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Abstract

An efficient algorithm for the voxelization of solid objects represented by bound-
ary surfaces of arbitrary topology is presented. The algorithm is based on the use
of depth buffers, and is suitable for polygonal meshes and parametric surfaces.
The presented method unifies and extends our previous approaches under a sin-
gle general algorithm; three practical variants are then given that implement it on
different generations of graphics hardware in order to achieve high performance.
The implementations for older hardware impose certain limitations on the depth
complexity of the object.

1 Introduction

Surfaces and voxels constitute the two main classes of object representation in com-
puter graphics and visualization. Volume representations are used mainly where 3D
regularly sampled data are available (e.g., medical imaging, constructive solid geom-
etry, seismic data). Additionally, they can be used as an alternative representation for
geometric objects that are defined using any surface representation (e.g., polygonal,
parametric). This requires a process that will allow us to convert surface data to voxels.
The process ofvoxelizationproduces a set of values on a regular three dimensional
grid and allows methods that work with regularly sampled data to be applied to objects
defined using surface representations. Therefore voxelization allows us to model and
manipulate geometric objects in a way that in certain tasks (e.g, boolean operations) is
more efficient than with their original surface representation.

The goal of the voxelization process is to produce a volumetric grid that approxi-
mates as closely as possible the original object. Depending on whether the voxels store
values of 0 and 1 only or real values in[0,1], voxelization algorithms are divided into
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Figure 1: (a) 2D Case: An object defined by two curves. (b) Multiple direction z-buffer
configurations.

binary and non-binary. An important issue in voxel models is adjacency; depending
on the type of neighbours that a voxel is allowed to have (by face, edge or vertex) we
can have 6-, 18- or 26-adjacent voxel models. Since voxelization is an integral part of
voxel graphics [8], a number of voxelization approaches have been proposed. These
approaches [4, 3, 2, 13], allow any geometric object to be voxelized with varying prop-
erties (e.g., binary/non-binary, variable surface thickness), but do not exploit graphics
hardware to achieve efficiency.

In recent years the development of widely available graphics hardware has far out-
stripped that of general purpose microprocessors. Although graphics hardware is de-
signed for surface rendering, it is often possible to utilize it in different tasks. In this
paper we show that the process of voxelization is one such task and by combining and
extending our previous work we present a general binary voxelization algorithm that
exploits widely available graphics hardware.

Our algorithm is based on combining the depth buffers (or z-buffers) of an object.
The z-buffer has been shown to have applicability in a wide range of tasks [14]. In
contrast to slicing methods ([6, 1]) the number of the required z-buffers is not correlated
with the voxel resolution. We subsequently present three different implementations
of the general algorithm that target different generations of graphics hardware. The
descriptive power of the implementations scale with the capabilities of the hardware;
the last implementation can handle any object of arbitrary complexity.

2 General Voxelization Method

A 3D point v is outside a closed surface object, if any ray fromv to infinity intersects
the object an even number of times. If we render an object using an orthographic
projection, we can define rays parallel to the direction of projection starting at each
image pixel. We can use the z-buffer as a 2D array that stores the values of the nearest
object intersection per pixel (i.e. per ray). If, for a certain direction of projection, we
have enough z-buffers to store all surfaces of the object (i.e. a number equal to the
object’s depth complexity) then we can use the above test to determine which voxels
are inside the surface object and which are not.
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Z-buffers are actually computed in pairs (by reversing the front-back face defini-
tion). One element of the pair describes the ’front’ of the object while the other de-
scribes the ’back’. This is demonstrated in Fig. 1 (a) for a simple 2D case. Notice that
for column 3 the front z-buffer has value 2 and the back z-buffer has value 5. Hence,
in column 3, only the voxels of rows 2, 3, 4 and 5 belong to the object. Objects with
higher depth complexity require more pairs of z-buffers in order to be voxelized cor-
rectly. These can be acquired using an iterative process: We first obtain the front and
back buffers with the minimum depth, and then we repeat this process by rendering
only triangles that have greater depth than the z-buffers of the previous step. Thus we
get depth-sorted z-buffer pairs, with each pair describing a different layer of the object.
The number of iterations is determined by the depth complexity of the object, which is
the maximum number of ray-object intersections that can occur along this direction.

To avoid precision problems caused by triangles parallel to the direction of projec-
tion, we repeat the iterative process from different orientations. Typically we select
three orthocanonical directions but in some implementations a greater number can be
utilized (Fig. 1 (b)). For each direction, the voxel needs to be insideat least onez-
buffer pair. In order to check if the voxel’s center is inside or outside a z-buffer pair
(Zd

1 , Zd
2) taken from an arbitrary directiond, we need to project the point ontto the

image space of the z-buffers. This is achieved using the same modelview (Md), pro-
jection (Pd) and viewport (Vd) matrices that were used for the creation of the z-buffer
pair. Thex andy components of the projected point are used asu andv in image space,
while thez component is compared with the values stored in the z-buffers, after it’s
normalized inside[0,1]. The pseudocode for this is the following (ND is the number
of directions,ZP is the number of z-buffer pairs per direction):

