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Abstract

As the accuracy of biometrics improves, it is getting increasingly hard to push the

limits using a single modality. In this paper, a unified approach that fuses three-

dimensional facial and ear data is presented. An annotated deformable model is

fitted to the data and a geometry image is extracted. Wavelet coefficients are com-

puted from the geometry image and used as a biometric signature. The method is

evaluated using the largest publicly available database and achieves 99.7% rank-one

recognition rate. The state-of-the-art accuracy of the multimodal fusion is attributed

to the low correlation between the individual differentiability of the two modalities.
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1 Introduction

Among the different biometric modalities, the ones that rely on three-dimensional

(3D) information are constantly gaining ground. This is due to the increased

availability of 3D scanners, and to the inherent advantages of 3D data which

do not suffer from limitations commonly found in 2D data (e.g., pose, illumi-

nation).

Biometric recognition algorithms based on 3D face and, more recently, 3D

ear data have appeared and achieved high accuracy. This is approximately

97% rank-one recognition rate on widely accepted databases. As we approach

the 100% mark, progress is getting harder as the discriminatory power of

the algorithms is exhausted as similar datasets from different subjects and

problematic datasets exist in any single modality. We thus strongly believe that

significant further progress can only result from fusing multiple modalities. To

be effective such fusion must combine modalities that have low correlation in

their individual differentiabilities.

Both the human face and human ear, are considered unique characteristics

of an individual, thus making them suitable for biometric applications. Each

modality is widely used by many approaches and some proved to be robust

and relatively accurate. However, each modality has its own limitations. For

example, faces are subject to facial expressions which can affect recognition.

On the other hand, the inner ear’s elaborate structure cannot be fully captured
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by modern 3D scanners due to self-occlusions.

Compared to other multimodal options the combination of face and ear offers

certain advantages. The data can be captured using the same equipment and

they are both represented as geometry. The latter allows the face and ear to

be considered parts of the same biometric, the human head. Therefore, meth-

ods that can seamlessly handle both types of data are becoming increasingly

important. In this paper, we present such a method that combines 3D face

and ear data. Moreover, we show that there is a low correlation between the

differentiability of 3D face and ear data. Most importantly, it boosts rank-one

recognition accuracy to 99.7% on the largest publicly available multimodal

database.

1.1 Related Work

Hurley [10] was the first to propose a method suitable for both face and ear.

He presented a force field transform that could be applied on 2D images of the

face or ear. An evaluation of 2D ear and face biometrics was given by Victor [2].

According to that work, face biometrics performed significantly better than

ear biometrics. On a latter work, Chang [4] contradicted the results of Victor,

showing superior performance for the ear modality. Chang used an eigen-

based method that allowed the combination of the two modalities presenting

a multimodal biometric that performed better than each separate modality.

However, in the above studies, only 2D data of the face and ear were used.

In the 3D face recognition domain, most recent works utilize the FRGC v2

database, the largest publicly available 3D face database. This database is
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also used in this paper (see Sec. 3). On this database, Chang [5] examined the

effects of facial expressions using two different 3D recognition algorithms. They

reported a 92% rank-one recognition rate. Husken [11] presented a multimodal

approach that uses hierarchical graph matching (HGM). They extended their

HGM approach from 2D to 3D but the reported 3D performance is lower than

the 2D equivalent. Their fusion, however, offers competitive results, 96.8%

verification rate at 0.001 False Acceptance Rate, compared to 86.9% for the

3D only. Maurer [16] also presented a multimodal approach tested on the

FRGC v2 database, and reported a 87% verification rate at 0.01 FAR. In our

previous work on this database [12], we reported the highest scores, using the

3D face modality alone: 97% rank-one recognition and an average verification

rate of 97.1% at 0.001 False Acceptance Rate.

In the 3D ear recognition domain, Chen [6] presented a method that uses a

local surface patch to compute feature points. Using a subset of the UND

Ear database, which is also used in this paper (see Sec. 3), they reported

96.4% rank-one recognition rate. Note that they utilized a smaller subset (302

subjects) than we utilized in this paper.

