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A novel method for the reconstruction of 3D shape and texture from In-

tegral Photography (IP) images is presented. Sharing the same principles with

stereoscopic-based object reconstruction, it offers increased robustness to noise and

occlusions due to the unique characteristics of IP images. A coarse to fine approach

is used, employing a novel grid refinement step in order to increase the quality of

the reconstructed objects. The proposed method’s unique properties include con-

figurable depth accuracy and direct and seamless triangulation. We evaluate our

method using synthetic data from a computer simulated IP setup as well as real

data from a simple yet effective digital IP setup. Experiments show reconstructed

objects of high quality indicating that IP can be a competitive modality for 3D ob-

ject reconstruction.
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Fig. 1. Operating principles: (a) acquisition and (b) reproduction of IP images.

1. Introduction

Integral Photography is considered as one of the most promising techniques for delivering high

quality three-dimensional (3D) content. Even though the working principles1 of IP were estab-

lished in 1908, only relatively recently has there been an increased interest in both display2,3 and

acquisition4,5 setups.

The operating principle of IP is the reproduction of a 3D scene through the use of multiple 2D

views. In conventional IP, a Charge Coupled Device (CCD) sensor is placed behind a lens array

for acquisition (Fig. 1 (a)), while for display a LCD panel is placed behind the lens array (Fig. 1

(b)). Images produced by IP acquisition setups are pseudoscopic and can be real or virtual. Several

techniques4,5 have been presented to compensate for these effects using optical solutions. In our

application, there is no need for real (as opposed to virtual) images so the IP acquisition setup can

be simplified. The pseudoscopic effect can be rectified using one of the techniques described by

Coralet al.6

IP images have unique characteristics that can be used for object reconstruction. Contrary to

previous approaches our goal is to derive a 3D polygonal model, not just renderings of the object
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Fig. 2. Reconstruction of a dice: (a) Input IP image (52×52 pixels/lens, f=3.3mm)

and (b,c) Reconstructed 3D object rendered with triangulation superimposed.

from different views. The proposed method reconstructs quality textured 3D polygonal models

(Fig. 2) from a single stage digital IP image capture. Naturally, such a model can then be rendered

from arbitrary 3D viewpoints. We employ a coarse to fine approach in order to provide accurate

and robust reconstruction of the shape and texture.

1.A. Related Work

In the past, two camera setups (stereovision) were mainly used for 3D object reconstruction. Re-

cently, this has been extended to multiple views, either by the use of multiple cameras7 or by the

use of IP images. A comparative study between the two approaches is presented by Parket al..8

A number of modifications in the basic IP camera setup like time multiplexed IP cameras9 has

been used in order to increase the resolution of IP cameras.10,11Several attempts9,10,11,12have been

reported in the literature aiming to tackle the problem of 3D object reconstruction using IP images.

The reconstruction algorithms proposed in previous works, are mainly applied to IP images of
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small objects that do not span many images with their size. This limitation is enforced in order

to avoid stitching problems during the reconstruction stage caused by abrupt discontinuities due

to depth estimation errors.11 Moreover elemental image modification techniques are proposed in

an effort to increase depth accuracy.12 In several works (such as Shinet al.13) the term3D object

reconstructionis used to describe the generation of 2D images from multiple views and focus

depths from a single IP image.

Our approach does not generate 2D images that represent different viewpoint images or different

depth planes but it is focused on the estimation of a fully 3D polygonal model. It is based on a rather

simple hardware setup that produces high resolution IP images using a scanning CCD sensor in

conjunction with a large area lens array, in order to overcome resolution limitations imposed by

the fixed size of the CCD sensor arrays. The proposed 3D reconstruction algorithm efficiently

reconstructs shape and texture of the initial 3D object. The reconstruction is based on a matching

algorithm similar to the one presented by Parket al.14 but it also handles cases where an object

spans multiple lenses. It is avoiding stitching problems by introducing a novel grid refinement

step, thus allowing for seamless triangulation. Additionally, our method does not have to rely on

IP reshuffling techniques in order to increase the accuracy of the reconstructed object.