1. For each directiond = 1..ND compute all z-buffer pairs{Zd
1 ...Zd

2ZP}
(the pairs are depth-sorted)

2. For each voxelV(i, j,k) (with center atc(i, j,k)) do

• SetDirectionCheck1..ND = f alse

• For each directiond = 1..ND do

– Project voxel center:v′ = Vd ·Pd ·Md ·c(i, j,k)

– For each z-buffer pairn = 1..ZP do

∗ If (v′z ≥ Zd
2n(v

′
x,v

′
y) and v′z ≤ Zd

2n−1(v
′
x,v

′
y)) set

DirectionCheckd = true

• If all ND checks are true setV(i, j,k) = 1 else setV(i, j,k) = 0

The inherent advantage of this method is that the number of iterations is correlated
with the depth complexity of the object and not with the voxel resolution as in slic-
ing methods, resulting in higher efficiency. It can handle objects of arbitrary depth
complexity with the only limitation that these objects have a strictly closed surface.
Moreover, it allows a scalable hardware implementation as described in the following
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Figure 2: (a) ’Monster’ object with six corresponding z-buffes. (b) The letter ’G’ with
four 1D z-buffers (X1,X2,Y1,Y2). (c) Erroneous voxelization of ’G’ (marked with red).

section. By changing theif statement in the inner loop, the algorithm can produce a
26-adjacent description of the object’s surface.

3 GPU implementations of the voxelization method

The hardware accelerated implementations use the OpenGL API [15]. OpenGL can
render polygonal meshes and analytical surfaces (like NURBS) and since analytical
surfaces are converted internally to a triangular mesh, they also produce a z-buffer,
making the voxelization algorithm invariant to the initial representation of the object.

3.1 Implementation using six single layer z-buffers

The algorithm presented by Karabassi et al [7] is the simplest instantatiation of the
general algorithm; it only requires hardware capable of computing the z-buffer (e.g.,
Nvidia TNT series). In total, six z-buffers are rendered for each object, two per axis,
as shown in Fig. 2 (a). The camera is placed on each of the six faces of a concep-
tual bounding box of the object and the z-buffers are computed using orthographic
projection. The simplified pseudocode for this implementation is derived from the
generalized pseudocode if we setND = 3 andZP= 1:

1. Compute the 6 z-buffers (Zx
1,Z

x
2,Z

y
1,Z

y
2,Z

z
1,Z

z
2)

2. For each voxelV(i, j,k) do

• Check if (i ≥ Zx
1(k, j) andi ≤ Zx

2(k, j))

• Check if (j ≥ Zy
1(i,k) and j ≤ Zy

2(i,k))

• Check if (k≥ Zz
1(i, j) andk≤ Zz

2(i, j))

• If all checks are true setV(i, j,k) = 1 else setV(i, j,k) = 0
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Figure 3: (a) Object with stencil and depth buffers in the Y direction. (b) Object
voxelization with undetermined areas marked in red.

Karabassi’s algorithm can handle both convex and a limited set of concave objects.
The limitation arises from the fact that certain surface details (like concavities) may
not be visible from any of the six directions; it is not possible to voxelize such parts
of the object correctly. As seen in the simple 2D case of Fig. 2 (b) and (c) the letter
’G’ was wrongly voxelized because the concavities was not visible from any direction.
Furthermore there is no way to tell whether a object has been correctly voxelized.

Even though this implementation suffers from the aforementioned limitation, it is
more descriptive than similar methods such as the one proposed by Prakash et al [12].
Prakash uses a pair of z-buffers in order to voxelize aconvexobject, but the object must
represent unstructured grid cells for the voxelization to work properly.

3.2 Implementation using multiple double layer buffers

We recently presented an algorithm [11] that takes advantage of additional GPU capa-
bilities, like the stencil buffer, to alleviate the problems associated with the previous
implementation while maintaining wide applicability. We utilize the multiple buffer
configuration described in section 2. Since we need only one direction with clear line
of sight to determine if a voxel is inside the object, the set of concave objects that can
be handled increases with the number of buffers. There is a trade-off between accuracy
and performance since the number of z-buffers increases the computational cost.

Additionally, we use double layer buffering which can be implemented in graphics
hardware by exploiting the method used for culling back faces. By defining either the
clockwise or counter-clockwise triangles as front facing, it is possible to acquire a total
of four z-buffers from each direction instead of two. This is equivalent to two iterations
of the general algorithm and is shown in Fig. 3 (a) where the inner sphere boundary is
visible in the back facing z-buffersZ3 andZ4.

Double layer buffering requires a way of determining the number of actual surface
intersections per ray/voxel; if it is 2 we use just the outer z-buffers, if it is 4 we use
the double layer. We use the stencil buffer to count the number of times the z-buffer is
assigned a new value at each pixel. Note that for closed objects, stencil values should
be even. The stencil buffer has an additional use: it marks voxels as unclassifiable if
they have stencil values greater than 4 in all directions. This is depicted in Fig. 3 (b)
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where the object was voxelized using six double layered z-buffers.