Using the same database, but using a larger subset (415 subjects), Yan and

Bowyer [26,27] reported 97.6% rank-one recognition rate, for their 3D ear

recognition method. They propose a new ICP-based approach for ear recog-

nition that significantly decreases their computational time, which is essential

if such an approach is to be used in practice. Additionally, they propose an

algorithm which uses heuristics based on some constraints of the input data,

and active contours for automatic ear extraction.

There has been very little work in combining the 3D face and ear modalities.
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Only Woodward [25] have attempted to fuse 3D ear, face and finger data. They

achieved 97% rank-one recognition rate on a small database of 85 individuals

using all three modalities. To the best of our knowledge, the method proposed

in this paper outperforms all previous single or multimodal approaches (3D

face and ear) that presented results on similar sized databases.

1.2 Overview

In this paper, we propose a combined face and ear approach that uses 3D data.

We extend our previous work on intra-class 3D object retrieval [18] to handle

human ears. We then incorporate improvements that we successfully deployed

in the face recognition domain [12]. The result is a novel unified approach that

can seamlessly handle both faces and ears.

An annotated deformable model is constructed for each object class, face and

ear. Each model is fitted to the corresponding 3D datasets using a subdivision-

based deformable framework. Subsequently, the geometry image of the de-

formed model is computed, and wavelet coefficients are extracted. These co-

efficients form a multimodal biometric signature that achieves state-of-the-art

performance. The method is automatic, robust and efficient and it requires

no training as it does not use statistical data. It is shown that each modality

confutes the shortcomings of the other, thus making 3D faces and ears a very

accurate multimodal biometric.

The rest of the paper is organized as follows: Sec. 2 describes the methods we

have developed, Sec. 3 describes the biometric databases, Sec. 4 presents our

state-of-the-art performance, while Sec. 5 summarizes our work.
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2 Methods

The proposed method processes each face and ear dataset through a common

pipeline of algorithms. The only difference between the processing of faces and

ears is that each uses its own annotated model. This model is representative

of the respective classes (face and ear) and is purely geometrical. The model

is used for registering each dataset and and then, through a fitting process,

acquires its shape. A regularly sampled representation called the geometry

image is extracted and a wavelet transform is applied to extract the biometric

signature. The steps that each face or ear dataset goes through are:

(1) Preprocessing: Raw data are preprocessed and segmented.

(2) Registration: The raw data are registered to the annotated model using

a two-phase algorithm.

(3) Deformable Model Fitting: The annotated model is fitted to the data.

The fitted model is then converted to a geometry image.

(4) Wavelet Analysis: A wavelet transform is applied on the geometry image

(and derived normal image) and the wavelet coefficients are exported and

stored.

2.1 Annotated Models

We have constructed two annotated models, the Annotated Face Model (AFM)

and the Annotated Ear Model (AEM), both depicted in Fig. 1. These models

need to be created only once, and are used to process any number of datasets.

Both models share some basic characteristics. They are both average shapes

of their class, created from statistical data. They are represented by a 3D
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(a) (b)

Fig. 1. (a) Annotated Face Model; (b) Annotated Ear Model. Annotation areas are

marked with different color.

polygonal mesh that mainly has valence-6 vertices. This is due to the fact

that these vertices define the control points of a subdivision surface as ex-

plained in Sec. 2.4. The AEM utilizes only the inner area of the ear (called

concha) because the outer part of the ear is usually occluded by hair or other

accessories, thus limiting its value as a biometric characteristic.

Certain areas are annotated on each model (see Fig. 1). The annotation was

done empirically and is based on the physiology of the face and ear. These

areas have different properties associated with them which are utilized by our

method (e.g., rigidness, feature importance, resilience to noise). For example

the mouth area, is considered less rigid than the nose area in the fitting step

and is also considered less important in the comparison step. In the AEM, the

bottom of the ear pit (marked blue in Fig. 1 (b)), is expected to have spikes

due to self-occlusion, and is assigned a lower weight during comparison.
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(a) (b) (c) (d)

Fig. 2. Raw (a,c) and processed (b,d) datasets of the same subject.

