
107

Two Parallel Methods for Polygon Clipping

Theoharis Theoharis'
and Ian Pagd

Abstract

A control parallel and a novel data parallel implemen-
tation of the Sutherland-Hodgman polygon clipping
algorithm are presented. The two implementations are
based on the INMOS transputer and the AMT Distri-
buted Array Processor respectively; both of these
machines are general purpose parallel processors. Per-
formance Figures are reported a1d implications for
further work are discussed.

Keywords rnd phrascs: polygon clipping, Multiple
Instruction Multiple Data stream (MIMD) processor,
Single Instruction Multiple Data stream (SIMD) pro-
c€ssor, transputer, DAP

l. lntrodnction Tbe Transputer and tte DAP

The INMOS tra.nsputerl and the AMT Distributed
Array Processor (DAPf are two very di.fferent exam-
ples of a general purpose parallel processor. They lie at
opposite ends of the spectrum that defines the distribu-
tion of processing power and the organisation of con-
trol; the former offers coarse gain control parallelism
and the latter fine grain data parallelism. The two
machines are typical examples of a Multiple Instruction
Multiple Data stream (MIMD) and a Single Instruction
Multiple Data sueam (SIMD) parallel processor.
Although special purpose parallel architectures can pro-
vide very eftcient support for some restricted class of
applications, the wider applicability of a general pur-
pose machine often makes it more cost-effective.

The transputer is a 32-bit microprocessor with
on-chip local memory and 4 bidirectional bit-serial
links which e,nable it to be connected to 4 other trans-
puters in order to construct a MIMD system. The user
physically wires transputers together using their links in
order to construct networks of various topologies. The

'
St. Catharine's College

Cambridge CB2 IRL
U.K.
r Oxford University Computing Iaboratory
8-l I Kcble Road
Oxford OXI 3QD
U.K.

The authors would like to express their gratitude to IN-
MOS Ltd and Sigmex Ltd who have provided financial
support for the doctoral strrdies of Theoharis.

North-Holland
Computer Graphits Fnrum 8 (l9U9) 107- I 11

topolory of a transputer network is easily modifiable; it
is only a matter of specifying a configuration and
changrng the physical link connections between the
transputers. Pipelines, trees, arrays and other topologies
can easily be constructed out of the seme transputer
network according to the requirements of ttre task at
hand.

The transputer efficiently supports tle concurrent
progrnmming language Occam3'a which is derived from
Hoare's Communicating Sequential Processes (CSP)s.
An Occam program consists of a number of processes.
hocesses can be explicitly combined to run in parallel
by means of the PAR statement. Concurrent processes
can communicate vra channels. A channel provides uni-
directional communication between a pair of processes.
Concurrent proc€ss€s may be executed by one or more
transputers and Occam allows the allocation of
processes to transputers to be performed with ease.
"Software" channels provide communication between
pairs of processes running on the same transputer while
physical transputer links implement the channels of
proc€sses running on di-fferent transputers.

Processor arraTs consist of NX.l{ prrcessing ele-
menrs (PE s) operating in SIMD mode and are prob-
ably the most widespread form of parallel processor.
The Illiac IV, Burroughs PEPE, Goodyear Aerospace
STARAN and more recently the ICL DAP, CLIP
(University College, London), Burroughs BSP and MPP
are representative examples of the large class of proces-
sor arrays that have been designed over the past 25
years5. The DAP is an .l{XN array of bit-serial PEs.
Each PE has its own, local, bit-wide memory and is
coDnocted to its four nearest neighbours. A full adder
and 3 registers are the main components of a PE (all
are bit-wide). One of the registers, the activity register,
has special signi-ficance; an instruction is only executed
by those PE s whose activity registers contain the value
TRUE. It is thus possible to control which PE s execute
any one instruction by setting the activity registers as
n€c€ssary, a process called masking.