1.B. Overview

We propose a novel approach for the reconstruction of 3D shape and texture using IP images. We

implemented what we believe is the simplest possible IP acquisition setup. A scanning CCD from

a flatbed scanner is placed directly behind a lens array (that uses square lenses), eliminating the

need for an objective lens commonly found in most IP acquisition setups. Algorithmically, we ex-

tend the classic stereo correspondence problem15 to two dimensions and multiple correspondences.
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Fig. 3. Hardware setup of the proposed approach.

The output of the process is the 3D polygonal representation of the object’s shape and texture. We

thus provide a robust and simple way of capturing IP images and yet produce accurate 3D polyg-

onal data using a pure computer vision approach. Finally, we show that this approach has unique

properties compared to previous work and alleviates many of the problems that are found even in

commercial 3D optical sensors that are based on stereo vision. Unique properties include config-

urable depth accuracy, direct and seamless triangulation and the ability of handling cases where

the field of view of the elemental lenses is less than the acquired object’s size at a certain distance.

The rest of this paper is organized as follows: Sec. 2 describes the setup used to obtain the

integral photography images, Sec. 3 describes the algorithm that reconstructs the 3D shape from

these images, Sec. 4 demonstrates the capabilities of our approach using synthetic and challenging

real-life objects, while Sec. 5 summarizes our approach and outlines future directions.
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2. Acquisition Setup

Our experimental setup for capturing real world objects uses a scanning CCD and a lens array as

depicted in Fig. 3. The scanning CCD sensor allows the capture of images over a101×127mm area.

We utilize the mechanism of a commonly available commercial flatbed scanner as the scanning

CCD. This is an inexpensive solution that can offer a scanning area up to210 × 297mm. To the

best of our knowledge, this is the first application of such setup in Integral Photography using

commercial lens arrays.

The lens array provides two dimensional parallax. It uses a square lens geometry over a rect-

angular grid, as this ensures processing flexibility and has no optical gaps. No objective lens was

used, making the setup easier to calibrate and more resilient to optical errors. The characteristics

of our lens array are summarized in the following table:

Focal Length 3.3mm

Number of Elemental Lenses 100(H)× 120(V )

Elemental Lens Pitch 1.04mm

In previous IP acquisition setups the use of a relatively small-sized CCD imposed a limitation

on the lenses’ pitch. This results in a tight tradeoff between the number of lenses and the resolution

of the elemental images. Our setup suffers from no such limitation, since the large scanning area

allows for a large number of lenses without sacrificing elemental image resolution. However, due

to the scanning CCD, our system cannot handle dynamic objects.

A preprocessing stage is required in order to calibrate the captured IP image. In detail, a small

tilt of the lens array during its placement over the CCD sensor results in a skewed IP image,

causing registration errors. To this end a skew detection process was developed utilizing the Hough
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Transform. Additionally, the positioning errors of the stepper motor moving the CCD over the

scanning area were recovered, using a heuristic technique that takes advantage of the IP image’s

regular structure.16 Note that this calibration needs to be performed only once, when the lens array

is mounted on the flatbed scanner.

3. Reconstruction Algorithm

Our algorithm estimates the 3D shape and texture of an object from a single IP image. To this end

a two step process is applied: first, 3D points (vertices) on the surface of the object are computed

and second, these points are connected in a polygonal (e.g. triangular) mesh. Our reconstruction

algorithm can be summarized as follows:

• Vertex Grid Computation: Vertices are computed using the central pixel of each lens, forming

a rough regularly sampled vertex grid.

• Grid Refinement and Triangulation: The grid is subdivided, new vertices are computed and

the refined grid is triangulated.

• Post-Processing: The final grid is filtered in order to improve reconstruction quality (e.g.

noise reduction).

3.A. The Correspondence Problem

The principle idea behind our approach is an extension of classical stereo vision.15 In order to esti-

mate the depth of a point in three dimensional Euclidean space (R3) we need to have its projection

in at least two images from cameras with different orientation, and determine thecorrespond-

ing pixels, i.e. pixels in the images of the different cameras onto which the same object point is
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Fig. 4. PointP is projected through two lenses on their image planes atp1 andp2.