Finally, a continuous global UV parametrization is applied to the annotated

models. The specific parametrization is essentially a mapping form R3 to R2

and has two significant properties: it is area-preserving and injective. The area-

preserving property minimizes the stretching imposed by the mapping. The

injective property allows us to convert the annotated models from a polygo-

nal representation to an equivalent geometry image representation. Geometry

images [9,20] are regularly sampled 2D images that have three channels, en-

coding geometric information (x, y and z components of a vertex in R3). In

this work, the number of channels in the geometry image is greater than three,

as apart from geometric information we also encode normal and annotation

information.

2.2 Preprocessing

The purpose of preprocessing is mainly to eliminate sensor-specific problems

and for the case of the ear datasets, to segment them from the rest of the head

(see Fig. 2). In general, modern 3D sensors output either a range image or 3D

polygonal data, but in our experiments we used only range images from laser

scanners. Therefore, the following preprocessing algorithms operate directly

on the range data, before the conversion to polygonal data.
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• Segmentation: Only ear datasets need segmentation; the face datasets omit

this step. We keep the 3D geometry that resides within a sphere of a certain

radius that is centered roughly on the ear pit. Using a custom tool, a human

operator places the center of this sphere, guided by information such as the

center of mass and the average normal. This segmentation is the only part of

our method that is not fully automatic and we are currently in the process

of automating it.

• Median Cut: This filter is applied to remove spikes from the data. Spikes are

common issues with laser range scanners, especially in certain areas such as

the eyes or the ear pit. A 3× 3 kernel is used.

• Hole Filling: Laser scanners usually produce holes in certain areas where

hair are present, so a hole filling procedure is applied.

• Smoothing: A smoothing filter is applied to remove white noise, as most

high resolution scanners produce noisy data in real-life conditions. A 3× 3

kernel is used.

• Subsampling: Only face datasets need subsampling, the ear datasets omit

this step. Using data with resolutions higher than the AFM is a waste

of computational time, as the AFM effectively resamples the data during

fitting.

2.3 Registration

Data acquired from 3D scanners have arbitrary orientation. Before the anno-

tated model (AFM or AEM) is fitted to these data, the two must be coreg-

istered. To this end, we employ a two-phase rigid registration step. In both

phases the dataset is registered with the annotated model, with the results of
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(a) (b)

Fig. 3. Images from an ear dataset as used in Simulated Annealing: (a) Depth image

and (b) normal image.

the first phase being used as input for the second.

The first phase utilizes is the Iterative Closest Point (ICP) algorithm [3].

ICP determines correspondences between vertices and minimizes the sum of

the square of their distances. We employ an improvement suggested by Turk

et al.[24] to reject vertex pairs containing points on surface boundaries. Even

though ICP always gives a plausible registration, our experiments showed that

it is not optimal.

To this end, as a second phase, we utilize the registration algorithm presented

by Papaioannou [17] that uses a global optimization technique (Simulated

Annealing [13,21]) applied to depth images. We modified the algorithm to

compute normal images as well (Fig. 3). In an OpenGL environment, the depth

images are derived directly from the z-buffer and the normal images from the

color buffer. The orientation of the raw data is controlled by the parameter

vector ω = [tx, ty, tz, φ, θ, ψ] where (tx, ty, tz) is the translation vector and

φ, θ, ψ are the Euclidean rotation angles. This parameter vector controls the
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Simulated Annealing process which minimizes the following objective function:

Etotal = Ed + w · Ec

where Ed is the depth buffer error, Ec is the color buffer error, and w is an

empirically selected normalization weight. The depth and color buffer errors

are computed as follows: Ed =
∑R

i=1

∑R
j=1 |Dmodel(i, j)−Ddata(i, j)| and

Ec =
R∑

i=1

R∑
j=1

|CR
model(i, j)−CR

data(i, j)|+|CG
model(i, j)−CG

data(i, j)|+|CB
model(i, j)−CB

data(i, j)|

where R is the spatial resolution of the buffers, D is the z-buffer, and CR, CG

and CB are the three chromatic components of the color buffer.

