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Abstract

We present a 3D shape retrieval methodology based on the theory of spherical harmonics. Using properties of spherical harmonics, scaling
and axial flipping invariance is achieved. Rotation normalization is performed by employing the continuous principal component analysis along
with a novel approach which applies PCA on the face normals of the model. The 3D model is decomposed into a set of spherical functions
which represents not only the intersections of the corresponding surface with rays emanating from the origin but also points in the direction
of each ray which are closer to the origin than the furthest intersection point. The superior performance of the proposed methodology is
demonstrated through a comparison against state-of-the-art approaches on standard databases.
�
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1. Introduction

3D models have become an important part in modern com-
puter graphics applications, such as computer-aided design,
game development and film production while in several scien-
tific domains, such as molecular biology, medicine, computa-
tional geometry and computer vision, a large part of scientific
data is 3D data. The rapid evolution in graphics hardware and
software development which has greatly facilitated 3D model
acquisition, creation and manipulation, has given the opportu-
nity to experience applications using 3D models not only to
specialized users of the scientific community and the indus-
trial domain, but also to common users. As the number of
3D models is continuously growing and thousands of models
are already available from public and proprietary databases,
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the problem in creating new 3D models may shift to the problem
of searching for existing 3D models. Instead of creating 3D
models from scratch, a more convenient and profitable approach
is the use of existing 3D models. Thereupon, the development
of efficient search mechanisms is needed for the retrieval of 3D
models from large repositories.

3D model search and retrieval could be performed by using
a textual description of the user’s target which identifies the
semantic meaning of the desired model or class of models.
In this case, the user would explicitly describe the target, but
such an approach is sensitive to the user’s subjectivity factor
which is not necessarily in agreement with the textual informa-
tion which has been annotated to the target. Furthermore, this
method is problematic as it requires individually annotating ev-
ery model of a repository which is impractical due to the huge
and continuously increasing number of existing 3D models.
Therefore, content-based 3D shape retrieval methods are suited
for search since they do not require any annotation while.
They only require robust 3D shape feature extraction that can
be applied automatically. In these methods, a shape descriptor
is computed which represents the model and is consequently
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used at the matching stage. When 3D model comparison is per-
formed, it is desired that shape descriptors are invariant under
geometrical transformations such as translation, scaling, rota-
tion and reflection. Thereafter, the discriminative power of these
methods is highly affected by the invariance to these transfor-
mations, while extraction and comparison time also affect the
performance, especially for real-time applications.

In this paper, we describe a 3D shape descriptor based on
the theory of spherical harmonics. Translation invariance is
achieved by using continuous principal component analysis
(CPCA). The rotation invariance problem is alleviated by apply-
ing PCA on the face normals of the model (NPCA) and CPCA
on the surface points of the model. The 3D model is decom-
posed into a set of spherical functions which represents not only
the intersection points of the model’s surface with rays emanat-
ing from the origin but also all points in the direction of each
ray that are closer to the origin than the furthest intersection
point. Spherical functions are then expressed by spherical har-
monic coefficients by applying the spherical harmonics trans-
form individually to each spherical function. Scaling and axial
flipping invariance is achieved in the last stage of the shape de-
scriptor’s extraction, by using properties of spherical harmonic
coefficients. The novelty of the proposed approach consists of
the following: (i) Application of PCA for rotation normaliza-
tion by using the face normals of the model and parallel use of
CPCA on the surface points of the model; (ii) Scaling invariance
is achieved by scaling the spherical functions proportionally
to the model’s size and by scaling the corresponding spherical
harmonic coefficients to the unit L1 norm; (iii) A new shape
descriptor using spherical functions that represent not only the
intersection points of the model’s surface with rays emanating
from the origin but also all points in the direction of each ray
that are closer to the origin than the furthest intersection point.

The remaining of this paper is organized as follows: in Sec-
tion 2, the state-of-the-art in the area of 3D model retrieval
methods is presented. We summarize the approaches used to
achieve rotation invariance in Section 3 and describe the pro-
posed 3D shape descriptor. In Section 4, we present perfor-
mance results and a comparison against start-of-the-art retrieval
methods. Finally, in Section 5 conclusions and future work are
discussed.

2. Related work

In this section we give an overview of existing start-of-the-
art 3D shape retrieval methods. We categorize these methods
into the following: (i) spherical function based; (ii) 2D image-
projection based; (iii) volumetric features based; (iv) hierar-
chical structure based; (v) shape distributions based and (vi)
hybrid methods.

In the first category, 3D space is parameterized using spher-
ical functions. A popular example is the shape histograms de-
scriptor proposed by Ankerst et al. [1], which was developed
primarily to classify proteins. In this method, 3D space can be
divided into concentric shells, sectors, or both. Dividing 3D
space into both sectors and shells gives the best results. For
each part of the subdivision the model’s shape distribution is

computed, giving a sum of histogram bins which comprises
the final shape descriptor. In [2] Koertgen et al. make use of
3D shape contexts which are histograms each one identifying a
surface point by the relative coordinates of the remaining sur-
face points. Vranic et al. [3] proposed the ray-based descriptor
which characterizes a 3D model by a spherical extent function
capturing the furthest intersection points of the model’s surface
with rays emanating from the origin. Spherical harmonics and
moments representation of the spherical extent function were
tested in [4], indicating better performance in the first case. In
the same context, a more general approach was introduced by
Vranic et al. [5,6] known as the layered depth spheres descrip-
tor (also known as radialized spherical extent function). Here,
the 3D model is described by a spherical function which de-
composes the model into a sum of concentric shells and gives
the maximal distance of the model from the center of mass
as a function of angle and the radius of the equivalent shell.
The spherical function is represented by spherical harmonics
coefficients. The extended Gaussian image (EGI) proposed by
Horn et al. [7] has also been used as a shape representation
method, where a spherical function correlates the faces of a 3D
model with values on a sphere of radius 1 (Gaussian sphere).
Specifically, the Gaussian sphere is discretized into a finite set
of points. Then, each point is assigned a value proportional to
the surface area of the model having the same direction as the
unit vector defined by the specific point. A variation of this
basic idea is the complex EGI proposed by Kang et al. [8]
where each EGI cell is described by a complex number which
captures both rotation and translation information. Novotni et
al. [9] presented the 3D Zernike descriptor, generalizing the 2D
Zernike descriptor. The descriptor is an extension of spherical
harmonics descriptors because Zernike functions are spherical
harmonic functions modulated by appropriate radial functions.
Norms of vectors consisting of Zernike moments are used to
comprise the shape descriptor in order to achieve rotation in-
variance. In [10], Daras et al. introduces the generalized radon
transform, where the descriptor is extracted by combining the
radial integration transform which captures the radial infor-
mation of a 3D model and the spherical integration transform
which captures its spherical information.

