]. Another FRVT [29] follows the conclusion of

(a)

(b)

Fig. 1. Precision-Recall curves for (a) multi-class test database, (b) FRGC
human face database. DSR, DBD, SIL and RSH refer to hybrid-based, depth
buffer-based, silhouette-based and ray-based feature vectors respectively,
provided by D. Vranic. FWV refers to our method.

the Grand Challenge. In our previous work on face recognition,
we made use of the extensive databases and well defined
experiments provided by FRGC to evaluate our method [30],
[31].

III. M OTIVATION

Our main assumption is that general object retrieval meth-
ods, even though they perform well in inter-class retrieval,
are inadequate for intra-class retrieval, since they lack the
necessary descriptive power. A method suitable for intra-
class retrieval should take advantage of the characteristics of
the class to achieve higher accuracy. The major difference
compared to inter-class retrieval, is that an intra-class retrieval
method needs to work only on a known class of objects,
therefore it has the advantage ofa priori knowledge about
certain characteristics. The more of these characteristics that
are exploited in the design and implementation of the method,
the more capable the method becomes with respect to this
class.

In order to validate our assumption we tested various general
shape descriptors by using the tools available in Vranic’s 3D
search engine webpage [32], a detailed description of which
can be found in [13]. We performed two retrieval experiments,
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one with their test database, a multi-class database with 1841
miscellaneous objects, and one with the FRGC v2 human face
database (a detailed description of which can be found in Sec.
V-A). These methods, designed to operate on databases that
contain objects from multiple classes, were selected as they
are typical examples of general object retrieval methods and
they are widely used as benchmarks in this domain. Moreover,
their performance is considered challenging (Fig. 1(a)) when
measured on typical databases that are used in the general
object retrieval domain. But when their intra-class performance
is measured on specialized and challenging databases their
lack of descriptive power becomes evident (Fig.1 (b)). In
Fig.1 (b) we also plot the performance of our method in
the same intra-class experiment. These results are not meant
for direct comparison; their purpose is to show that in an
intra-class retrieval problem (such as face recognition), where
general retrieval methods perform inadequately, it is possible
to achieve high performance with a specialized intra-class
method. In cases of very challenging retrieval problems it
is necessary to sacrifice generality in order to achieve high
performance.

In this paper, we generalize and extend our work on 3D
face recognition [31], [33], by incorporating features from
our previous 3D object retrieval work [8], thus making it
suitable for intra-class retrieval in arbitrary 3D object classes.
We then evaluate the accuracy and robustness of our method
by utilizing the largest and most challenging publicly available
3D human face database.

The fundamental idea behind our method is to convert raw
polygons in R3 space into a compact 2D description that
retains the geometry information, then perform the retrieval
operation inR2 space. This is advantageous becauseR2 is
simpler and several good 2D techniques exist. A 3D model
is first created that describes the selected class. Apart from
the geometry, the model also includes any additional features
that are characteristic of the class (e.g., area annotation, land-
marks). Additionally the model has a regularly sampled map-
ping fromR3 to R2 (UV parameterization) that can be used to
construct the equivalent 2D description, the geometry image
[16], [34], [35]. Subsequently, a subdivision-based model is
fitted onto all the objects of the class using a deformable model
framework. The result is converted to a geometry image and
a wavelet decomposition is applied. The wavelet coefficients
are stored for matching and retrieval purposes.

The rest of the paper is organized as follows: Section
IV describes our general method, Section V describes the
application of our method to face recognition, Section VI
discusses the advantages and limitations of our approach,
while in Section VII we summarize our work.

IV. M ETHODS

Our intra-class method combines the use of subdivision-
based deformable models with geometry images. The idea
is to reduce the dimensionality of the object representation
while retaining the descriptive power of 3D polygonal data.
The outline of our method follows:

1) Construct an annotated model. This step is performed
once only for each class of objects.

(a) (b) (c)

Fig. 2. Octahedron-based parameterization: (a) texture map in image space;
(b) texture map projected onto octahedron and (c) texture map projected onto
sphere.

2) Preprocess:For each object in the class:

• Register object with the model.
• Deform the model to fit the object using the Dy-

namic Subdivision Framework.
• Convert the deformed model to a geometry image.
• Apply wavelet analysis to the geometry image.

3) Retrieval: Perform object retrieval by comparing the
wavelet coefficients.

Note that model refers to the annotated model that is
deformed, andobject refers to the polygonal object to which
the model is fitted.

A. Annotated Models: Geometry Images and UV parameteri-
zation

In general, a UV parameterization denotes a mapping from
R3 to R2. If a polygonal object has such a parameterization
then each vertex is assigned a pair of(u, v) values. If this pa-
rameterization is injective it allows us to convert any polygonal
object to an equivalent representation called geometry image
[16], [34], [35]. A geometry image is a regularly sampled 2D
image that has three channels, each one encoding geometric
information (x,y andz components of a vertex inR3). Because
neighbor information is retained in the geometry image, each
element (geometry pixel) can form a triangle inR3 with two
of its neighboring elements, thus allowing an easy transition
back to the polygonal representation.

Praun and Hoppe [15] introduced spherical geometry im-
ages, which are suitable for genus2 zero objects only. This
topological limitation allows spherical geometry images to
have several advantages over other geometry image types,
such as continuity in image space, due to the lack of cuts.
This approach takes advantage of the fact that an octahedron
can be ”unfolded” to 2D space (Fig.2 (a,b)) and subsequently
be subscribed to a sphere (Fig.2 (c)). Using this property, an
injective mapping from a sphere inR3 to a plane inR2 is
acquired. Finally, the object is mapped onto the sphere.