Registration is the most critical step of our method as errors introduced here

cannot be alleviated later, and generally result in failures. We used both depth

and normal images because each one has its own advantages and disadvan-

tages. Depth images are extremely sensitive to spikes and other quality prob-

lems commonly found in the datasets. However, normal images are less sensi-

tive to these problems but do not provide information about translation along

the Z axis. Their combination allows Simulated Annealing to find an excellent

solution.

2.4 Deformable Model Fitting

In order to fit the annotated model (AFM or AEM) to the raw data, a de-

formable model framework [23] is utilized. The main idea is that the defor-

mation of the AFM is controlled by internal and external forces. The internal

forces correspond to the elastic properties of the model’s surface (e.g., strain

energy, material stiffness) and resist the deformation. The external forces de-
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(a)

(b)

Fig. 4. From left to right, for face (a) and ear (b) datasets of the same subject: Raw

data → Fitted AFM → Extracted geometry image → Computed normal image.

form the model so that it gradually acquires the shape of the raw data. The

analytical equations are solved using an iterative Finite Element Method ap-

proximation.

Analytical Formulation: The basic equation of the deformable model frame-

work is given by:

Mq
d2−→q
dt2

+ Dq
d−→q
dt

+ Kq
−→q = fq

where−→q is the control points vector, Mq is the mass matrix, Dq is the damping

matrix, Kq is the stiffness matrix, and fq are the external forces. For data

fitting purposes we used M = Ø and D = Ø. The stiffness matrix is the

most important component as it resists the external forces and determines

elastic properties of the model. It can be decomposed into three matrices

K = Kfo + Kso + Ksp. The matrix Kfo is related to the first order strain

energy, Kso to the second order strain energy and Ksp is related to the spring

forces energy:
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Efo = 1
2
κfo~q

TKfo~q,

Eso = 1
2
κso~q

TKso~q,

Esp = 1
2
κsp~q

TKsp~q

where κfo ,κso, κsp are the individual weights.

Finite Element Method: In our implementation, we employed the subdivision-

based Finite Element Method approximation proposed by Mandal [15]. This

approximation solves the above equations in an iterative way. We build a Loop

subdivision surface using the AFM as the control mesh. We selected to use the

Loop subdivision scheme [14] for two reasons: it produces a limit surface with

C2 continuity and only 1-neighborhood area information is needed for each

vertex. In the above equations the vector −→q corresponds to the control mesh.

However, the equation is evaluated using a vector
−→
Q that corresponds to the

limit surface. As shown by Mandal [15], by using the inverse subdivision ma-

trices, the computed forces on
−→
Q can be transferred to −→q . The external forces

fq are also computed on the limit surface and then transferred to the control

mesh. For each vertex of
−→
Q the nearest neighbor on the raw data surface

is found and this creates a deformation force proportional to their distance.

Therefore, the raw data surface acts as an attractor to the annotated model

and drives the deformation. Note that in order to reduce the computational

cost of the nearest neighbor search we employed a space partitioning technique

[8].

When the deformation concludes, the annotated model acquires the shape of

the raw data. Since the deformation has not violated the properties of the

original model, the deformed model can be converted to a geometry image.

13



(a) (b) (c)

Fig. 5. Wavelet analysis of a facial geometry image. For visualization purposes, the

coefficient’s magnitude is mapped as greyscale intensity: (a) Original image ; (b)

Four level Walsh transform; (c) Mask that selects 15% of wavelet bands.

We also compute the normal image. This process is depicted in Fig. 4 for face

and ear datasets of the same subject.