In the second category of 3D shape retrieval methods, 2D
images-projections of a 3D model are used for feature extrac-
tion and comparison. Chen et al. [11] proposed the light field
descriptor, which is presented in the literature as the method
with the best discriminative power so far, but having long
extraction and comparison times as a disadvantage. The shape
descriptor is generated by projecting the 3D model uniformly
from the vertices of a dodecahedron and the distance between
two models is computed by the minimal L1 distance between all
pairs of vertices under all possible rotations of the two dodec-
ahedrons. Each projection is composed of a combined feature
vector of Zernike moments and Fourier coefficients. Another
method where 2D shape matching can support 3D shape match-
ing is the depth-buffer descriptor presented in [5] by Vranic,
where six projections of the model are created, one for each
side of a cube which encloses the model, storing the maxi-
mum and minimum depth values of the model at each side.



The six depth buffers can then be used to produce shape de-
scriptors in the spatial domain or in the spectral domain. In the
same work, the silhouette-based descriptor is proposed, which
is produced by projecting the 3D model to the Cartesian planes,
leading to three silhouettes. The contours of the silhouettes are
computed by two alternative approaches and are used accord-
ingly at the matching stage. Ohbuchi et al. [12] proposed the
multiple orientation depth Fourier transform descriptor. In this
method, the model is projected from 42 viewpoints to cover
all possible view aspects of a 3D model. The respective depth
buffers are then transformed to the r–� coordinate system and
a Fourier transform is applied, producing a set of coefficients
for each depth buffer. To compare two models, all possible
pairs of coefficients are compared which inevitably increases
comparison time. Zarpalas et al. [13] introduced a 3D shape de-
scriptor called the spherical trace transform, which is an exten-
sion to 3D shape matching of the 2D trace transform. Among
a variety of 2D features which are computed over a set of
planes intersecting the volume of a 3D model, one of the com-
ponents of the shape descriptor are 2D Krawtchouk moments
which improve significantly the overall performance of the
proposed method.

In the case of methods that belong to the third category,
initially the 3D model is preprocessed to obtain a volumet-
ric representation which is then used at the feature extraction
stage. This is done by dividing 3D space into volume elements
(voxels), and then assigning to each voxel a value according
to a function which considers the model’s relative position.
Many variations exist concerning the method used to decide
what value is to be assigned to each voxel. The Gaussian (ex-
ponentially decaying) Euclidean distance transform proposed
by Kazhdan et al. [14] (GEDT) is one of best performing vari-
ations. The GEDT descriptor can be expressed by norms of
spherical harmonic frequencies which give a rotation invariant
representation, reducing the shape descriptor’s storage cost and
comparison time. The reflective symmetry descriptor proposed
by Kazhan et al. [15], computes a voxelized representation of a
3D model which is then used to compute the reflective symme-
tries of the model with respect to all planes passing through its
center of mass. Suzuki et al. [16], introduced a shape descrip-
tor based on equivalence classes. After enclosing the model in
a 3D grid, cells which follow the same paths under 90◦ rota-
tions are organized into sets called equivalence classes. Each of
these classes is represented by a value giving the density of the
initial point cloud inside the cells of the given class. Tangelder
et al. [17], make use of weighted point sets. The set of points
is selected by a 3D grid which encloses the model and three
methods are proposed to select a point at each non-empty grid
cell and assign a weight to the specific point. For the compar-
ison of two shape signatures a variation of the earth mover’s
distance is adopted.

The fourth category consists of methods which use hierarchi-
cal 3D model representations based on skeleton graphs. Hilaga
et al. [18] introduced the multiresolution Reeb graph, which
represents a 3D model’s topology and skeletal structure at vari-
ous levels of detail. In [19] Zhang et al. consider the use of me-
dial surfaces to compute an equivalent directed acyclic graph

of a voxelized model. Sundar et al. [20] also proposed skeleton
based shape matching. They first obtain the volume of a 3D
model which passes through a thinning process producing a set
of skeletal points, which finally form a directed acyclic graph
by applying the minimum spanning tree algorithm. Cornea et
al. [21], propose the use of curve skeletons produced by the
application of the generalized distance field to the volumetric
representation of a 3D model. Matching between two skeletons
is performed by using the earth mover’s distance. Generally,
graph-based methods for 3D model matching are mostly useful
for matching articulated models but are problematic in the use
of efficient similarity measures.

Methods based on statistical measures belong to the last cat-
egory. The shape distributions proposed by Osada et al. [22,23]
is a shape descriptor where several shape characteristics can be
measured for a random set of points belonging to the model, ac-
cording to the selection of an appropriate shape function. There
are variations of this method according to the characteristic
that is measured, e.g. in the D2 shape distribution descriptor
the distance between two random surface points is computed.
Ohbuchi et al. [24], proposed enhanced shape functions, namely
the angle–distance histogram or the absolute angle–distance
histogram for inconsistently oriented meshes, which are exten-
sions of the D2 shape distribution descriptor and have better
performance. In [25], the same author proposes a combination
of the absolute angle–distance function with the alpha shape
representation of 3D models. Zaharia et al. [26] presented the
3D shape spectrum descriptor which is within the MPEG-7
framework. This shape representation is the histogram of the
shape index values calculated for the entire mesh of a 3D model,
where each shape index value is the angular representation of
the vector composed of the first and second principal curvature
at a specific surface point.