The DAP is progremmed in DAP FortranT'8
which is a.n extension of Fortran that offers two new
data types; vector and matrix. Vector objects consist of
N scalar elements wbile matrix objects are made up of
l{X.lf scalar elements. The dimensions of objects of the
above two data types are implicit in declarations (N
refers to the iV X lf PE s of the DAP). For example:

108 T. Thcoluris et al. / Parullel Methds for Polygon Clfui"g

REAL.4 A0, B(,) , C(, ,10)

declares ,{ as a vector of iV +byte real elem€nts, B as a
mahix of .iVXN real ele,nents and C as an array of l0
matriccs of]VXN real elements each. The usual arith-
metic op€,rators are used for arithmetic operations
bcrreen v@tor or matrix objects; the operations are
performed in parallel for all scalar eleme,nts of the vec-
0ors or matrices. A sp€cial kind of assignmen! the con-
ditional assignment, uses a logical vector or matrix
expression as a mask which enables the assignmeirt to
take place only in those ele,me,nts of the l.h.s. vector or
matrix for which the corresponding mask ele,ment is
TRUE. For example, the statem€nt:

B@.m.0) -0

sets all the negative ele,ments of .B to 0.

2. The Subetun&Hodgmrn Polygon Oipping lteo,
rifrn

The Suthcrland-Hodgnan polygon clipping algorithm
is best described in their papere; in this section we
demonstrate the key conc?ts involved in the algorithm
which are n€cessary for the explanation of the parallel
approaches to its inplementation presented in sections
3 and 4.

The polygon to be clipped is represented as a
s€qu€,noe of vertices which oocur in the order dictated
by an anticlockwise traversal around the polygon. The
polygon is clipped against (the clipping plane defried
by) the first facc of the clipping pyramid and a new
sequmce of vertices is produced which represe,nts the
polygon clipped against the first face of the pyramid.
The process is repeated for each of the six faces of the
cltpping pyramid. The seque,nce of vertices that are pro
duced by the last chpping staget r€,pres€nts the polygon
chPPd agninsl the clipping Pyramid.

Clippiog against a single clipping plane is per-
formed by considering the polygon's vertices in pairs
(vi, vi*l). For each such pair 0, I or 2 vertices are
appended to the clipped polygon sequen@, de,pending

(a) (b) (c) (d)

o represent vertices added to the clipped
polygon sequence

Figure l. Clippi"g againsl a single clipping plane.

clipping

on the relationship of the vertex pair to the clipping
planc. The 4 possible cases are demonstrated in Figure
L Notc that the first vertex of the polygon must also be
repeated as the last.

The next subsoction d€scrib€s how the key calcula-
tions of determining the relationship betwee,n a v€rtex
and a clipping plane and calculating the intersection of
a clipping plane with a line segment can be performed
e,fficiently.

2.1. Key Oiping Calculations

Clippiog is performed in the eye coordinate system. kt
us assume that eye coordinatcs are homogeneous i.e.
the point (x", !r, z") is represented as a quadruplet
(wrx. wq/c, ut"z", w") for wrt'O, see $7.2 of Foley and
van Daml0. If the viewing transformation calculates
the u). coordinate of a point (x", !", z") as
w" - (S / D\ 2", wh€re S is half the scree,n height / width
and D is the distancc from the vienpoint to the scree,n
plane, the,n the tests for a point being inside each of the
six clipping planes are the following:

inside

toP lc 4 wc
bottom)" 2 -w"

left x, 2 -w,

right x, 4 w,
hither z,7 z1a11111a
yon z" 4 zygy

where z = ztilnrER atd z = zyep tr€ the hither and
yon clipping planes respectively.

Wc also need to be able to determine the intersec-
tion of a clipping plane with a line segment whose two
e,ndpoints lie on either side of the clipping plane. We
use the method suggested by Suthedand et d.e. Con-
sider the points Pr - (r"r, !cr, Zct) and P2 = (x,2,

Jc2, zez) lying on either side of the top clipping plane.
The parametric equations of the line s€gm€nt fron P;
to P2 can be written as:

Xc - Xet t a(X"2- Xr1)

le - Ier * a(l rz-Jr t)

Zc - Zc t * a (z r2 -Z r1)

where 0 < d < l. The value of c at the intersoction of
the line segm€nt Pt -Pz with the top clipping plane is:

a - (/cr - w,r) / ((la - w"r) - 0"2 - w,z))

and if this value is substituted into the parametric
equation of the line s€gment, we get the coordinates of

T. Theohoris et aI / Panllel Mahds for Potygot Clipping 109

the intersection. The denominator in the expression for
c is guarantced to be non-zero by the fact that P1 and
P2 arc on opposite sides of the top clipping plane.
Intcrscctions with other clipping planes can be found in
g similaf Inenner.