2.5 Wavelet Analysis

We apply a wavelet transform on the derived geometry and normal images

in order to extract a descriptive and compact biometric signature. To this

end, we employ the Walsh Transform [22]. Each channel of the geometry and

normal image is treated as a separate image for the wavelet analysis. The

Walsh wavelet transform for images is a decimated wavelet decomposition

using tensor products of the full Walsh wavelet packet system. The 1D Walsh

wavelet packet system is constructed by repeated application of the Haar filter

bank, a two-channel multirate filter bank based on the Haar conjugate mirror

filter. Both channels output the result of convolving a 1D discrete signal with a

Haar filter and then downsampling by a factor of two. The low–pass and high–

pass Haar filters are g and h, respectively: g = 1√
2
[1 1] and h = 1√

2
[1 − 1].

For images, we use tensor products of these 1D filters. This means that the
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filter bank operations are applied separately to the rows and columns of the

image, resulting in a four channel filter bank with channels LL, LH, HL, and

HH (corresponding to the filters gt ∗ g, gt ∗ h, ht ∗ g and ht ∗ h respectively). In

other words, channel LL (low–pass) captures the local averages of the image,

and channels LH, HL and HH (high–pass) capture horizontal, vertical and

diagonal edges, respectively. We recursively apply this decomposition to each

of the four output channels to construct the full Walsh wavelet packet tree

decomposition (see Fig. 5 (b)).

Conjugate mirror filter banks achieve perfect reconstruction, so the Walsh

transform preserves all information originally present in the signal. However,

for efficiency purposes we keep only certain coefficients that retain most of

the energy of the image. We thus favor the low–pass bands of the packet

tree decomposition (see Fig. 5 (c)). The selected coefficients are directly com-

pared during identification without reconstructing the original image, using a

weighted L1 distance metric. The weights are empirically selected and depend

on the annotation of the face or ear model. For each modality, the biometric

signature is the concatenation of the wavelet coefficients that were extracted

from the geometry and normal images. For the multimodal fusion, the coeffi-

cients of each modality are concatenated using an empirical global normaliza-

tion weight.
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(a)

(b)

Fig. 6. Unprocessed multimodal data pairs from four subjects: (a) Facial data from

FRGC v2; (b) Ear data from UND Ear.

3 Databases

Face Database: For facial data, we use the FRGC v2 database [19], the

largest publicly available 3D face database. It contains a total of 4007 range

images (e.g., Fig. 6(a)), acquired between 2003 and 2004. The hardware used

to acquire these range data was a Minolta Vivid 900 laser range scanner,

with a resolution of 640x480. These data were obtained from 466 subjects and

contain various facial expressions (e.g., happiness, surprise). The subjects are

57% male and 43% female, and the age distribution is 65% 18-22 years old,

18% 23-27 and 17% 28 or over. The datasets are divided into gallery and probe

sets, with one gallery per subject, resulting in 466 gallery and 3541 probes.

Ear Database: For ear data, we use the Ear Database from the University of

Notre Dame (UND) [1], collections F and G. We used a subset defined by the

makers of the database that contains 830 range images (e.g., Fig. 6(b)) from
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415 subjects and the data were acquired from fall 2003 to fall 2004. Again,

the Minolta laser scanner was used, with a resolution of 640x480. Note that

compared to the facial datasets, the ear datasets are more prone to missing

data and noise due to the elaborate structure of the human ear, which includes

many concavities (see Fig. 6). The datasets are divided into gallery and probe

sets, with one gallery per subject, resulting in 415 gallery and 415 probes.

Multimodal Database: In order to create a multimodal face and ear database

we combined the above databases. Even though these databases were created

separately, they share a lot of common subjects. Using the subject ID it is

possible to identify facial and ear data that belong to the same subject. An

example is given in Fig. 6, where four pairs of datasets from four subjects are

shown. To perform multimodal experiments, we need to select subjects that

have at least one probe and one gallery in each database. There are a total

of 324 such subjects, resulting in a subset of FRGC v2 with 324 gallery and

3259 probe face datasets and a subset of UND Ear with 324 gallery and 324

probe ear datasets. We combined these datasets in two ways:

• We created 324 gallery and 324 probe multimodal datasets. Each dataset is a

unique (face, ear) pair from the same individual. This multimodal database

will be referred to as MULTI1.