Finally, the hybrid descriptor proposed by Vranic [5] is a
combination of three different methods. The depth buffer, sil-
houette and ray-based descriptors described earlier, are used
together into one descriptor trying to capture as much discrim-
inating information for a 3D model as possible.

3. The proposed methodology

3.1. The overall scheme

In this section, we provide an overview of the proposed
methodology that will be detailed in Sections 3.2–3.4. The main
steps for the 3D shape descriptor’s extraction procedure as well
as the matching scheme are depicted in Fig. 1.

Initially, the model is translated so that its center of mass
coincides with the origin, as shown in Fig. 1(a). Then we ap-
ply in parallel two different alignment methods, namely CPCA
and the PCA on the normals of the model’s faces (NPCA),
to alleviate the problem of rotation invariance. This gives two
aligned versions of the translated model (Fig. 1(b)) which are
hereafter processed in the same way and will finally give two
3D shape descriptors. In the next stage, each alignment vari-
ant is expressed by a set of spherical functions f1, f2, . . . , fN

with increasing radius giving the intersections of the model’s



Fig. 1. The stages of the proposed 3D shape matching scheme for retrieval.

surface with rays emanating from the origin (Fig. 1(c)). This is
equivalent to producing spherical projections of approximately
equidistant parts of the model at different radii. In the sequel,
the set of spherical functions is processed to find the furthest
intersection points from the origin on each ray. If the model is
viewed in the direction of a specific ray, then the furthest in-
tersection point obscures the part of the model along the ray
which is closer to the origin. We may assume that the ob-
scured part belongs to the 3D model because we perceive a
3D model as a concrete entity and not as a 3D surface com-
posed of a set of faces. This may not be true for concave
objects but our experiments showed that this does not influ-
ence the discriminative power of the shape descriptor. There-
after, these parts are considered to belong to the model giving
a new 3D model representation (Fig. 1(d)). For each spheri-
cal function, the spherical harmonics transform is applied pro-
ducing a set of complex coefficients (Fig. 1(e)). In the last
stage, spherical harmonic coefficients are scaled to the unit
L1 norm (Fig. 1(f)) which guarantees scaling invariance and
properties of spherical harmonics are used to achieve axial flip-
ping invariance. From here on, we will call the proposed de-
scriptor the concrete radialized spherical projection (CRSP)
descriptor.

Each 3D model is represented by the concatenation two
shape descriptors corresponding to the aligned versions using
CPCA and NPCA and of a set of complex spherical har-
monic coefficients. To compare two shape descriptors, the L1
distance between the corresponding parts is computed and
the minimum distance is taken as the similarity measure be-
tween the two models. The notion of taking the minimum
distance is based on the expectation that the best establishment
of correspondences between two models is achieved, when
the difference between the corresponding shape descriptors
is minimum.

3.2. Translation and rotation normalization

In this section, we detail how we address the problem of
translation and rotation invariance. Prior to the translation and
rotation normalization procedures, a preprocessing step is ap-
plied to obtain a representation of a 3D model, consisting only
of triangles. A double triangle check is also performed to find
identical triangles within the polygonal model. These triangles
are recognized as having the same vertices but appearing in
different order within a 3D model file (e.g. the triangles with
vertex indices (10, 422, 87) and (422, 10, 87) are identical). We
found a large number of such triangles within the 3D model
datasets tested in Section 4. These triangles cannot be identi-
fied when a 3D model is rendered, but if they are taken into
account they may affect the model’s translation, rotation and
scale normalization.

The model is translated to its center of mass m which is
computed using CPCA [5,27]. If v = [vx, vy, vz]T is a surface
point, then using barycentric coordinates, v is given by

v = a · Ai + b · Bi + (1 − a − b) · Ci , (1)

where Ai , Bi and Ci are the vertices of triangle
i, i = 1, 2, . . . , N , where N is the number of triangles of the
model and a, b are the barycentric coordinates. Thus m is
equal to:

m = 1

E

∫ ∫
v∈Ti

v ds = 1

E

N∑
i=1

Ei · (Ai + Bi + Ci )

3
, (2)

where E is the total surface area of the model and Ei is the
surface area of triangle Ti . The detailed derivation of Eq. (2) is
given in Appendix A.

When a shape descriptor is based on the establishment
of correspondences between models, the rotation invariance



property is of great importance. Translation and scaling invari-
ance are also important and a shape descriptor can be invariant
under these transformations using efficient methods. However,
to achieve rotation invariance using a single method for a wide
range of model classes, has proven to be a very complicated
problem. This is because it is not obvious which shape charac-
teristic we should choose and the way it should be used when
normalizing for rotation, so that it is suitable for every class.
Several approaches have been used belonging to one of the
following categories: (i) alignment and (ii) rotation invariance
by definition.

In category (i), each model is normalized for rotation by
rotating the model into a canonical coordinate frame with the
expectation that when comparing models of the same class these
models will be similarly aligned. However, as mentioned pre-
viously, 3D models are spread over a wide variety of classes,
making it very difficult to find an alignment method for mod-
els of every possible class. The prominent alignment method is
PCA, also known as the Karhunen–Loeve transform [28]. The
PCA algorithm generates mutually uncorrelated features taking
a set of vectors as input. The set of vertices of the polygonal
model [3] or the centroids of the model’s triangles [29] have
been used as input to the PCA. In [5,27] the so-called CPCA is
presented. Another approach to normalize a 3D model for rota-
tion (similar to PCA), is the use of singular value decomposi-
tion (SVD) [28]. In [22,30], the SVD of the covariance matrix
of the 3D model is computed and the unitary matrix is applied
to the model for rotation normalization.

In the category (ii), rotation invariance is achieved by the
definition of the shape descriptor. These descriptors are invari-
ant under rotation, but they may discard information regarding
the 3D model which can be discriminative. Descriptors based
on spherical harmonics, Zernike moments and shell histograms
are examples of representation methods able to achieve rotation
invariance by definition.

Instead of just using one method to achieve rotation invari-
ance, combinations of different approaches may be considered.
This may improve the performance of a shape descriptor at the
cost of increased complexity.