2.2. Scopc fa Peralldim

Clippiog may not be the performance bottle,neck of the
graphics ouput pipeline but it requires a sigpificant
amount of computation which nocessitates parallel pro-
cessing especially when complex scenes have to be
displayed in real-time or near real-rime.

The only rcstriction that the Sutherland-Hodgman
algorithm imposes on the order of clipping is that a
Polygon nust be clipped sequentially againsl the 6 clip
ping planes. In other words a polygon can not be
clip$ against more rhnn one clipping plane at the
samc time. There are three main ways of introducing
panllelism into the algorithm:

A. Different polygons can be clipped ageinsl different
clipping planes at the same timg or

B. A large number of polygons can be cltppd
against the same clipping plane at the same time,
or

C. Both A and B.

The first method (A) resuls in control parallelisn and
requires a pipeline of 6 clippers, each clipping qg'inst a
ditrcrcnt

"lippi"g
plane, se 53. The second method (B)

results in data parallelism and can be implemented on
a SIMD prooessor array as shown in $4. We are not
awarc of any prwious SIMD implementations of the
Suthcdand-Hodgman or of any other polygon clipping
algorithm. The last method (C) involves both control
and data parallelism and could be imFlemented on a
pipcline of SIMD processors! This method will not be
considered any further.

3. A C.ootol Prnlld tnelementrton of the
SutbdeneHodgnrn ltgorifu

Thc following control parallel implementation of the
Suthcrland-Hodnman algorithm is not novel; Clarkll
construclcd a pipcline of purpose built VLSI chips (the
Gcometry hgoe) fs1 this purpos€ and a transputer
implemeirtation of the pipeline is give,n in a report by
Thcoharisl2. The pipeline implementation of the
Suthcrland-Hodgman algorithm is presented here for
comparison with the data parallel implementation of
s4.

3.f. Dccrlpdon of tre Crntol Paralld Implcnentrtion

The Suthcdand-Hodgnsn algorithrn can easily be dis-
tributed on a pipeline of 6 processors. Each processor is
assignd 1trs rask of clipping rgainst one of the 6 clip

ping planes that constitute the clipping pyramid. Pro
ccssor i (i: 1..6) reccirres as input polygons that have
be€n

"ltppd
agrinst

"ltppi"g
planes l..i-l and clips

them against clipping plane i (the first processor
reccives the unclipped polygons). The resulting
polygons, now clipped agaifft clipping planes I .. i, are
output to processor d+l (the last processor outputs
polygons which have bee,n clipped against all 6 clipping
planes). Figure 2 illustrates the pipeline.

We shall next describe the operation of a single clip-
ping stage, the top one. Two sets of variables are used
to store the coordinates of succesive vertices rs and v2:

REAL32 xI, yI, zl, wI, x2, y2, 22, w2:
BOOL insidal, insidev2:

The two Booleans are used to store 95" rc1afieaship of
u1 and v2 to the clipping plane. For each successive
pair of verticcs r'1 and v2, the following actions take
place:

l. Deternine the relationship of v1 and v2 to the
(top) clipping plane:

ins ib l : - (y1 (ws)
insido2 :- Qt2 4 w2)

Notice that only one of the above two comparis-
ons nced take place in each loop iteration.

2. If both vertices are inside the clipping plane, out-
put v2 to the next clipping stage:

IF
(insidal AND iruider'2)

" ' outPut v2

3. If only v1 is inside the clipping plane, ouput the
interscction of the clip'ping plane with the edge
rr1 -v2 to the next clipping stage:

IF
(insidal AND (NOT insib2))

SEQ
' ' ' calculate intersoction of clipping

plane with v; -v2
' .' output intersection

4. If only v2 is inside the clipping plane, output the
interscction of the clipping plane with the edge
v1 -u2 followed by v2 to the next clipping stage:

Figure 2. A clipping pipeline

1 1 0 T. Theoharis et al. / Parallel Methds for Polygon CWng

IF
(NOT insidevl) AND insr'der2)

SEQ
' ' ' calculate intersection of clipping

plane with uq -v2
''' output intersection
" ' outPut v2

5. Finally if neither vertex is inside the clipping
plane, no action need take place.

Butrering is used for the transmission of polygon data
between clipping stages in order to avoid synchronisa-
tion delays.