The distance of the optical center from the image plane is equal tof .

mapped. This is known as thecorrespondence problem. The difference from classical stereo vi-

sion is that we now have multiple cameras instead of just two as each elemental image essentially

corresponds to the image that would be captured by a different camera. In addition these cameras

offer horizontal as well as vertical parallax.

We model our lenses in the array as perfect cameras that use perspective projection. A homoge-

neous vertexP = [x y z 1]T in R3 is projected ontop = [u v]T in R2 as follows:


U

V

H

 =


−f 0 0 0

0 −f 0 0

0 0 1 0

 ·



x

y

z

1


andu = U

H
andv = V

H
wheref is the focal length of the lenses.

As in stereo vision, in order to solve the correspondence problem for a pointP in R3 we need two

projections (p1 andp2) of this point in elemental images from different lenses. If the coordinates of
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P are defined in the coordinate system of the first lens, then they can be expressed in the coordinate

system of the second lens asP ′ = M · P whereM is a 4 × 4 transformation matrix computed

during the calibration of the acquisition setup. For each pixel in the first elemental image, we seek

its corresponding pixel in the second elemental image along a line (which consists of candidate

corresponding pixels), using a minimum difference criterion (see next section).

In practice, due to the regularity of the lens array, the lenses do not need calibration. By con-

struction, they have parallel orientations and the distance between two successive optical centers

is always equal to the lenses’pitch in each direction. In the example of Fig.4, the transformation

matrix for the two adjacent lenses shown isM =



1 0 0 pitch

0 1 0 0

0 0 1 0

0 0 0 1


. From the above equations,

for givenp1 = [u1v1]
T andp2 = [u2v2]

T , we derive the following:v1 = v2 = −f y
z
, u1 = −f x

z
and

u2 = −f x+pitch
z

from whichP is estimated (3 equations with three unknowns). The determination

of corresponding pairs[u1v1]
T and[u2v2]

T is the subject of the next section.

3.B. Vertex Grid Computation: Determining Correspondences

Given an IP image produced by a lens array with known focal lengthf , we first compute the

3D vertices that correspond to the central pixels of each elemental image. These vertices form a

regularly sampled grid that is refined in the following step of the algorithm. Note that all elemental

images have the same pixel resolutionR which is determined by the acquisition device.

We define the distanceD(p1, p2) between two pixels (p1 = [u1v1]
T andp2 = [u2v2]

T ) from
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Fig. 5. An IP image of a dice using124 × 124 pixels per elemental image,f =

3.3mm andN = 3: A pixel (marked yellow) and its correspondences (marked red).

The colored boxes denote the window area (W = 8).

different elemental images using a simple but effectiveL1 metric:

D(p1, p2) =
W∑

j=−W

W∑
i=−W

|E1(u1 + i, v1 + j)− E2(u2 + i, v2 + j)|

whereE1 andE2 are the two elemental images, andW defines the size of the comparison window

area. The value ofW depends on the size of texture patterns in the elemental images. If the window

intersects the elemental image’s boundary, we only use the pixels inside the elemental image and

normalize the total distance by dividing by the number of pixels used.

We subsequently extend the above distance metric to more than two elemental images. In prac-

tice, we use2N + 1 neighboring elemental images per direction, thus forming a symmetrical

neighborhood area of radiusN around each elemental image (Fig.5). The best correspondence has
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the minimum sum of the distances over all neighbors, as follows:

For the central pixelpk,l of each elemental imageEk,l

• Find the 3D vertexP that minimizes the expression:

Dtotal =
N∑

j=−N

N∑
i=−N

D(pk,l, pk+i,l+j)

wherepk+i,l+j is the projection ofP in elemental imageEk+i,l+j.

In the above algorithm, the vertexP lies on the line through the central pixel of elemental

imageEk,l that is perpendicular to the image plane. Therefore the search of the optimal vertex

requires only to sample this line at various points (that correspond to different depth values) and

then projecting them to neighboring elemental images to evaluate their distance.