In our method, the UV parameterization needs to be com-
puted only during the initial construction of the model. For
topologically open models the problem of finding an effi-
cient UV parameterization is relatively easy; texture mapping
functions such as cylindrical mapping can be employed. For

2Genus is the topologically invariant property of a surface defined as the
largest number of nonintersecting simple closed curves that can be drawn on
the surface without separating it [36].
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topologically closed, genus zero models, Praun’s octahedron-
based parameterization is utilized [15]. For closed models with
higher genus, more advanced methods need to be applied such
as the conformal parameterization proposed by Guet al. [37].

Apart from the UV parameterization that is necessary for
models of any class, there are optional attributes that can
be assigned to the model. It is very useful to annotate the
model into different areas that are associated with features of
the specific class. This annotation is inherited by the objects
through the process of fitting the model onto them, and can be
used during the analysis of the results. Additionally, important
landmarks can be assigned to model vertices, which will be
positioned on the corresponding points on the object after
fitting. The exact use of these attributes is application specific,
but as shown in Sec. V, it can improve the object retrieval
accuracy, especially when non-rigid objects are present.

Note that due to the flexible nature of subdivision surfaces
(Sec. IV-C) there are few limitations to the topology or trian-
gulation that the model must have. Almost any 3D polygonal
mesh can be used as a basis for the model, and the additional
attributes (e.g., UV parameterization and area annotation) can
be subsequently added.

B. Registration

Before a polygonal object is converted to a geometry
image through the fitting process, the object’s orientation must
be known. To this end, each object is registered with the
annotated model, which has a known orientation. The Iterative
Closest Point (ICP) algorithm [38] is the most commonly used
algorithm for registration tasks. It determines correspondences
between the vertices of the objects and minimizes the sum
of the square of their distances. We employ an improvement
suggested by Turket al. [39] to reject vertex pairs containing
points on surface boundaries. Additionally, in previous work
we developed a registration algorithm [9] that uses a global
optimization technique (Simulated Annealing - SA [40], [41])
applied to depth images. The objects are converted to depth
images through OpenGL’s z-buffers, and the discrete sum of
differences over the z-buffer’s derivatives is minimized.

Since each of these methods has its advantages and lim-
itations, we utilize both in our method. The idea is that
each algorithm will confute the shortcomings of the other.
We currently use these algorithms sequentially, with ICP first
because it is less sensitive to initial conditions, and SA second
because it offers more fine registration. Obviously, the exact
order in which these methods will be combined can vary,
depending on the application.

Both of these algorithms perform better when applied on
rigid objects. The reason is that object deformations cause
different registration with respect to the non deformed version.
To tackle this problem, we make use of the annotated model.
During the registration we utilize only the areas that we
expect to be rigid, disregarding any area that is subject to
deformations. Our experiments showed that registration is one
of the most important steps of our method and has a significant
impact on accuracy.

Finally, note that we did not include any optimizations to
lower the computational cost, except for the application of a

(a)

(b)

(c)

(d)

Fig. 3. Fitting example for two different genus zero classes (original object,
fitted model and resulting geometry image): (a,b) rabbit class, (c,d) car class.

space partitioning technique for ICP’s nearest neighbor search.
Currently, the registration process consumes one third of the
total time of the preprocessing step. Therefore, our method’s
efficiency could benefit by optimized versions of the ICP
algorithm such as the one proposed by Yanet al. [42].

C. Dynamic Subdivision Framework

In our approach, we utilize the deformable model frame-
work for data fitting purposes. There has been a constant
research interest in deformable models since their introduction
by Terzopoulos [43], [44]. The main idea behind this frame-
work is that all the physical properties of a rigid or non-rigid
object are analytically formulated and then an approximating
solution is computed. These properties include mechanical
properties (e.g., velocity, acceleration) and elastic properties of
the surface of the object (e.g., strain energy, material stiffness).
Recently Mandalet al. [45], [46] modified the deformable
framework so that it uses subdivision surfaces instead of
parametric surfaces. The analytical formulation remains the
same but the Finite Element Method (FEM) implementation is
different and it is adjusted for use with subdivision surfaces.
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We selected the subdivision implementation because of the
greater flexibility subdivision surfaces offer. Figure 3 depicts
the application of our method on four polygonal objects, from
two different classes. The model which was fitted in all cases
was a sphere with an octahedron-based parameterization (Fig.
2 (c)).

1) Loop Subdivision Scheme:A subdivision surface [47] is
a smooth explicit representation of the surface of an object.
Compared to traditional parametric surfaces such as B-spline
and Bezier, they offer more flexibility and scalability. A
subdivision surface is defined by a polygonal mesh that is
called control mesh and a set of rules that control how the
subdivision behaves. Different rules define different schemes,
with the most widespread being Doo-Sabin [48], Catmull-
Clark [49], and Loop [50] schemes. A single subdivision
step includes the splitting of each polygon to four smaller
polygons and the repositioning of its vertices. The successive
application of this subdivision step infinite times produces a
smooth surface called limit surface.