To alleviate the rotation invariance problem, we apply two
alternative alignment procedures in parallel. In the first proce-
dure, we use CPCA to compute the covariance matrix C of the
model’s surface, as in the following:

C = 1

E

∫ ∫
v∈M

(v − m)(v − m)T ds

= 1

E

N∑
i=1

∫ ∫
v∈Ti

(v − m)(v − m)T ds

⇒ C = 1

12E

N∑
i=1

Ei · [f(Ai ) + f(Bi ) + f(Ci )

+ 9 · f((Ai + Bi + Ci )/3)], (3)

where M is the set of vertices of the polygonal model and
f(v) = (v − m)(v − m)T. A detailed derivation of Eq. (3)

Fig. 2. (a) Initial model; (b) aligned model using the continuous principal
component analysis.

is given in Appendix A; this is not included in [5,27] where
CPCA was introduced.

The eigenvectors of C are then computed, which represent
the principal directions of the model’s surface area and form an
orthonormal basis for R3 space. These vectors are then sorted
according to the order of descending (or ascending) eigenval-
ues and are finally normalized to the Euclidean unit norm. A
rotation matrix R is formed having as columns the scaled eigen-
vectors in decreasing (or ascending) order and R is applied to
the model so that the principal directions of the model coincide
with the coordinate axes. After the application of R, the model
is rotated to a canonical position as shown in Fig. 2.

In the second alignment procedure we compute the covari-
ance matrix by using NPCA. If ni is the normal vector of trian-
gle Ti and mNl is the average face normal, then the covariance
matrix is computed as

C = 1

2E

N∑
i=1

(Ei(ni − mNl) · (ni − mNl)
T

+ Ei(−ni − mNl) · (−ni − mNl)
T). (4)

Each triangle is counted twice, using its normal and opposite
to the normal direction. This is done to avoid possible varia-
tions in vertex ordering at the model triangles, that affects the
direction’s sign and because we may assume that every tri-
angle has two sides with opposite directions. Adopting this, we
observe that the average face normal mNl becomes

mNl = 1

2E

N∑
i=1

(Ei · ni + Ei · (−ni )) = 0. (5)

The above equation indicates that mNl is always the zero vector,
thus C is now given by

C = 1

2E

N∑
i=1

(Ei · ni · nT
i + Ei · (−ni ) · (−nT

i ))

= 1

E

N∑
i=1

Ei · ninT
i . (6)



Fig. 3. (a), (d) columns: alignment using NPCA; (b), (c) columns: alignment using CPCA. The objects of columns (a), (b) are better aligned using NPCA
while those of columns (c), (d) are better aligned using CPCA.

After the computation of C, the PCA algorithm is ap-
plied to find and align the principal axes of the model with
the coordinate axes. Our experiments indicate that there are
models where NPCA gives a more consistent alignment than
CPCA and vice versa. To justify this, we give some exam-
ples in Fig. 3. Motivated by this observation, we use both
methods, expecting to achieve better overall results. This
is justified by the experimental results given in Section 4.
After completion of this stage we have two alignment variants
of the initial model which will finally lead to two 3D shape
descriptors.

3.3. Representation of a polygonal model as a set of spherical
functions

After alignment, the model’s surface is represented by a set
of spherical functions.

A spherical function describes a bounded area of the model,
defined by a lower and an upper radius which delimit a spherical
shell. This shell is the volume in which the underlying surface
of the model is represented by the equivalent spherical function
points. The region corresponding to the rth spherical function
is the spherical shell defined in the interval [lr , lr+1) where

the lr bound is given by

lr =
{

0, r = 1,

(r − 0.5) · M · davg/N, 1 < r �N + 1,
(7)

where M is a weighting factor which determines the radius of
the largest sphere (we set M =3), N is the number of spherical
functions (we set N =24) and davg is the average distance of the
model’s surface from the center of mass. Multiplying by M =3
ensures that the model is adequately enclosed by the sphere
with the largest radius and only outlying parts of the model may
be excluded from the furthest boundary. The average distance
is computed as

davg =√
C11 + C22 + C33, (8)

where Cij is the (i, j)th element of the covariance matrix, com-
puted using CPCA and by definition, C11, C22, and C33 rep-
resent the variance of the model’s surface from the yz, xz and
xy planes, respectively. By multiplying the boundaries of the
spherical function with davg in Eq. (7), the spherical functions
become scaling invariant in the sense that they are scaled pro-
portionally to the original model’s size. The boundaries of the
spherical functions as well as davg and M ∗ davg are shown
in Fig. 4.



Fig. 4. (a) Visualization of the boundaries of the spherical functions and (b)
visualization of davg and M ∗ davg values.

Fig. 5. Representation of a polygonal model as a set of spherical functions
representing the intersections of the model’s surface with rays emanating
from the origin.

We compute the intersections of the triangles of the aligned
model with rays emanating from the origin in the (�j , �k) di-
rections denoted as ray(�j , �k), where �j = (2j + 1)�/(4B),
�k = 2�k/(2B), j , k = 0, 1, . . . , 2B − 1 and B is the sampling
bandwidth. Inters(i, �j , �k) denotes the distance from the ori-
gin of the ith intersection of ray(�j , �k) with the model’s sur-
face. If ray(�j , �k) does not intersect the model’s surface then
Inters(0, �j , �k) = 0.

Let mxin(r, �j , �k) be the distance of the furthest intersec-
tion point along ray(�j , �k), within the boundaries of the rth
spherical function, given by

mxin(r, �j , �k) = max{Inters(i, �j , �k)|lr
� Inters(i, �j , �k) < lr+1, i = 0, 1, . . .}.

(9)

The 3D model is represented as a set of N spherical functions
fr : S2 → [lr , lr+1) ∪ {0}, r = 1, 2, . . . , N , where S2 denotes
the points (�j , �k) on the unit sphere and fr is given by

fr(�j , �k) = mxin(r, �j , �k). (10)

The decomposition of the 3D model into the spherical
functions fr(�, �) is similar to projecting approximately
equidistant parts of the 3D model to concentric spheres of
increasing radius. The set of spherical functions representing
the 3D model as given by Eq. (10) is depicted in Fig. 5, where

Fig. 6. Intersections of a model’s surface with rays emanating from the origin
(circled dots) and points closer to the origin than the furthest intersection
point at each ray (single dots).

for each spherical function point fr(�j , �k) �= 0, a black dot
is used to represent the equivalent intersection.