• We created 324 gallery and 3259 probe multimodal datasets. In this case

each ear probe was paired with multiple face probes of the same individ-

ual, since there were fewer ear probes than face probes. This multimodal

database will be referred to as MULTI2.
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Table 1

Rank-one recognition rates for two databases.

MULTI1 MULTI2

Fusion 99.7% 99.4%

Face 97.5% 97.2%

Ear 95.0% 95.0%

4 Results

4.1 Performance

Using the gallery/probe division of our databases, we performed an identifi-

cation experiment. The performance is measured using a Cumulative Match

Characteristic (CMC) curve and the rank-one recognition rate is reported. For

comparison purposes we also report the results for each modality separately.

The fusion of the face and ear performs significantly better than each modal-

ity as seen in Table 1. Also, the face modality performs better than the ear

modality, despite the challenging nature of the FRGC v2 database. The im-

portance of the multimodal fusion is more evident in Fig. 7. The fusion curve

can reach 100% recognition rate before rank 15. On the contrary, neither single

modality can reach 100% before rank 20. This indicates that the cases where

the method completely fails to identify a subject are uncorrelated, therefore

one modality can confute the shortcoming of the other.
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(a)

(b)

Fig. 7. Recognition rates for fusion, face and ear modalities on two databases: (a)

MULTI1 (b) MULTI2.

4.2 Correlation Analysis

In order to measure the correlation between the face and ear modalities we

used the Pearson Correlation Coefficient [7]. This coefficient indicates the
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Fig. 8. Differentiability for the 324 probe datasets of MULTI1. For each probe,

negative values indicate that the closest gallery dataset does not belong to the same

subject.

strength of a linear relationship between two random variables, and is given

by

rxy =

∑n
i=1(xi − xi)(yi − yi))

(n− 1)sxsy

where x and y are two variables with n measurements, x and y are their mean

values, and sx and sy their standard deviations. For positive correlations, rxy

can range from 0 to 1; higher values indicate stronger correlation.

For each of the face and ear modalities, we first computed the differentiability

of the probes using database MULTI1. This is a 1-dimensional array with size

equal to the number of probes of the database. For each probe, the differentia-

bility is defined as its distance from the nearest gallery dataset that belongs to

a different subject minus the distance from the gallery dataset that belongs to

the same subject. The higher this value is, the more differentiability we have,

since the distance of the correct match to the nearest outlier increases. If the

value is negative, this indicates a mismatch, as the outlier was closer than the
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correct match. The differentiability graph for the face and ear modalities is

depicted in Fig. 8. From this graph, it is shown that the negative spikes are

not common for the face and ear (with only 2 exceptions), indicating small

correlation.

This is confirmed by the Pearson Correlation Coefficient, as the correlation

between the face and ear was 0.161. From a statistical point of view this cor-

relation is considered small, which shows that these modalities are ideal for

combination using our method 1 . For comparison purposes, we also computed

the Pearson Correlation Coefficient between the face and the mutlimodal fu-

sion, and between ear and the multimodal fusion. These correlations were

0.449 and 0.915 respectively. These values indicate strong correlation which

was to be expected since the multimodal fusion is a linear combination of the

two modalities.

5 Conclusions

We have presented a unified multimodal approach that seamlessly handles 3D

face and ear data. Geometry images are obtained after a fitting process of an

Annotated Face Model and an Annotated Ear Model. Wavelet coefficients are

then extracted which provide a descriptive and compact biometric signature.

Using the largest publicly available database we presented state-of-the-art

performance that reaches 99.7% rank-one recognition rate. Moreover, we show

that there is a low correlation between the differentiability of 3D face and ear

1 The computed correlation depends on both the datasets and the method used to

compute the distances.
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data. Future work, will focus on utilizing the whole human head as a single

3D modality that will include facial and ear structures.
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