In our implementation, we use the Loop scheme [50] which
is simple, efficient, and offers significant advantages:

• it can be applied on triangular meshes with vertices of
arbitrary valence;

• it produces a limit surface withC2 smoothness; and
• the smooth patch produced for a single triangle depends

only on the vertices inside the 1-neighborhood area of
the vertices of the triangle.

2) Analytical Formulation:The deformation of a model is
governed by the degrees of freedom assigned to it. Letq
represent then degrees of freedom of our model. In the case
of subdivision surfaces this vector is the concatenation of the
vertices of the control mesh. The equation that controls the
deformations of the model is the following:

M
d2q
dt2

+ D
dq
dt

+ Kq = fq

whereM is the n × n mass matrix,D the n × n damping
matrix,K then×n stiffness matrix andfq is then×1 vector of
the external forces. The mass matrix is related to the kinetic
energy of the model and the damping matrix to the energy
dissipation.

In our implementation we usedM = Ø andD = Ø. The
stiffness matrix is the most important component as it resists
the external forces and determines elastic properties of the
model. It can be decomposed into three matricesK = Kfo +
Kso +Ksp. The matrixKfo is related to the first order strain
energy,Kso to the second order strain energy andKsp is
related to the spring forces energy:

Efo =
1
2
κfoqT Kfoq,

Eso =
1
2
κsoqT Ksoq,

Esp =
1
2
κspqT Kspq

whereκfo, κso, κsp are the individual weights.

(a)

(b)

Fig. 4. (a) Subdivision surface: control points and limit surface. Finite
elementF 0

i depends on verticesv1 . . .v12 and its associated surface patch
is F 3

i . (b) Up (U), left (L), right (R) and center (C) triangles produced by a
single subdivision step.

3) Finite Element Method Implementation:The vertices in
the control mesh of the subdivision surface determine the
degrees of freedom of the model. The triangles in the control
mesh are used as finite elements, with each triangle (denoted
by F 0

i ) controlling a triangular patch at thekth level of
subdivision (denoted byF k

i ) that is the approximation of the
limit surface in that area. Every triangle inside the patch is
used for computing the external forces and the stiffness matrix.
Since the forces are actually applied in the control mesh and
not in the limit surface, we need a way to map the forces from
the limit surface back to the control mesh.

The answer to this problem lies in the way the triangular
patch is computed by the Loop scheme. Suppose we have
a mesh with valence six vertices only. Then, using the one-
neighborhood property of the Loop scheme we need a total of
12 vertices to compute the shape ofF k

i independently of the
actual value ofk (Fig. 4(a)). We can create a vectorvi that
is the concatenation of these 12 vertices. The shape function
of F k

i is given by:

sk
i (x) = Bi(x)vi

where sk
i (x) is a 3 × 1 vector andx = (α, β, γ) are the

barycentric coordinates of the triangle in whichx lies in the
limit surface. The shape equation describes the points that lie
in the limit surface with respect to the vertices in the control
mesh. For a force computed in the limit surface we can use
Bi(x)T to map it to the control mesh.

The matrix Bi(x) is also easy to compute. In the first
subdivision level, we have four12× 12 subdivision matrices
AU ,AC ,AL,AR that each transforms the vertices invi
differently, depending on whether we want to produce the
up, center, left or right triangle (Fig. 4(b)). For subsequent
subdivision levels, we just multiply these matrices resulting in
the matrixAk

i from which we can construct the36×36 matrix

Ack
i =

 Ak
i 0 0

0 Ak
i 0

0 0 Ak
i

. Finally, we multiplyAck
i with
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the 3× 36 matrix Bc(x):

Bc(x) =

(
α β γ .. 0 0 .. .. .. 0 0 .. .. .. 0
0 .. .. .. 0 α β γ .. 0 0 .. .. .. 0
0 .. .. .. 0 0 .. .. .. 0 α β γ .. 0

)
to produceBi(x). For each triangle inF k

i we need to store the
sequence that produced it (for example up, left, left, center) in
order to computeBi(x). ObviouslyBi(x) changes depending
on which triangle ofF k

i the pointx lies.
With Bi(x) computed for each triangular patch, the com-

putation of the stiffness matrix is straightforward. It is com-
puted per each finite element and then the individual stiffness
matrices are combined to create a global stiffness matrix. The
energies corresponding to the three stiffness matrices for finite
elementF k

i are the following:

Ei,fo =
1
2
κspvT

i Kfovi,

Ei,so =
1
2
κspvT

i Ksovi,

Ei,sp =
1
2
κspvT

i Kspvi

The matricesKsp,Kfo,Kso can be derived from theBi(x)
as follows. MatrixKsp is given by:∑

Ω

(
|vk

a − vk
b | − la,b

|vk
a − vk

b |
)2(Bi(xa) −Bi(xb))

T (Bi(xa) −Bi(xb))

where the domainΩ contains every pair of verticesvk
a,vk

b
that share an edge inF k

i and la,b is their distance before any
deformation happens. MatrixKfo is given by:∑

Ω

(Bi(xa) −Bi(xb))
T (Bi(xa) −Bi(xb))

where the domainΩ is the same as inKsp andKso is given
by:∑
Ω′

(Bi(xa)− 2Bi(xb) + Bi(xc))
T (Bi(xa)− 2Bi(xb) + Bi(xc))

where domainΩ′ contains all the triplets of vertices for all
the triangles inF k

i .
4) External Forces: External forces are the deformation

driving forces. At each vertex in the limit surface the nearest
neighbor on the object is found and this creates a deformation
force, proportional to their distance. The nearest neighbor
search is a costly operation, therefore a space partitioning
technique (Octrees [51], [52]) is employed to improve per-
formance.