The use of multiple images to determine correspondences is a unique feature of IP based recon-

struction approaches. The inherent advantage is that it offers more robustness compared to a stereo

vision approach, as problems like partial occlusion or noisy data can be overcome. If we determine

that the distance of the best correspondence of a given neighbor is above a certain threshold we can

discard that neighbor, and compute the total difference from the remaining neighbors. Depending

on the expected quality of the IP image, we can differentiate our strategy, for example using me-

dian instead of mean in the computation ofDtotal. Note that since our acquisition setup does not

produce noisy data, we did not use the median in the computation ofDtotal in any of the examples

in this paper.
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(a) (b)

Fig. 6. Elemental images from a real-life object with98 × 98 pixels per lens and

f = 3.3mm: (a) A 3 × 3 neighborhood with central pixels marked yellow. The

correspondences of the central pixels in the bottom-left elemental image are marked

red. (b) Triangulation of the same neighborhood using only central pixels, projected

ontoR2 and superimposed over the IP image.

3.C. Vertex Grid Refinement and Triangulation

In order to refine the vertex grid, we introduce a subdivision parameterS, which defines how many

vertices we will compute between the computed central vertices. The reason for separating this step

from the previous one is to allow seamless triangulation. As seen in Fig. 6 (a) we can project the

central pixels from neighboring elemental images (computed in the previous step) onto a specific

elemental image. Additional vertices that we will use for refinement will be derived only from

pixels between the central pixels of the lens and the correspondences of the central pixels of the

neighboring lenses. The algorithm that subdivides the grid of a lens can be summarized as follows:
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Let the current lens be denoted byL00, and its up and diagonal neighbors byL10,L01 andL11

respectively. Let the 3D vertices computed using the central pixel of the above lenses (in the

previous step) be denoted byV00, V10, V01 andV11.

1. ProjectV00, V10, V01 andV11 in L00 asp00, p10, p01 andp11 respectively.

2. For j from 1 to S − 1 do

For i from 1 to S − 1 do

Estimatep′ = (S−i)·(S−j)
S

· p00 + i·(S−j)
S

· p10 + (S−i)·j
S

· p01 − j·i
S
· p11,

Compute the reconstructed vertexV ′ using the algorithm of Sec. 3.B

and add it to the grid.

In Fig. 6 (b) a triangulation example is shown without refinement. Since the refined vertices are

ordered, the refined grid remains regularly sampled thus allowing straightforward triangulation.

An issue with this approach is that errors introduced in the computation of the initial vertex grid

(Sec. 3.B), can cause undesired effects in the refinement step (Sec. 3.C).

Our approach has the unique property of producing a seamless triangulation without the need for

stitching among different neighbors. Compared to other approaches,12 our method does not have

to reshuffle the initial IP image.
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3.D. Post-Processing Filters

In order to improve the quality of the final reconstruction, we apply a series of post-processing

filters on the grid of vertices. The filters are applied in the following order:

• Median Cut:A median cut filter with a3 × 3 kernel is used to remove spikes. Spikes are

introduced by incorrect reconstruction. If this filter is omitted, the error is diffused into neigh-

boring vertices by the subsequent two filters resulting in bulges on the polygonal surface.

• Smoothing:A smoothing filter is applied to remove white noise introduced by the acquisition

process. A3× 3 kernel is utilized, allowing smoothing only with the immediate neighbors.

• Sub-sampling:The reconstruction algorithm can compute as many vertices as desired, up to

the number of pixels per lens divided by two. Note that using more vertices than the number

of pixels does not offer any real increase to the resolution. Such a reconstruction resolution

is well above the requirements of most real-life applications. Instead of reconstructing the

object directly in the desired lower resolution, the object can be reconstructed at a higher

resolution. Subsequently, the grid of vertices can be sub-sampled to obtain the lower reso-

lution. This results in reconstructions of higher quality and robustness but has an increased

computational cost.