In the following, the spherical functions are expanded to in-
clude additional information. Let mxin(D, �j , �k) �= 0 (corre-
sponding to the furthest intersection point on ray(�j , �k)), be
assigned to the spherical function point fD(�j , �k). Then all
fr(�j , �k), for r < D are to:

fr(�j , �k) = r · M · davg/N ∀r < D. (11)

Extra points are thus included in the spherical functions as
depicted in Fig. 6. Practically, if the model is viewed from the
(�j , �k) direction then the part of the model along ray(�j , �k)

which is closer to the origin than mxin(D, �j , �k) is occluded
by the intersection point corresponding to mxin(D, �j , �k). We
may assume that the occluded part actually belongs to the model
because we perceive 3D models as concrete entities. Adopting
this assumption, a more concrete representation of the 3D model
is produced which highly increases discriminative power as
shown in Section 4. Therefore, taking into account Eqs. (10),
(11), the new spherical functions f ′

r are

f ′
r (�j , �k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mxin(r, �j , �k), if mxin(D, �j , �k) �= 0
and r = D,

r · M · davg/N, if mxin(D, �j , �k) �= 0
and r < D,

0, otherwise.
(12)

These spherical functions give a model representation as shown
in Fig. 7, where black dots are used to illustrate spherical func-
tion points f ′

r (�j , �k) �= 0.



Fig. 7. Representation of a model as a set of spherical function points
representing the intersections of the model’s surface and occluded parts under
specific viewpoints.

In the sequel, we expand the N spherical functions to their
spherical harmonic representation. A detailed description of the
spherical harmonics’ formulation is given in Appendix B. Thus,
having formed N spherical functions, the spherical harmon-
ics transform (SHT) (Appendix B, Theorem 1) is applied for
each function. For the computation of SHT, some researchers
have used the SpharmonicKit [31] software setting B = 64 for
the sampling bandwidth as the best choice. However this soft-
ware had the limitation of computing transformations of only
B =2n. Instead, we used the S2kit [31] software which enables
transformations at any bandwidth and we set B = 40 without
reducing the discriminative power. As a result, the shape de-
scriptor’s extraction time dropped significantly and the number
of rays dropped from 2 ∗ 64 ∗ 2 ∗ 64 = 16 384 to 2 ∗ 40 ∗ 2 ∗
40 = 6400.

By applying the SHT, B2 complex coefficients are produced
for each spherical function. Higher order coefficients represent
finer details of the model as well as possible noise. Instead
of taking into account all B2 coefficients, we used the first
Lbands of coefficients (up to the lth degree, we set Lbands =
16). For all N spherical functions there are N ∗ L2

bands co-
efficients, where Lbands �B. Using Theorem 1 (Appendix B)
and the fact that f ′

r (�j , �k) is a real-valued function, the fol-
lowing property holds between the coefficients of positive and
negative order:

f̂ (l, m) = (−1)mf̂ (l, −m), (13)

where x denotes the complex conjugate of x. This means
that only the positive order coefficients, which are N ∗
(Lbands ∗ (Lbands + 1))/2 in total, are necessary to find the L1
distance between two shape descriptors as will be proven in
Section 3.4. We next show that the shape descriptor is invari-
ant to possible axial flipping using the spherical harmonics’
properties below:

(i) if the model is reflected with respect to the x-axis

(yz plane) then: f̂ (l, m) ⇒ f̂ (l, m);
(ii) if the model is reflected with respect to the y-axis

(xz plane) then: f̂ (l, m) ⇒ (−1)l+mf̂ (l, m);
(iii) if the model is reflected with respect to the z-axis

(xy plane) then: f̂ (l, m) ⇒ (−1)mf̂ (l, m).

These properties indicate that only the sign of the real and
imaginary part of a coefficient may change, so we store the
absolute values of the imaginary parts for all l, m and the ab-
solute values of the real parts when l or m is odd. If l and m

are both even, then the sign of the real part does not change
and we store the actual values.

Finally, the spherical harmonic coefficients are scaled to
the unit L1 norm. From the definition of spherical harmonics,
spherical harmonic coefficients are exactly proportional to the
model’s scale. So scaling invariance is achieved by scaling the
coefficients which is done in constant time because we sample
all models with the same bandwidth.

3.4. Similarity measure

Each spherical harmonic coefficient is a complex num-
ber. To compare two shape descriptors, the L1 distance is
computed.

Let f̂ (l, m) = Re + j Im, f̂ ′(l, m) = Re′ + j Im′ be two
corresponding coefficients of two different shape descriptors.
The L1 distance between them is

|f̂ (l, m) − f̂ ′(l, m)| =
√

(Re − Re′)2 + (Im − Im′)2. (14)

Eq. (14) is computed for all coefficients where l�Lbands and
m�0, due to the property derived from Eq. (13) that leads to
the following:

|f̂ (l, m) − f̂ ′(l, m)| = |(−1)mf̂ (l, −m) − (−1)mf̂ ′(l, −m)|
= |f̂ (l, −m) − f̂ ′(l, −m)|. (15)

Thus only the positive order coefficients are necessary.
The descriptor consists of two sets of coefficients correspond-

ing to the two aligned versions of the model (using CPCA
and NPCA). The comparison between two models is done be-
tween the corresponding sets. Consequently, the CPCA aligned
model is compared with the CPCA aligned version of the sec-
ond model, and similarly for the NPCA version. The compari-
son giving the minimum distance sets the final difference. The
notion of taking the minimum distance is based on the expec-
tation that the best establishment of correspondences between
two models is achieved, when the difference between the shape
descriptors is minimum.