3.3 Implementation using programable GPUs

Modern GPUs (e.g., Nvidia GeForce 6 series) are fully programmable on a per frag-
ment or per vertex basis. We can utilize this flexible feature (using the CG language
[10]) to fully implement the method presented in Section 2. As explained there, we
simultaneously need two z-buffers, used in an iterative manner to process an arbitrary
object. Since no currently available GPU offers two z-buffers, we make use of the
exposed programmability to simulate the second z-buffer by storing the depth informa-
tion from the previous iteration on a texture. The depth texture acts as a second z-buffer
test that takes place before the actual z-buffer test. If the current depth is lower (that
is, we are rendering a point that is closer than the value stored in the texture), then the
associated pixel fails the depth test. The iteration of this process results in depth-sorted
z-buffer pairs. The pseudocode of the generalized algorithm changes only in step 1;
step 2 remains unmodified. Step 1 is implemented as follows (withND = 3):

For each directiond = 1..ND do

• Compute maximum stencil value and setZP= maxstencil
2

• ComputeZd
1 andZd

2 with default OpenGL rendering

• Set theFrontTex= Zd
2 andBackTex= Zd

1

• For eachn = 2..ZP do

1. Enable fragment program and pass as parameters the textures
FrontTex, BackTex

2. Render the front-facing faces and store the z-buffer inZd
2n

3. Render the back-facing faces and store the z-buffer inZd
2n−1

4. Set FrontTex = max(Zd
2n,FrontTex) and BackTex =

max(Zd
2n−1,BackTex)

Note that for accuracy reasons it is preferable to use floating point textures to store
the z-buffers from previous iterations. In recent GPU’s, 32bit float textures can be
used to store the depth component which minimizes precision related artifacts. Fan, Li
et al [9] presented a GPU-based voxelization algorithm that utilizes the depth peeling
technique (originally proposed by Everitt [5] for order-independent rendering of trans-
parent objects). Compared to our implementation it shares the same principles but the
advanced GPU capabilities are utilized in a different manner.

4 Results

We performed extensive tests for all three implementations of our method using a va-
riety of objects. Note that the stencil buffer can be used before the actual voxelization
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Figure 4: Voxelization of two homocentric hollow spheres: (a) Original object (b) First
implementation (certain areas were voxelized erroneously); (c) Second implementation
(using the stencil we mark possible areas of error in red); (d) Third implementation.

to determine which implementation should be used. In Fig. 4 we show a synthetic
object that demonstrates the limitations of the first two implementations. Fig. 5 shows
the effect of the choice of voxel resolution. Our algorithm works with any resolution
so long as it is bellow the maximum screen resolution supported by the GPU. Modern
GPUs support up to 2048x2048, allowing for very detailed voxelizations. Generally,
the optimum resolution is determined by the nature of the application.

Fig. 6 examines the correlation between computational time and voxel resolution.
We used two objects with complexity 70K and 15K triangles and tested the three imple-
mentations with voxel resolutions ranging from 64x64x64 to 512x512x512. It can be
seen that performance is largely independent of object complexity, an inherited char-
acteristic of the z-buffer. With respect to voxel resolutionn, the method’s first part
(z-buffer acquisition) hasO(n2) complexity, while the second part (voxel grid compu-
tation) hasO(n3).

Note that of these two parts, only the first can be performed on the GPU. A perfor-
mance comparison for this part between GPU and CPU is depicted in Fig. 7 (a). The
GPU is an order of magnitude faster than the CPU for the same task, even though the
GPU times include the transfer of the z-buffers to main memory. To perform an ”end-
to-end” comparison between the GPU and CPU, the cost of the second part (computed
using the CPU) was added, and the total times are reported in Fig. 7 (b). Again, the
use of the GPU offers a significant performance improvement. All experiments were
performed on a 3Ghz Pentium 4 with 1GB RAM and a GeForce 6600GT.

A limitation of the presented method is that the surface of the object must be strictly
closed with no irregular faces (e.g., crossing, duplicate). Synthetic objects usually
don’t suffer from such problems but not all real life objects are ideally triangulated.
An indication that such problems exist is the appearance of odd values in the stencil
buffer. We also noticed that in objects with large numbers of triangles perpendicular to
the z-buffers’ plane certain artifacts may appear, especially at lower voxel resolutions.
This is attributed to the non-linear accuracy of the z-buffer’s internal format.
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Figure 5: Object ’bunny’ voxelized in different resolutions.

(a) (b)

Figure 6: Performance for different voxel resolutions (red for the first implementa-
tion, green for the second, blue for the third) using different objects (a) ’Bunny’ (70k
triangles); (b) Double hollow sphere (15K triangles).

(a) (b)

Figure 7: Performance using the first implementation and the Bunny object: (a) First
part (z-buffer acquisition): GPU vs CPU; (b) First plus second part (voxel grid compu-
tation): Combined GPU/CPU vs CPU only.
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