In the FEM implementation the external forces are handled
in a similar way with the stiffness matrix. A force applied on
a vertexvk

a of F k
i when multiplied byBi(xa)T is distributed

on the 12 vertices that control this element. These forces are
then added to the global external forces vector. This property
contributes to smoother results since even when a single force
is applied to the limit surface, more than one control vertex is
affected.

In order to improve the overall quality of fitting, we employ
several filters on the nearest point selection that occurs during
the computation of the external forces. Thus, we try to limit
the external forces between points in the model and in the
object that are likely to be erroneously corresponded.

Fig. 5. Function employed for suppressing external forces.

We first use two filters based on the surface properties of the
model and object, a normal and a curvature filter. The purpose
of the filters is to disallow the matching of two points with
different surface properties. For this purpose, the normal filter
uses the dot product of the points’ normals and compares it to
a certain threshold. The curvature filter compares the absolute
value of the difference of the points’ curvature to a certain
threshold. The exact curvature metric that will be used (e.g.,
K1, K2, Gaussian) is application specific. The final filter that is
applied suppresses any external force between corresponding
points with distance above a threshold. Normally, external
forces are linearly proportional to the distance, but above a
certain threshold we want the force to fade out, in order to
prevent excessive deformations during a single iteration. The
function used (visualized in Fig. 5), has two thresholds,T1, T2,
that are application specific:

f(d) =


d, if d ≤ T1

T1

√
d/T1, if d > T1 and d ≤ T2

T1

√
T2/T1

(d−T2+1)2 , if d > T2


D. Wavelet Analysis

To compare our geometry images more robustly we per-
formed wavelet analysis [53] using the Walsh transform. Each
channel of the geometry image (X, Y and Z) is treated as a
separate image for the wavelet analysis. The Walsh wavelet
transform for images is a decimated wavelet decomposition
using tensor products of the full Walsh wavelet packet sys-
tem. The 1D Walsh wavelet packet system is constructed by
repeated application of the Haar filter bank, a two-channel
multirate filter bank based on the Haar conjugate mirror filter.
Both channels output the result of convolving a 1D discrete
signal with a Haar filter and then downsampling by a factor
of two. The low–pass and high–pass Haar filters areg andh,
respectively:g = 1√

2
[1 1] andh = 1√

2
[1 − 1].

For images, we use tensor products of these 1D filters. This
means that the filter bank operations are applied separately to
the rows and columns of the image, resulting in a four channel
filter bank with channels LL, LH, HL, and HH (corresponding
to the filtersgt∗g, gt∗h, ht∗g andht∗h respectively). In other
words, channel LL (low–pass) captures the local averages
of the image, and channels LH, HL and HH (high–pass)
capture horizontal, vertical and diagonal edges, respectively.
We recursively apply this decomposition to each of the four
output channels to construct the full Walsh wavelet packet
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(a) (b) (c)

Fig. 6. Wavelet analysis of a facial geometry image: (a) Original image; (b)
Four level Walsh transform; (c) Mask that selects15% of wavelet bands.

tree decomposition. Conjugate mirror filter banks achieve
perfect reconstruction, so the Walsh transform preserves all
information originally present in the signal.

Due to the fact that we utilize area weighting (see Sec.IV-
E), we selected the Haar filter as we value more its excellent
localization properties rather than the better spectral character-
istics of more complex wavelet transforms. The same reason
dictated the use of the full packet decomposition over the
traditional transform (where it is recursively applied only on
the low–pass band at each level). The packet decomposition
produces bands of equal resolution, allowing a straightforward
application of the area weights. Additionally, each band has the
same number of wavelet coefficients making the normalization
of their weights unnecessary.

In order to make retrieval more efficient we keep only
a subset of the coefficients. We utilize a mask that selects
specific bands from the decomposition. The mask is the same
for all objects allowing us to compare the coefficients without
the need to reconstruct the geometry image. The criteria we
used in order to construct the mask were the following:

1) The mask should retain most of theL1 energy of the
geometry image (thus favoring the low–pass bands).

2) The mask should exclude bands that are subject to noise.
3) The mask must be symmetrical with respect to the

vertical and horizontal directions.

An example of this wavelet analysis (original image, decom-
position, selection mask) from the Face Recognition domain
is depicted in Fig. 6. Note that selecting coefficients from
a wavelet packet decomposition has been used in the past
for image retrieval purposes (more specifically, in the field of
2D Face Recognition [54]). In that case however, the nature
of the data is different and the wavelet decomposition needs
to address different problems (e.g., 2D images suffer from
illumination problems while geometry images do not). This
results in completely different coefficient selection.