The 5 other cltppi"g stages operate in a sinilar
mtnn€r. A process is defined for each of the 6 stages:

PROC clip.plane (CHAN ia out)
" ' body

where rn and out are the channels connecting the stage
to its predecessor and its successor in the pipeline
respectively. The Occam PAR statement and the
appropriate sfiennsl connections are used to construct
the clipping pipeline:

CHAN C1 , C2 , c3 , c4 , c5 , c6 , c1 i

PAR
cliplop (cr, cz)
clip.bottom (cz, ct)
cltp.W (ct, co)
clip.right (cq, cs)
clip.hither (cs, co)
clip.yon (cc, cz)

(a variant of the PAR statement, the PLACED PA& is
used to place the processes on different transputers).

Performance of tte C-onhol Parallel lnplementa-

A large number of the polygons that constitute our
model will usually lie outside the clipping pyramid. It is
therefore reasonable to assume that each of the clipping
stages will have to deal with fewer polygons than its
predecessors in the pipeline; thus the first clipping stage
will determine the rate of flow of polygons through the
pipeline i.e. the rate at which polygons are clipped. Let
lcup.oxepuxe r€present the cost of clipping one
polygon against one clipping plane. The time to clip P
polygons against the 6 clipping planes is:

Tctrp : (P+6) + fcLp.oxepunrE

where 6 | lcup.oxaphNe is the amount of time taken to
"fiII" the pipeline of 6 clipping stages and it can be

igtrored if P is sufrciently large. Our INMOS T4l4
transputer implementation resulted itr /6sp.epgp1,1116 =
0.5ms; about 2,fiX) polygons can therefore be clipped
per second. Notice that the bandwidth of tle transputer
links is not the performance limiting factor provided
that buffering is used between stages to avoid synchron-
isation delays. fs5uming that a polygon requires 100
bytes (each vertex consists of four 4-byte coordinates),
the 2,0fi) polygons/s require a data rate of 2fi)
Kbytes/s which is significantly less than the bandwidth
of a transputer link.

The T800 floating point transputer should provide
better performance sincp real arithmetic calculations are
used in clipping.

4. A Datr Parellel Implementation of tte Sutrerland-
Hodgnan Algorithm

In this section we shall describe how the Sutherland-
Hodgman polygon

"hppiog
algorithm

""a
6s imple-

mented on a SIMD processor array. Our particular
implementation is based on the DAP processor array.

4.1. DisHbntion of the Polygon Vertices

There are two basic ways of distributing the vertices of
tle polygons to be clipped among the PE s of the pro
cessor aray:

l. Assigp one vertex to each PE.
2. Assign the vertices of one polygon to each PE.

The two methods are demonstrated in Figure 3.

p"l}rt"" t poiygon 2

A. Vertex per PE

B. Polygon per PE

Figure 3. Distributing the vertex data among the PE s.

3.2.
tion

PEt) E . rEslPErPEr PEe ,E?

vt vi
Yz vL

vg vi
v;

T. Theoharis et al. / Parallel Methds for Polygon Chpping n 1

The first method (l) has two disadvantages; first it
requires interprocessor communication in order to
access the adjacent vertex data necessary to clip an
edge in tle Sutlerland-Hodgman algorithm. Second,
every time a vertex is deleted or a new vertex is created
during clipping it is necessary to shift the whole array
of vertices in the appropriate direction in order to close
the gap or create space for tle new vertex. It is also
necessary to perform shifts when the second method is
used, but the shifts for a whole "rod' of vertices can be
performed in parallel. Furthermore, as tle number of
vertices can increase as well as decrease during clip-
ping one should start with fewer vertices than the
number of PE s il the first method is used. In the worst
conceivable case, every edge of every polygon will inter-
s€ct two clipping planes and the number of vertices will
be at least doubled after clipping against all 6 clipping
planes, see Figure 4. Thus we should start with less
thar l/2.1V2 vertices, where 1V2 is the number of PEs,
and this would result in low processor utilisation
because clipping usually reduces, rather than increases
the number of vsrtic€s.

Pre-clipping vertices

Post-clipping vertices

Figure 4. Clipping can increase the number of vertices
(2D example)

For the above reasons we decided to use the second
method of assigning vertices to PE s i.e. assign all the
vertices of a polygon to a single PE. A disadvantage of
this method is that if there is a wide variance on the
number of vertic€s per polygon, some PE s will be
underutilised.