4. Experimental results

In this section, we give performance results for the pro-
posed shape descriptor and compare it against state-of-the-art
methods. The evaluation was run in the following 3D model
databases: The Princeton Shape Benchmark (PSB) (both train-
ing and test set) [32], the classified models of the National
Taiwan University database (NTU) [33], the MPEG-7 dataset
[34], and the classified models of the CCCC dataset [35]. From
the NTU and CCCC datasets only the classified models were
used because the entire datasets contain a large number of un-
classified models thus, using the whole datasets would not give



Table 1
Cardinalities of 3D model datasets and number of classes per dataset

3D model dataset #Classes #Models

PSB test 92 907
PSB train 90 907
NTU 47 549
MPEG-7 102 1300
CCCC 55 472

accurate results. Table 1 shows the number of categories and
the total number of models for each dataset.

We compare the proposed descriptor with the following
shape retrieval methods which are considered state-of-the-art
with respect to their discriminative power: (i) hybrid (DSR472)
[5]; (ii) depth buffer-based (DB) [5]; (iii) silhouette-based
(SIL) [5]; (iv) the ray-based using spherical harmonics (RSH)
[27]; (v) light-field (LF) [11]; (vi) the spherical harmonic
representation of the Gaussian Euclidean distance transform
descriptor (SH-GEDT) [14].

Descriptors (i)–(iv) were tested using tools provided in [35],
the LF descriptor was produced by using the executable pro-
vided at [33] and the SH-GEDT descriptor was produced by
using the executable provided at [36].

Our quantitative evaluation is based on the following
measures:

• Precision–Recall plots (P–R): For a query model which be-
longs to a class C, recall is the percentage of models of class
C that are retrieved and precision is the proportion of models
that belong to class C to the number of retrieved models.

• Nearest neighbor: Given a query model, its nearest neighbor
is its closest match. The nearest neighbor measure is the
percentage of queries where the closest match belongs to the
query model’s class.

• First tier, second tier: Given a query model belonging to
class C with |C| number of models, the first tier measure
is the proportion of the first |C| − 1 retrieved models that
belong to class C. The second tier measure is the propor-
tion of the first (2|C| − 1) retrieved models that belong
to class C. We average these values for all models in
each dataset.

• Discounted cumulative gain (DCG): For a query model be-
longing to class C, a list G is produced where Gi is equal
to 1 if the ith match belongs to class C, otherwise Gi = 0.
Then DCGi is given by

DCGi =
{

G1, i = 1,

DCGi−1 + Gi

log2 i
otherwise (16)

and the overall score is given by

DCG = DCGk

1 +∑|C|
i=2 log2 i

, (17)

where k is the number of models of the dataset.
For all the above quantitative measures, the best score

is 100%.
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Fig. 8. P–R plot for the Princeton Shape Benchmark test dataset. A significant
gain in discriminative power is achieved when NPCA is used along with
CPCA to alleviate the rotation invariance problem and when the concrete
representation is adopted (Eq. (11)).

Table 2
Comparison of the quantitative measures for the CRSP, LF and SH-GEDT
descriptors on the PSB test dataset

PSB test Nearest neighbor (%) First tier (%) Second tier (%) DCG (%)

CRSP 67.9 40.5 52.8 66.8
LF 65.7 38.0 48.7 64.3
SH-GEDT 55.6 30.9 41.1 58.4

In the P–R plot of Fig. 8, we show the significant gain in
discriminative power when Eq. (11) is adopted to obtain a more
concrete representation of a 3D model and when CPCA and
NPCA are used together to alleviate the rotation invariance
problem.

In Fig. 9 the P–R plot comparing all descriptors on all
datasets is given. Precision changes along the vertical axis and
recall along the horizontal axis. For each method, p50 and p100
values are given in the legend of each figure, indicating average
precision for recall 5–50% and 5–100%, respectively.

Comparing the plots as well as the p50 and p100 values,
we conclude that the CRSP descriptor has an overall superior
performance. The difference is greater for recall up to 50%,
which is the portion of the models of a class that a user is
mostly interested in. In addition, the gradient of the precision
curve does not seem to change significantly for recall higher
than 50%.

In Table 2, we give the corresponding scores of the proposed
descriptor for the PSB test dataset and compare it to the LF
and SH-GEDT descriptors. Their scores were taken from the
Princeton Shape Benchmark [37] and we used the tools pro-
vided in [32] to produce the scores of our descriptor. The top
performance of the CRSP descriptor is thus justified by the
quantitative measures as well.

We believe that a difference over 2% is not trivial when
top performing methods are compared, thus the CRSP de-
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Fig. 9. Precision–Recall plots for the CRSP, LF, DSR472, SH-GEDT, DB, SIL and RSH descriptors for all datasets.

scriptor has a significant gain over the LF and the SH-GEDT
descriptors.

In Table 3 the scores of the CRSP descriptor are given for
the remaining datasets.

In Table 4, we give the quantitative measure scores of CRSP
for each class of the “coarse2Test” and “coarse2Train” classi-
fications of the Princeton Shape Benchmark and the respective
DCG scores for the SH-GEDT and LF descriptors.



Table 3
Quantitative measure scores for the proposed CRSP shape descriptor on
various datasets

Nearest neighbor (%) First tier (%) Second tier (%) DCG (%)

PSB train 70.3 41.8 55.3 69.0
NTU 72.1 42.0 55.3 70.1
MPEG-7 84.8 54.9 66.2 79.6
CCCC 81.1 54.8 68.2 78.6

Table 4
Quantitative measure scores for the CRSP descriptor on the “coarse2Test”
and “coarse2Train” classifications of the Princeton Shape Benchmark in
comparison to the DCG score of the SH-GEDT and LF descriptors

CRSP SH-GEDT LF

Nearest First Second DCG DCG DCG
neighbor tier tier (%) (%) (%)
(%) (%) (%)

coarse2Test
Vehicle (245) 91.8 40.5 67.0 84.9 83.1 81.8
Animal (155) 84.5 39.0 60.5 82.3 79.6 81.2
Household (185) 77.3 20.5 34.6 74.0 72.4 75.6
Building (47) 34.0 13.8 22.2 54.3 50.3 59.7
Furniture (94) 78.7 22.2 32.6 70.4 66.6 72.7
Plant (60) 88.3 35.6 48.2 76.6 69.3 69.9

coarse2Train
Vehicle (230) 94.3 44.9 73.0 87.4 86.3 84.0
Animal (123) 85.4 40.3 59.7 82.2 79.2 80.1
Household (219) 82.6 23.9 42.9 77.4 75.5 78.5
Building (53) 35.8 13.6 21.9 54.7 54.6 57.5
Furniture (104) 87.5 23.3 36.1 73.0 66.8 73.5
Plant (78) 88.5 43.7 60.6 82.3 69.4 73.6

The cardinality of each class is given in parenthesis next to the class name.