E. Distance Metric

In order to perform object retrieval we need a way to com-
pare the final data produced by our method (i.e., the wavelet
coefficients). Since the wavelet coefficients are organized as
a 2D image, object retrieval becomes an image retrieval
problem, allowing us to use anL1 norm in image space. In
addition, by using the annotation of the model, we segment
the geometry image into different areas and assign to each
areaFk a different weightwk. The weights can either be set
statically from thea priori knowledge we have about this class,

(a) (b)

Fig. 7. Data from FRGC v2. (a) Range data and (b) computed 3D meshes
from a single individual acquired at different times.

or they can be computed dynamically from characteristics of
the specific object. Thus, in the X component (first geometry
channel) we compute the L1 norm of the difference:

Scorex(Fk) =
∫

Fk

|Probex(u, v)−Galleryx(u, v)|dudv

and similarly for Scorey and Scorez. This score can be
computed as a discrete sum over the stored wavelet coefficients
because of the very good localization properties of Haar
wavelets. Thus, for each areaFk we compute:

Scorex(Fk) =
∑
i,j

|Probex[i, j]−Galleryx[i, j]|

where the sum is over all coefficients[i, j] that correspond to
areaFk, and similarly for Scorey and Scorez. The total score
for Fk is given by the sum:

Score(Fk) = Scorex(Fk) + Scorey(Fk) + Scorez(Fk)

while the score for the whole geometry image is:

Score=
∑

k

wkScore(Fk)

.

V. A PPLICATION TO FACE RECOGNITION

Face recognition, as one of the more challenging object
retrieval problems, is suitable for evaluating the accuracy of
novel retrieval methods. It is an intra-class retrieval problem,
with non-rigid objects because of facial expressions. A face
recognition system must be able to match a given instance (3D
facial object) of a specific person with another instance of the
same person stored in a database along with instances from
many other people. Our general method was applied to the
face recognition problem using the databases and experiments
provided by the Face Recognition Grand Challenge (FRGC)
[28].

A. FRGC v2 database

The FRGC provides data that consist of 3D images (range
data) and high resolution controlled and uncontrolled stills.
In this paper, we use the data from FRGC database v2, a
total of 4007 range images (e.g., Fig. 7(a)), acquired between
2003 and 2004. The hardware used to acquire these range
data was a Minolta Vivid 900 range scanner, with a resolution
of 640x480. These data were obtained from 466 subjects and
contain various facial expressions (e.g., happiness, surprise).
The subjects are 57% male and 43% female, while the age
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(a) (b) (c)

Fig. 8. (a) Anthropometric landmarks used; (b) Segmentation into annotated
areas; and (c) Checkerboard texture to demonstrate parameterization.

distribution is 65% 18-22 years old, 18% 23-27 and 17% 28
or over.

The range data of the FRGC v2 database are converted
to polygonal form (Fig. 7(b)). Before this conversion takes
place, we apply a median cut filter for de-noising purposes.
Note that the resolution of the geometry images is completely
independent of the resolution of the input data, as the geometry
images are obtained by regular sampling of the deformed
model in UV space.

B. Annotated Face Model

A human face model was constructed according to the
principles described in Sec. IV-C. The Annotated Face Model
(AFM) is based on an average facial 3D mesh, constructed
using statistical data. Anthropometric landmarks are associated
with its vertices (Fig. 8 (a)) based on the seminal work of
Farkas [55]. Using information from facial physiology, we
have annotated the AFM into different areas. Fig. 8(b) depicts
our annotation with each area denoted by a different shade.
These facial areas have different properties associated with
them, for example the mouth area is expected to be non-
rigid, while the nose area is rigid in all scans of the same
human face. The relatively simple topology of the human
face allowed the use of a spherical mapping function to apply
a continuous global UV parameterization. In addition to the
necessary injective property, this mapping has the additional
property that the ratio of area in 3D space to area in UV space
is approximately the same for every part of the surface, leading
to low distortion (Fig. 8(c)).

C. Results

We have planned our results to conform to standard tests
used in face recognition, so that the performance of our
method is directly comparable.

1) Identification: In the identification scenario, we have a
3D dataset for each person in the gallery set, while in the probe
set there may be more than one instance of each person. This
guarantees that each subject in the probe set will have exactly
one match in the gallery set, resulting in 466 images in the
gallery set and 3541 in the probe set (gallery/probe ratio is
2
15 ). Note that this ad hoc division does not guarantee that the
data in the gallery set will have a neutral expression, resulting

Fig. 9. CMC curves for identification experiment using the FRGC v2
database.

TABLE I

VERIFICATION RATES FORROC I, II, AND III FRGC EXPERIMENTS.

FAR Our method Baseline

ROC I 10−3 95.8% 56.2%

ROC I 10−2 97.9% 78.4%

ROC II 10−3 95.3% 49.5%

ROC II 10−2 97.6% 75.7%

ROC III 10−3 94.7% 42.7%

ROC III 10−2 97.2% 72.5%

in the existence of facial expressions in both gallery and probe
sets, making the experiment challenging.

We evaluate the accuracy of our method using a Cumulative
Match Characteristic (CMC) curve. Making use of all our
method’s features we achieved a rank one rate of 96.5%.
In order to evaluate the importance of certain features (the
area weights and the wavelet transform), we also report the
performance without them (Fig. 9). If we disable the area
weights the rank one rate drops to 91.1%, while if we
additionally disable the wavelet transform and directly use
the geometry image the rank one rate drops to 77.1%. The
wavelet transform allows us to use only these coefficients
which describe useful geometric features.

2) Verification: The FRGC, apart from the database, pro-
vides a set of experiments along with a baseline algorithm to
allow researchers to evaluate their results. These experiments
fall under the verification scenario, where the verification rate
is measured for given false accept rates (FAR) and the re-
sults are summarized using Receiver Operating Characteristic
(ROC) curves. Although a verification scenario is not the usual
way to evaluate a general purpose object retrieval system, we
present our results in this format so that direct comparisons
with other face recognition approaches can be made.