4.2. Description of tbe Data Parallel Implementation

The data parallel polygon clipper was implemented on
the 64X64 ICL DAP processor array using DAP For-
tran. Before describing the details of the implementa-
tion we shall give a high lwel pseudo-code description
in order to clar$ the algorithm. In the following piece
of pseudo<ode variable names are in lower case. The
PAR statement signffies parallel execution:

FOR c :- 0 TO 5 {There are 6 clipping planes}
F O R v : - 0 T O

max number of-vertrces_ln_any_polygon- I
P A R p : - O t O l r z - t

{There are ̂ lf2 polygons (one per PE)}
insidevl(p) :: INSIDE (clipping plane (c),

vertex (p,v))
insidev2(p) :: TNSIDE (clipping3lane (c),

vertex (p,v+ l))
intersection (p) ::

FIND INTERSECTION (clippingjlan{c),-
EDGE (vertex (p,v), vertex(p,v+ l)))

IF (NOT insidevl (p) AND (NOT insidev2 (p))
THEN DELETE (vertex (p,v))

IF (NOT insidevl (p)) AND insidev2 (p)
THEN vertex (p,v) : = intersection (p)

IF insidevl (p) AND (NOT insidev2 (p))
THEN INSERT(intersection (p),

BETWEEN (vertex(p,v), vertex(p,v + l)))

Insertions and deletions do not actually take place
immediately but are batched up and processed between
successive executions of the outer loop (which steps
through the clipping planes). We shall next describe tle
DAP Fortran implementation. The vertices of the ,fr'2
polygons to be clipped are stored in 4 real matrix
arrays (one for each of the 4 coordinates). An integer
matrix is used to store the number of vertices in each
polygon:

REAL +4 VERTEXX(,, l0), VERTEXY(,, t0),
vE RT E XZ(,, t0), V E RT E XW(,, t0)

INTEGER *4 rv(,)

(It is assumed that polygons can have up to l0 ver-
tices). Four arrays of real matrices are necessary for the
temporary storage of intersection vertices created dur-
ing cltpping and an array of logical matrices is used to
indicate the positions at which new vertices must be
inserted flogcal is the DAP Fortran name for Boolean).
Two logical matrices are needed for the storage of the
relationship between pairs of vertices from each of the
iV2 polygons and the clipping plane:

REAL *4 INTERSECTIONX(,, IO),
INTERSECTIONY(,, l0),
INTERSECTIONZ(,,10),
INTERSECTIONW(, ,IO),
ALPHA(,)

LOGICAL EXTMVERTEX(,, l0),
IN SI DEV| (,), IN S I DEV2(,),
MASK(,)

Initially, the first vertex of wery polygon is duplicated
as its last v€rtex and the following 3 steps take place

tt2 T. Thcolwris a al I Puallel Methdsfor Polygur ClWprnS

for eicry I: 0..naxtertex-l where naxrertex
r?r€s€Nlts the number of vertices in the polygon with
the largest number of vertices:

l. Detcrnine the relationship betwee,n vertices v, and
rial of wery polygon and the (top) chpping
plane:

INSIDEYI -
VERTEXY(,, D. LE. YERTEXW(,, D

INSIDEW -
VERTEXY(,, /+ l). LE. YERTEXW(,, I + l)

This calculation is shown in S2.1. Notice that the
samc operation is pcrformed for all /V2 polygons
in parallel. Also note that only one of the above
two comparisons noed take place in each loop
itcration.

2. Cdculatc the intersection of the edge v1 - v;.e 1 of
wery polygon with the (top) clipping plane:

ALPHA - (VERTEXY(,, D- VERTEXW(,, D) |
((VERTEXY(,, D- YERTEXW(,, r)) -

(YERTEXY(,, r+ l) - VERTEXW(,, r+ l)))

INTERSECTIONX(,, D - I/ERTEXX(,, D +
(ALPHA. (YERTEXX(,, /+ l) -

I/ERTEXX(,, D))
INTERSECTIONY(,,D = YERTEXY(,,D +

(ALPHA] (YERTEXY(,, /+ l) -

YERTEXY(,, D))
INTERSECTION4,, D - VERTEXZ(,, D +

(ALPHA. (VERTEX4,, r+ l) -

VERTEX4,, D))
INTERSECTIONW(,, r) -

INTERSECTION4,, I) . MAT (S/D)

whcre S and D are thc scalar corutants describ€d
in g2.l and MAT is a DAP Fortran op€rator
which oonverts a scalar into a matrix. The inter-
s€ction calctlation is performed in parallel for the
lV2 polygons although it is not uscfirl for all of
them. The dc,oominator in the expression for
ALPHA may be tsro fot some elernents but the
crror producod in these elqneirts should be
igpored because the result of the interscction cal-
culation will not be usd in these eleine'ns; if the
vi iod v;11 vertices of a polygon are on opposirc
sides of the clipping plane, the,n the value of the
dc,nominator in tle expression fior ALPHA will
not be zero h the relwant el€'m€'nt.