3.E. Computational Requirements

Due to the two dimensional nature of the problem, the theoretical computational requirements of

the reconstruction process areO(W 2N2S2). However, due to several optimizations in the imple-

mentation, we achieved almost linear behavior for all three parameters within the useful parameter

range. An optimization example is the use of only vertical horizontal neighbors in the matching
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(a) (b) (c)

Fig. 7. Computational requirements of reconstruction: (a) VaryingW with S = 1,

N = 3; (b) VaryingN with S = 1, W = 4 and (c) VaryingS with N = 1, W = 1.

process. We performed an experiment to practically measure the computational requirements of

the reconstruction process. We used64× 64 elemental lenses, with64× 64 pixels each. The focal

length was3.0 and the pitch was1.0. We varied theN , W andS parameters inside their useful

range. The results are depicted in Fig. 7. All measurements were carried out on a Pentium 4 3.0Ghz

with 1GB of RAM.

3.F. Depth Accuracy Analysis

In a classical stereo vision reconstruction approach, the depth accuracy depends only on the num-

ber of pixels in the stereo images. By increasing the image resolution, the number of different

depth values that can be computed increases, thus increasing the sensor’s accuracy. The accuracy

generally decreases proportionally to the distance from the cameras. This property may be useful

if we want more accuracy near the cameras, but is a drawback if we require even distribution of

the accuracy across the entire depth range of the sensor.

Our lens array based reconstruction offers a configurable depth accuracy distribution. In our
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(a)f = 3.2mm (b) f = 4.8mm (c) f = 6.4mm

(d) f = 8.0mm (e)f = 9.6mm (f) f = 11.2mm

Fig. 8. Accuracy distribution for variable focal lengthf (from 3.2 to 11.2), using

R = 32 × 32. Each plot shows graphs utilizing fromN = 1 to 8 neighbors (color

coded from bright red to black respectively).

novel approach, the depth accuracy is a function of the parametersN , R and f . The effect of

parameterR is straightforward: the more pixels we have in each elemental image, the higher the

reconstruction accuracy. ParameterN affects the accuracy in a similar way: the more neighbors

we utilize, the more pixels we take advantage of and thus the greater the depth accuracy. The

interesting feature is that each successive neighbor does not distribute its additional depth accuracy

across the entire depth range, but it only affects the accuracy after a certain depth. This depth is
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equal to2·k·f for thekth neighbor. Therefore, the effect of the focal length is twofold: it determines

how fast the depth accuracy of each lens dissipates, and it controls the interleave between the useful

depth ranges of successive lenses.

This property is demonstrated in the graphs of Fig. 8. In this figure, the accuracy distribution was

practically measured, using32 × 32 pixels per lens and varying focal lengths (from3.2 to 11.2).

Note that our practical measurements conform with the theoretical depth accuracy limits of parallel

camera setups described by Sonet al..17 Within each graph, the accuracy distribution for varying

number of neighbors (N = 1 to 8 ) is depicted. In lower focal lengths (thinner lens arrays), each

lens distributes most of its depth accuracy at a near range and at the same time there is substantial

interleave between the depth distributions of successive lenses. This results in peak accuracy near

the lenses and a fast accuracy degradation away from the lenses. In higher focal lengths there is

less interleaving, slower accuracy degradation, but also a lower peak value. Therefore, the focal

length is the key to configure the accuracy distribution. Note that the total accuracy (total number

of distinguishable depth values) is the same in all cases, since it is in fact cumulative and depends

only onN andR.

In a practical application, for a given target accuracy, we can estimate the requiredN , R and

f parameters in order to maintain it stable for a given range. For example, in Fig. 8, with a focal

length of11.2 and using8 neighbors, we can maintain an almost stable depth accuracy of5mm

for depths ranging from2cm to 14cm. For resolutions of64 × 64 and128 × 128 this accuracy is

improved to2.5mm and1.25mm respectively.
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Fig. 9. Synthetic fish used in the virtual lens array experiments.

4. Results

We present results using both synthetic and real-life data. We utilize the synthetic data in order to

demonstrate the effect of the focal length of the lenses on the quality of the reconstructed object.

We utilize the real data in order to demonstrate the robustness and accuracy of our prototype setup

and our algorithmic approach. For visualization purposes we show both the IP images used for

reconstruction and the resulting reconstructed object.

4.A. Synthetic Data

Using a commercial ray tracer (PovRay) we implemented a virtual lens array setup18 with similar

properties to the real one utilized in the prototype setup. The virtual lens array’s parameters are

configurable; in our experiments we opted for varying the focal length while retaining all other

parameters unchanged. We used64× 64 pixels per lens and64× 64 lenses. The pitch was1mm.