Table 5
Comparison between the CRSP, LF and SH-GEDT descriptors in the “plant“
class of the “coarse2Test” classification of the Princeton Shape Benchmark
and its subclasses, using the DCG score

CRSP SH-GEDT LF

DCG (%) DCG (%) DCG (%)

Plant (60) 76.6 69.3 69.9
Subclass of plant

Bush (9) 52.4 39.2 44.7
Flowers (4) 58.2 34.2 35.6
Potted plant (26) 68.1 56.3 59.9
Barren tree (11) 71.6 47.1 47.5
Conical tree (10) 51.0 51.2 48.2

The cardinality of each class is given in parenthesis next to the class name.

It is evident that while the performance of CRSP may vary
among different classes, it achieves a better overall performance
than LF and SH-GEDT. As it is shown in Table 4, the best per-
formance is achieved for the class “vehicle” having the highest
cardinality, while the worst performance is for the “building”
class having the lowest cardinality. The higher cardinality of a
class the more significant the results are.

In Table 5, we have split the “plant” class of the coares2Test
classification into its five subclasses according to the test

classification, to measure how performance is affected in the
case of different degrees of intra-class variability. All other
classes (vehicle, animal, household, building and furniture) in
the coarse2Test classification keep the same granularity thus
the performance of the corresponding methods in these classes
remains the same.

The CRSP descriptor has the additional advantage of having
very short extraction and comparison time. Using a computer
with an AMD processor at 1.4 GHz, the average extraction time
(including searching and removing identical triangles) was less
than one second and the average comparison time was 0.16 ms.
The average number of triangles per model was 8180 and the
average number of vertices was 4427. We believe that the short
extraction and comparison time is a significant advantage of our
descriptor that enables very efficient online search and retrieval
of 3D models. Furthermore, they enable extensions and future
improvement (such as combinations with other descriptors).

In Fig. 10, we show examples of retrieval results for different
queries within the PSB test dataset. For each query (top left
model), the first 16 matches are shown using the CRSP and the
LF descriptors.

Comparing the retrieved models for each query, we can con-
clude that the quality of the results depends on the cardinality
of the query model’s class, the intra-class variation as well as
the inter-class variation. The third factor is particularly impor-
tant as there may be classes closely related to each other. In
such a setting, mixed retrieved results from these classes will
have little impact on the user’s dissatisfaction, while the op-
posite is true when mixed retrieved models belong to classes
with large inter-class variation. The above query results are
from the Princeton Shape Benchmark 3D model dataset where
models have been classified by the designers according to sim-
ilarity in the shape’s functionality. The CRSP descriptor is
based on the establishment of correspondences between 3D
models and measures the similarity between models by tak-
ing into account the shape’s geometry. Thus, the quality of the
results is even better when models are classified according to
this criterion.

5. Conclusion

We propose a new methodology for content based 3D shape
retrieval. It uses CPCA along with PCA applied on the model’s
face normals in order to deal with the rotation invariance prob-
lem. The model is decomposed into a set of spherical func-
tions representing intersections of the model’s surface with rays
emanating from the origin. Parts closer to the origin than the
furthest intersection point at each ray are included in the spher-
ical functions, which improves the descriptor’s discriminative
power. Spherical functions are represented by spherical har-
monics and their properties are used to achieve scaling invari-
ance and axial flipping invariance.

We extensively evaluated the proposed 3D shape descriptor
on various 3D model datasets and compared it against state-of-
the-art methods. The evaluation results lead to the conclusion
that the CRSP descriptor has very high discriminative power
and is ranked first among the other methods that we compared



Fig. 10. Example queries and the corresponding top 16 matches from the Princeton Shape Benchmark test dataset, using the concrete radialized spherical
projection descriptor (CRSP) and the light field descriptor (LF). The top left model is the query model. The first row shows the results 1–8 while the second
row shows the results 9–16.

with. The CRSP descriptor has the additional advantage of hav-
ing very short extraction and comparison times.

In future work we aim to further improve the quality of the
results by considering the user’s relevance feedback. In that
framework, the user would mark relevant models or assign a
measure of relevance to some of the results. Using this infor-
mation the similarity between the query and the models of the
database would be re-evaluated and a more accurate list of re-
sults would be returned.
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Appendix A.

In the following a detailed description is given regarding
the exact computation of a 3D model’s center of mass and
its surface covariance matrix, using the continuous principal
component analysis [5,26].

Let v = [vx, vy, vz]T be a point on the surface of a model;
then using barycentric coordinates, v is equal to

v = a · Ai + b · Bi + (1 − a − b) · Ci ,

where Ai , Bi and Ci are the vertices of triangle Ti ,
i=1, 2, . . . , N where N is the number of triangles of the model
and a, b are the barycentric coordinates. If E is the total sur-
face area of the 3D model and Ei is the surface area of triangle
Ti , then using CPCA the model’s center of mass m is equal to

m = 1

E

∫ ∫
v∈Ti

v ds

= 1

E

N∑
i=1

∫ ∫
(aAi + bBi + (1 − a − b)Ci ) ds

= 2

E

N∑
i=1

Ei

∫ 1

0

(∫ 1−a

0
(aAi + bBi + (1 − a − b)Ci ) db

)
da

= 2

E

N∑
i=1

Ei

∫ 1

0

[
abAi + b2

2
Bi +

(
b − ab − b2

2

)
Ci

]1−a

0
da



Fig. 10. (continued).