3. Each of the 1V2 vcrtcx pairs (v1, v,.,1) must now be
classified according to one of the 4 cascs of Figure
L Thc classification produces logical matrices
(nasks) which are us€d in order to talce a difrerent

action for the vertex pairs that belong to each of
the 4 categories. Each of the 4 actions is imple
mcntcd in parallel for all the vertex pairs of the
respetivc cat€gory. The simplest action is taken if
both v; and v,*1 are inside the clipping plane
(Figure l(a)); nothing is done in this case! If both
v1 and v;a1 are outside the clipping plane (Figure
l(b)), vertex v1 can be deleted. fe rhis effect, one
of the coordinates of v, is replaced by a special
value:

MASK - (.NOT. flVSrDEr4).AND.
(.NOT. INSIDEW)

VERTEXX(MASK I) = MAT(DELETE)

TWo more cas6 r€,main to be dealt with. If v; is
outside and rial is inside the clipping plane @g-
ure l(c)), then v1 can be replaced by the intersec'
tion of edge u, - 11 .,1 rnd the clipping plane:

MASK - (.NOT. INSIDEVI\.AND.I ISIDEII2

VERTEXX(MASK 4 - INTERSECTION X(,, D
VERTEXY(MASrK, O - INTERSECTIONY(,, D
VERTEIZ(MASrK, 4 - INTERSECTION4,, D
VERTEXW(MASI(D - I NTERS ECTION W(,, D

Finally, if v, is inside and v,*1 is outside the clip
ping plane (Figure l(d), the relwant polygon has
grown by one €xtra vertex, the intersection v€rt€x,
which must b€ ins€,rt€d bcreeen v, and v,*1 . Note
that the new v€rter can not replace v,*1 becausc
v;.r1 tna/ be replaced by a "case l(c)" intersction
vcrt€x wh€,n (vr+r ,vr+z) is considered. The posi-
tion at which the new v€rt€x has to be ins€rted
must therefore be re,membered for later use:

EXTMI/ERTEX(,, D n
INSTDEY| AND. (.NOT. INSIDEW)

Aft€r perforning the above 3 steps for
I:0..naxtenex-1, all the edges of all the iV2
polygons have bec,n clipped against the (top) clipping
plane. Before clipping against the next clipping plane it
is neoessary to create space for the new vertices pro.
duced in "case l(d)" and re,nove the vertices narked
for dcletion. EXTMVERTEX(,,I) is a logical maaix
that indicatcs s[is["selumns" of the v€rt€x arrays
must be shiftcd by one placc starting from 'roC' i * I
in ordcr to create spacc for the iDs€,rtion of new vertices
(column hcrc refers to the vertices of a single polygon
whic,h reside within the memory of a single PE while
row rcfcrs to a slice consisting of the ith vertcx of wery
polygon, see Figure 5b). Norc that the data shifting is
pcrformed in parallel for all the colunns indicated by
EXTMVERTEX(,, /). Removd of the vertices marked

T. Theolrads et al. / ParuIlel Methds for Polygon CWi"g 1 1 3

for deletion is carried out in a similzl manner. Figue
5b illustrates graphically the action of the data parallel
polygon clipp€r for the polygons of Figure 5a

n6 plane

Figure 5a Data parallel polygon clipping - example
polygons

times in suocession. The resulting vertex arrays from
each execution will b€ the input to the next. The time
to clip P polygons against 6 clipping planes will there
fore be:

2tcup - 6t lP/N21
t /cup.oxnprrxB.

Our implcmentation on the 64X64 ICL DAP processor
afTay gave t'cup.oxe.prrNE - 25ms. The performance of
the inplementation can be improved by programming
the DAP in assembler rather than DAP Fortran. Also
the DAP used was built in the late 1970's and has a
cycle time of 2fl)ns. Nwertheless, about 25,000
polygons can be clippd per scond using the curr€nt
implcmentation.