In the FRGC, three masks are defined over the square
similarity matrix which holds the computed similarity values
between every pair of facial records. Each mask is used to
perform a different verification experiment, thus producing
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(a)

(b)

(c)

Fig. 10. Verification scenario: Our method versus the FRGC2 3D-only
baseline. (a) ROC I, (b) ROC II, (c) ROC III.

three different ROC curves, which will be referred to as ROC
I, II, and III. A mask selects a subset of the records to be
used as the gallery set and another subset to be used as the
probe set. In ROC I the utilized subset contains facial data that
were captured within a semester, in ROC II it contains data
that were captured within a year, while in ROC III the data
are between semesters. These experiments are of increasing
difficulty.

In Fig. 10 we compare the performance of our algorithm
with the FRGC v2 3D-only baseline using the three default
ROC curves, on the full database. By comparing the verifica-
tion rates (Table I) we can deduce that our method outperforms

Fig. 11. Examples of challenging data from the FRGC v2 database.

the 3D-only baseline algorithm by 46% at10−3 and by 22%
at 10−2 on average. The FRGC baseline algorithms are based
on principal component analysis (PCA) [56] optimized for
large scale problems, and the distance in the nearest neighbor
classifier is Whitened cosine. The matching algorithms for 3D
data are based on the work of Changet al. [57]. The FRGC
baseline algorithm is included not as the most competitive
approach, but as its name implies, as a baseline. Compared to
other approaches in the field, the performance of our method
is the highest reported for the FRGC v2 database (according
to the latest survey of Changet al. [25]). Finally, note that for
these results we used anL1 metric; using anL2 metric results
on an average performance drop of0.1% at 10−3.

VI. D ISCUSSION

From an accuracy point of view, we show that intra-class
retrieval problems such as face recognition require special-
ized methods and not general object retrieval methods. Our
results in face recognition demonstrate the accuracy of our
method in a very challenging database (Fig. 11). Moreover, it
becomes apparent that an inherent advantage of our method is
that we can utilize the annotation of the model to increase
performance. This is shown in the identification scenario,
where by disregarding the annotation (and the corresponding
weights) there was a significant decrease in performance (Fig.
9). Similarly, in the verification scenario, one of the reasons
that we significantly outperform the baseline algorithm (Fig.
10) is that the baseline algorithm uses information from the
entire face and does not disregard unreliable and non-rigid
facial areas.

A detailed error analysis in the face recognition experiments
revealed that the majority of the failure cases are related
to the registration step. This happens because the output of
the registration step unavoidably affects the fitting of the
model, and the final representation (geometry images) is not
rotationally invariant. In cases of intense facial expressions,
the registration quality is worse than neutral expressions, even
if both registration methods (ICP and SA) find the global
minimum for their optimization functions.

From an efficiency point of view, the proposed method
is suitable for large databases. It has a relatively heavy
preprocessing step for each new object entering the database
but has a very efficient retrieval step. In the face recognition
experiments, the average preprocessing time for a facial scan
(containing several thousand polygons) was approximately
20sec. The average retrieval rate was 10000 subjects per
second. These measurements were carried out on a typical PC
(3Ghz CPU/1GB RAM). The retrieval step is efficient because
the preprocessing step produces a compact representation for
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each object that stores the wavelet coefficients sequentially
in a binary file. The comparison is then carried out on these
coefficients directly, without the need to reverse the wavelet
transform.

The efficiency of our method can be significantly improved
by implementing a progressive approach. The wavelet packet
decomposition has a mutli-resolution nature which can be
used for this purpose. In our current approach, we utilize
coefficients only from the last level of the decomposition.
Instead, we can keep coefficients from other levels (especially
from the low-pass bands) that will describe only the object’s
main geometric characteristics. The resulting reduced set of
coefficients can be used for indexing purposes, and only ob-
jects similar enough will be compared using the full coefficient
set.

Finally, the proposed method can be applied to classes of
objects with varying resolutions. Neither its efficiency nor its
accuracy are significantly affected, since the fitting of the
model effectively re-samples the object. This is particularly
important in practical situations, such as face recognition
applications, where the data may be captured by different
equipment at various resolutions.

VII. C ONCLUSION

A method suitable for intra-class 3D object retrieval that
focuses on the detailed representation of objects with similar
shape and topology was presented. Using a model-based
approach, 3D polygonal objects are converted to geometry
images allowing one to take advantage of the efficiency of 2D
representations while retaining the descriptive power of 3D
data. Moreover it is shown that the careful annotation of rigid
and non-rigid areas of the model can contribute to increased
performance. The proposed method is evaluated through its
application in 3D face recognition. By using the FRGC v2
database, the largest and most established 3D facial dataset
currently available, useful conclusions about its performance
and limitations are drawn. Finally, the compact wavelet rep-
resentation ensures that the computational cost is minimized
during object retrieval making the proposed approach suitable
for real life applications where very large databases are used.
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[6] T. Krüger, J. Wickel, P. Alvarado, and K. Kraiss, “Feature extraction
from VRML models for view-based object recognition,” inProc. of the
4th European Workshop on Image Analysis for Multimedia Interactive
Services, 2003, London, April 9-11 2003, pp. 391–394.

[7] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung, “On visual similarity
based 3D model retrieval,”EUROGRAPHICS 2003, vol. 22, no. 3, pp.
223–232, 2003.