This setup has a total resolution of4096×4096 pixels and a scanning area of64×64mm. The syn-

thetic object we used for the experiment was a fish of approximate size40mm along its principal
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axis (Fig. 9). We used three different focal lengths (3mm, 6mm and9mm) thus obtaining three

IP images, depicted in Fig. 10 (a,b,c). In order to keep the object inside the useful depth range of

the lenses we positioned it at12mm, 24mm and36mm away from the lens array respectively, a

distance equal to4f . We performed 3D reconstruction usingW = 6, N = 4 andS = 4 for all

three cases and the results are visualized in Fig. 10 (d,e,f). Note that the texture information used

in the renderings of Fig. 10 is acquired by the same setup.

The quality of the reconstructed polygonal object in all three cases is almost identical. No dis-

crepancies were noted demonstrating our method’s robustness to different focal lengths. However,

a detailed visual inspection of the results indicated that the reconstruction with the higher focal

length was of slightly better quality in certain areas. Synthetic experiments, such as the one de-

scribed in this section, combined with the analysis of depth accuracy of Sec. 3.F allow the selection

of the optimum lens array for a given hardware acquisition device.

4.B. Real Data

We acquired real IP data using the prototype setup described in Sec. 2. We reconstructed a small

hemispherical case with rough texture. We selected this object because of its simple shape that

allowed us to evaluate the reconstruction visually. The scanned IP image is depicted in Fig. 11

(a). Note that we used a scanning resolution close to 2400dpi to achieve a resolution of98 × 98

pixels per lens (elemental image). In practice however, the real scanning resolution of the device is

significant lower than the one specified by the manufacturer.

We depict the resulting reconstruction in Fig. 11 (b, c). The reconstructed polygonal surface is

rendered with the acquired texture and with the triangulation superimposed. It can be seen that

the reconstruction is of high quality with no significant artifacts. In Fig. 11 (d, e, f) we depict the
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reconstruction using a more refined triangular grid (S is 2, 3 and4 respectively); the triangulation

is not superimposed because the grid is extremely dense and the object’s texture would not be

visible. Note that the background in the IP image is not reconstructed correctly; this could be dealt

with using a background removal algorithm.

5. Conclusion

The use of an IP system for the reconstruction of 3D shape and texture purposes is advocated. An

algorithmic method and a hardware setup that allows robust and accurate estimation of a polyg-

onal 3D surface of real life 3D objects is presented. Using a scanning CCD and a lens array, an

IP is acquired that is subsequently processed by a novel algorithm in order to compute the 3D

reconstruction of shape and texture.

It is shown that our system has unique properties over other optical approaches. The seamless tri-

angulation regardless of the object’s position in the lens array field of view maximizes the effective

range. The configurable depth accuracy allows the adjustment of the setup based on the application

needs in order to optimally utilize the available depth resolution. The redundancy provided by the

multiple views increases robustness.

Future work will be directed towards scanning various real life textureless objects. These ob-

jects posed a significant challenge to optical scanners in the past, since the lack of texture made

the solution of the correspondence problem difficult. Most optical systems rely on active devices

(e.g., structured light projectors) to tackle this issue. We will investigate how our system’s optical

redundancy may alleviate this problem.
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(a) (d)

(b) (e)

(c) (f)

Fig. 10. Reconstruction of a synthetic fish (Fig. 9) for variable focal lengths (3mm,

6mm and9mm from top to bottom) using64×64 pixels per lens,64×64 lenses (el-

emental images) and1mm pitch: (a,b,c) Input IP images and (d,e,f) corresponding

renderings of reconstructed 3D object with the surface triangulation superimposed.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Shape and texture reconstruction of a real-life object: (a) Input IP image

using98 × 98 pixels per lens andf = 3.3mm; (b,c) Renderings of reconstructed

3D object with the surface triangulation superimposed (usingS = 1); (d,e,f) Ren-

derings using more subdivision steps (S = 2, 3 and4 respectively).
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