= 2

E

N∑
i=1

Ei

∫ 1

0

(
a(1 − a)Ai + (1 − a)2

2
Bi

+
(

(1 − a) − a(1 − a) − (1 − a)2

2

)
Ci

)
da

= 2

E

N∑
i=1

Ei

∫ 1

0

(
aAi − a2Ai + 1

2
Bi

−aBi + a2

2
Bi + 1

2
Ci − aCi + a2

2
Ci

)
da

= 2

E

N∑
i=1

Ei

[
a2

2
(Ai − Bi − Ci )

−a3

3

(
Ai − 1

2
Bi − 1

2
Ci

)
+ 1

2
a(Bi + Ci )

]1

0

= 2

E

N∑
i=1

Ei

(
1

2
(Ai − Bi − Ci ) − 1

3

(
Ai − 1

2
Bi − 1

2
Ci

)

+1

2
(Bi + Ci )

)
⇒ m = 1

E

N∑
i=1

Ei · (Ai + Bi + Ci )

3
.

In the sequel, we use CPCA to compute the covariance
matrix C of the model’s surface. If g(v) = vvT, then C
is given by

C = 1

E

∫ ∫
v∈M

(v − m)(v − m)T ds

= 1

E

N∑
i=1

∫ ∫
v∈Ti

(v − m)(v − m)T ds

= 1

E

N∑
i=1

∫ ∫
(aAi + bBi + (1 − a − b)Ci − m)

· (aAi + bBi + (1 − a − b)Ci − m)T ds

= 2

E

N∑
i=1

Ei

∫ 1

0

(∫ 1−a

0
(aAi + bBi + (1 − a − b)Ci − m)

·(aAi + bBi + (1 − a − b)Ci − m)T db

)
da



= 2

E

N∑
i=1

Ei

∫ 1

0

⎛
⎜⎜⎜⎜⎝
∫ 1−a

0

⎛
⎜⎜⎜⎜⎝

a2AiAT
i + b2BiBT

i + (1 − 2a − 2b + 2ab + a2 + b2)CiCT
i +

ab(AiBT
i + BiAT

i ) + (a − a2 − ab)(AiCT
i + CiAT

i )+
(b − ab − b2)(BiCT

i + CiBT
i ) − aAimT − bBimT − (1 − a − b)CimT−

amAT
i − bmBT

i − (1 − a − b)mCT
i + mmT db

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ da

= 2

E

N∑
i=1

Ei

∫ 1

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(a2 − a3)AiAT
i + (1 − a)3

3

(
BiBT

i + CiCT
i + BiCT

i

2
+ CiBT

i

2

)

+a
(1 − a)2

2
(AiBT

i + BiAT
i + AiCT

i + CiAT
i ) − a(1 − a)(AimT + mAT

i )

− (1 − a)2

2
(BimT + CimT + mBT

i + mCT
i ) + (1 − a)mmT

⎞
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da

= 1

12E

N∑
i=1

Ei

(2AiAT
i + 2BiBT

i + 2CiCT
i + BiCT

i + CiBT
i + AiBT

i + BiAT
i + AiCT

i + CiAT
i

−4AimT − 4mAT
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i − 4mCT
i + 12mmT

)

= 1

12E

N∑
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Ei

⎛
⎜⎜⎜⎜⎝

AiAT
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⇒ C = 1

12E

N∑
i=1

Ei ·
[

f(Ai ) + f(Bi ) + f(Ci ) + 9 · f
(

(Ai + Bi + Ci )

3

)]
,

where f(v) = (v − m)(v − m)T.

Appendix B.

In this following, a description of the theory of spherical
harmonics [38] is given.

Let S2 denote the unit sphere, which is the sphere with radius
1 and center at the coordinates’ origin. Then a point v(�, �) on
the surface of S2 can be expressed as

v(�, �) = (cos � sin �, sin � sin �, cos �), (18)

where 0���� is measured counter-clockwise on the yz plane
and 0�� < 2� is measured clockwise on the xy plane.

Let L2(S2), denote the Hilbert space of square integrable
complex functions in S2. Then the inner product of two func-
tions f , h ∈ L2(S2) is given by

〈f, h〉 =
∫ �

0

[∫ 2�

0
f (�, �) · h(�, �) d�

]
sin � d�. (19)

Spherical harmonics form an orthonormal basis of the space
L2(S2). Consequently, every function f ∈ L2(S2) is given by

f (�, �) =
∞∑
l=0

l∑
m=−l

f̂ (l, m) · Ym
l (�, �), (20)

l=0

l=1

l=2

m=-2 m=-1 m=0 m=1 m=2

Fig. 11. Representation of [Re{Ym
l

(�,�)}]2 for the spherical harmonics up
to degree l = 2.

where the f̂ (l, m) corresponds to the lth degree and mth order
Fourier coefficient and Ym

l (�, �) corresponds to the equivalent
spherical harmonic function

Ym
l (�, �) = kl,m · P m

l (cos �)eim �, (21)

where kl,m is a normalization constant and P m
l (cos �) is the

associated Legendre polynomial of degree l and order m. A
visual representation of the spherical harmonics up to the 2nd
degree is given in Fig. 11.

Each coefficient f̂ (l, m) equals to the projection of
the spherical function f (�, �) to the equivalent spherical



harmonic function, that is

f̂ (l, m) = 〈f (�, �), Ym
l (�, �)〉

= kl,m ·
∫ �

0

[∫ 2�

0
f (�, �) · e−im � d�

]

· P m
l (cos �) · sin � d�. (22)

We consider band-limited functions, so the following theorem
[38] to compute the SHT is used:

Theorem 1. Let f ∈ L2(S2) have bandwidth B. Then for each
|m|� l < B:

f̂ (l, m) =
√

2�

2B

2B−1∑
j=0

2B−1∑
k=0

a
(B)
j f (�j , �k)e

−im �kP m
l (cos �j ),

(23)

where �j = (2j + 1)�/(4B), �k = 2�k/(2B) and weights a
(B)
j

play an analogous role with the sin � factor in the integrals of
Eq. (22).
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