[8] N. Vajramushti, I. A. Kakadiaris, T. Theoharis, and G. Papaioannou,
“Efficient 3D object retrieval using depth images,” inProc. of the 6th
ACM SIGMM International Workshop on Multimedia information, New
York, USA, October 2004, pp. 189–196.

[9] G. Papaioannou, E. Karabassi, and T. Theoharis, “Reconstruction of
three-dimensional objects through matching of their parts,”IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1,
pp. 114–124, January 2002.

[10] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” inProc. of the
European Conference on Computer Vision, May 2004, pp. 224–237.

[11] M. Kazhdan, “Shape representations and algorithms for 3d model
retrieval,” Ph.D. dissertation, Princeton University, June 2004.

[12] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation invariant
spherical harmonic representation of 3D shape descriptors,” inProc. of
Eurographics Symposium on Geometry Processing, Aachen, Germany,
June 2003.

[13] D. Vranic, “3D model retrieval,” Ph.D. dissertation, Universitat Leipzig,
May 2004.

[14] H. Laga, H. Takahashi, and M. Nakajima, “Geometry image matching
for similarity estimation of 3D shapes,” inIEEE Proc. of Computer
Graphics International, Crete, Greece, June 2004, pp. 490–496.

[15] E. Praun and H. Hoppe, “Spherical parametrization and remeshing,” in
Proc. of SIGGRAPH, San Diego, CA, July 2003, pp. 340–349.

[16] X. Gu, S. Gortler, and H. Hoppe, “Geometry images,” inProc. of
SIGGRAPH, San Antonio, TX, July 2002, pp. 355–361.

[17] J. Phillips, H. Moon, S. Rizvi, and P. Rauss, “The FERET evaluation
methodology for face-recognition algorithms,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090–
1104, October 2000.

[18] P. Phillips, A. Martin, C. Wilson, and M. Przybocki, “An introduction
to evaluating biometric systems,”IEEE Computer, vol. 33, no. 2, pp.
56–63, Feb. 2000.

[19] J. Phillips, P. Grother, R. Michaels, D. Blackburn, E. Tabassi,
and J. Bone, “FRVT 2002: overview and summary,” March 2003,
www.frvt.org.

[20] K. Chang, K. Bowyer, and P. Flynn, “ARMS: Adaptive rigid milti-region
selection for handling expression variation in 3D face recognition,” in
IEEE Proc. of Workshop on Face Recognition Grand Challenge, San
Diego, CA, June 2005.

[21] V. Blanz, P. Grother, J. Phillips, and T. Vetter, “Face recognition based
on frontal views generated from non-frontal images,” inIEEE Proc. of
Computer Vision and Pattern Recognition, San Diego, CA, June 2005.

[22] X. Liu and T. Chen, “Pose-robust face recognition using geometry
assisted probabilistic modeling,” inIEEE Proc. of Computer Vision and
Pattern Recognition, San Diego, CA, June 2005.

[23] J. Heo, M. Savvides, and B. Vijayakumar, “Performance evaluation
of face recognition using visual and thermal imagery with advanced
correlation filters,” in IEEE Proc. of Computer Vision and Pattern
Recognition, San Diego, CA, June 2005, p. 9.

[24] K. I. Chang, K. W. Bowyer, and P. J. Flynn, “An evaluation of multi-
modal 2D+3D face biometrics,”IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27(4), pp. 619–624, April 2005.

[25] K. Chang, K. Bowyer, and P. Flynn, “A survey of approaches and
challenges in 3D and multi-modal 2D+3D face recognition,”Computer
Vision and Image Understanding, vol. 101, no. 1, pp. 1–15, January
2006.

[26] K. Bowyer, K. Chang, and P. Flynn, “A survey of approaches to 3D and
multi-modal 3D+2D face recognition,” inIEEE Proc. of Int’l Conf. on
Pattern Recognition, Cambridge, UK, Aug. 2004, pp. 358–361.

[27] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: A literature survey,”ACM Comput. Surv., vol. 35, no. 4, pp.
399–458, 2003.

[28] P. Phillips, P. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek, “Overview of the Face Recognition
Grand Challenge,” inIEEE Proc. of Computer Vision and Pattern
Recognition, San Diego, CA, June 2005.

[29] “Face Recognition Vendor Test 2006,” http://www.frvt.org/FRVT2006/.
[30] I. Kakadiaris, G. Passalis, T. Theoharis, G. Toderici, I. Konstantinidis,

and N. Murtuza, “Multimodal face recognition: Combination of geom-
etry with physiological information,” inIEEE Proc. of Computer Vision
and Pattern Recognition, San Diego, CA, June 20 - 26 2005, pp. 1022–
1029.



11

[31] G. Passalis, I. Kakadiaris, T. Theoharis, and N. Murtuza, “Evaluation of
UR3D: Using an annotated deformable model for 3D face recognition,”
in IEEE Proc. of Workshop on Face Recognition Grand Challenge, San
Diego, CA, June 2005.

[32] D. Vranic, “Content-based classification of 3D-models by capturing
spatial characteristics,” http://merkur01.inf.uni-konstanz.de/CCCC/.

[33] G. Passalis, “Three-dimensional face recognition,” Master’s thesis, Uni-
versity of Houston, May 2004.

[34] I. Kakadiaris, L. Shen, M. Papadakis, D. Kouri, and D. Hoffman,
“g-HDAF multiresolution deformable models for shape modeling and
reconstruction,” inBritish Machine Vision Conference, Cardiff, UK,
September 2-5 2002.

[35] I. Kakadiaris, M. Papadakis, L. Shen, D. Kouri, and D. Hoffman, “m-
HDAF multiresolution deformable models,” inProc. of the 14th Interna-
tional Conference on Digital Signal Processing, Santorini, Greece, July
1-3 2002, pp. 505–508.

[36] “Mathworld,” http://mathworld.wolfram.com/.
[37] X. Gu and S. Yau, “Global conformal surface parameterization,” inProc.

of Eurographics Symposium on Geometry Processing, June 2003, pp.
127–137.

[38] P. Besl and N. McKay, “A method for registration of 3-D shapes,”IEEE
Trans. on Pattern Analysis and Machine Intellignence, vol. 14, no. 2,
pp. 239–256, Feb. 1992.

[39] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”
in Proc. of SIGGRAPH, Orlando, FL, July 1994, pp. 311–318.

[40] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing,”Science, vol. 22, no. 4598, pp. 671–680, 1983.

[41] P. Siarry, G. Berthiau, F. Durbin, and J. Haussy, “Enhanced simulated
annealing for globally minimizing functions of many-continuous vari-
ables,”ACM Transactions on Mathematical Software, vol. 23, no. 2, pp.
209–228, 1997.

[42] P. Yan and K. Bowyer, “A fast algorithm for ICP-based 3D shape
biometrics,” in Fourth IEEE Workshop on Automatic Identification
Advanced Technologies (AutoID), October 2005.

[43] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically de-
formable models,” inProc. of SIGGRAPH, vol. 21(4), 1987, pp. 205–
214.

[44] D. Terzopoulos and K. Fleischer, “Deformable models,”The Visual
Computer, vol. 4(6), pp. 306–331, 1988.

[45] C. Mandal, H. Qin, and B. Vemuri, “Dynamic smooth subdivision
surfaces for data visualization,” inIEEE Proc. of Visualization, Phoenix,
Arizona, October 1997, pp. 371–377.

[46] C. Mandal, “A dynamic framework for subdivision surfaces,” Ph.D.
dissertation, University of Florida, 1998.

[47] D. Zorin and P. Schroeder, “Subdivision for modeling and animation,”
in SIGGRAPH Course Notes, 2000.

[48] D. Doo and M. Sabin, “Analysis of the behaviour of recursive division
surfaces near extraordinary points,”Computer Aided Design, vol. 10(6),
pp. 356–360, 1978.

[49] E. Catmull and J. Clark, “Recursive generated B-spline surfaces on
arbitrary topological meshes,”Computer Aided Design, vol. 10(6), pp.
350–355, 1978.

[50] C. Loop, “Smooth subdivision surfaces based on triangles,” Master’s
thesis, Department of Mathematics, University of Utah, 1987.

[51] A. Klinger, “Pattern and search statistics,”Optimizing Methods in
Statistics, pp. 303–337, 1971.

[52] A. Finkel and J. Bentley, “Quad trees. a data structure for retrieval of
composite keys,”Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974.

[53] E. Stollnitz, T. DeRose, and D. Salesin,Wavelets for Computer Graph-
ics: Theory and Applications. Morgan Kaufmann Publishers, Inc, 1996.

[54] R. Bhagavatula and M.Savvides, “PCA vs. automatically pruned
wavelet-packet PCA for illumination tolerant face recognition,” inFourth
IEEE Workshop on Automatic Identification Advanced Technologies
(AutoID), October 2005.

[55] L. Farkas,Anthropometry of the Head and Face. Raven Press, 1994.
[56] M. Turk and A. Pentland, “Eigenfaces for recognition,”J. of Cognitive

Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.
[57] K. Chang, K. Bowyer, and P. Flynn, “Face recognition using 2D and 3D

facial data,” inProc. of Workshop on Multimodal User Authentication,
Dec. 2003, pp. 25–32.

Georgios Passalis,PhD Candidate.
Georgios has received his Bachelor from the De-

partment of Informatics and Telecommunications of
University of Athens. Subsequently he received his
Master’s degree from the Department of Computer
Science of University of Houston. Currently his
is a PhD Candidate in University of Athens. His
thesis is focused on the scientific domains of Com-
puter Graphics and Computer Vision. His research
interests include object retrieval, face recognition,
hardware accelerated voxelization and object recon-

struction.

Ioannis A. Kakadiaris, Associate Professor.
Ioannis is the founder and director of UH’s Com-

putational Biomedicine Lab (formerly the Visual
Computing Lab) and the Director of the Division of
Bioimaging and Biocomputation at the UH Institute
for Digital Informatics and Analysis. He is the
recipient of the year 2000 NSF Early Career De-
velopment Award, UH Computer Science Research
Excellence Award, UH Enron Teaching Excellence
Award, James Muller VP Young Investigator Prize,
and the Schlumberger Technical Foundation Award.

Theoharis Theoharis,Associate Professor.
Theoharis, received his D.Phil. in computer graph-

ics and parallel processing from the University of
Oxford, U.K. in 1988. He subsequently served as
a research fellow (postdoc) at the University of
Cambridge, U.K. and as a consultant with Andersen
Consulting. He is with the University of Athens,
Greece since 1993. During the 2002/3 academic year
he was on Sabbatical leave at the Department of
Computer Science, University of Houston, Texas.
His main research interests lie in the fields of Com-

puter Graphics, Visualization, Biometrics and Archaeological Reconstruction.