Thc data parallel clipp€r describ€d above us€s
polygon data that has been distributed to the memories
of the DAP PE s. The cost of distributing and retrier,-
ing polygon data from the DAP store can be igpored if
the clipping operation is part of a data parallel inple
meirtation of the graphics output pipcline.

4.4. Uscftlncss of tte Date Prrrlld Inplementation

The data pardlel clipper can be used h co'njunction
with data pardlel imple,mentations of coordinarc
transformations and shading calculations in ordcr to
provide an efrcient data pardlel implementation of the
non-rendering stages of the graphics output pipeline.
The viewing and perspcctive transformations can trivi-
ally be imple,me,nted on a SIMD prooessor array if the
v€rte,x data are distributed among the PBs in the
mAnn€r described in S4.l (polygon p€r PE). Shading
calculations involve the computation of the normd to
each polygoa tle surface normal the averaging of the
surfacc normals for all polygons that have a @tnmon
vertpx in ord€r to compute vertex normals and the usc
of a shading model to calculate v€rt€x intensities from
the vertex normals (if the Gouraud shading model is
usedl3). The surface normal calculation requires the
coordinates of the polygons'verticcs as input and can
be done data parallel since the calculation is the sane
for all polygons. Similady the vertex intensity calcula-
tion can be performed data parallcl oncc the vertex
normals are known. Howwer the calculation of the ver-
tex normals by averaging adjace,nt surface normals will
require the transmission of each polygon's surface nor-
md to thc PE s where its neighbouring polygons (in the
polygonal model) reside" Alternatively, for rigid objecs,
the vertex normals can be preconputed and subjcted
3o thc sam€ coordinate transformations ali the
corresponding vertices.

5. ConFrsdDg tte Tirc Parellel Implenentations

The code fragmcns for the imple,me,ntation of a single

D DELETE

T: TRUE

F: FALSE

'orl *lu

@-)@--)

N

@
EXTRAVERTEXN

EE
Nm

(i) Duplicate first-
vertex as last

Cl ip
(s t e p s 1 , 2 , 3)

(Dimension j procersd in parallel)

Figure 5b. Data parallel polygon clipping - example
excution

43. Performance of fte Detr Prnllel Implemcntation

The data pardlel clipper d€scribd in the prwious sec-
tion can clip il2 polygons against one clipping plane in
parallel; let t'sup.eNEpulrE stand for the amount of
tine taken to ex€cut€ it. In 3D clipping we usudly have
to diP egainst 6 clipping planes (the truncated
pyranid) and thus the clipper has to be executpd 6

VERTE ERTEX

F F
T T
F F
F T
r F
F F
F F
F F

T. Theoharis et al. / Parallel Mahds for Polygon CkPPt"C

clipping stage on a transputer ($3.1) and on the DAP
($a.2) are quite similar. However in the case of the
transputer pipeline, similar code is run on 6 different
transputers each clipping a diferent polygon against a
difierent clippi"g plane whereas in the case of the
DAP, the same code is executed by all N2 PE s in
order to clip iV2 polygons against a single clipping
plane in parallel. The DAP can therefore exploit more
parallelism since the number of polygons that can be
clipped in parallel (P) is potentially much larger ttran
the number of clipping planes that can be processed in
parallel (5). Of course it is possible to exploit data
parallelism in a MIMD implementation by having a
number of clipping pipelines working in parallel or by
distributing the polygon data among the transputers
each one of which performs all of the 6 clipping stagas
to its polygons.

Each of the two approaches assumes a certain
environme,nt for its effective use. In the case of the
cltpping pipeline, it is assumed tlat it is part of a larger
pipeline which contains stages for coordinate transfor-
mations, rendering etc. In the case of the data parallel
clipper it is assumed that it forms only ooe stage of a
data parallel implementation of the graphics output
pipeline; otherwis€ the polygon data distribution and
collection costs are excessive. The polygon data has to
be distributed among the DAP PE's anyway but it may
be possible to do this once and for all by 6ividing the
polygon data base among the memories of the PE's.

We have given some performance Figures for the
implementations of the polygon clipper on the trans-
puter and the DAP in $3.2 and $4.3 respectively.
Althougb tempting, it is dangerous to make any direct
comparisons between these Figures because of large
difierences in the size, vintage and cost of the two
machines.

5. C-ondusion

A control parallel and a novel data parallel implemen-
tation of a polygon clippi"g algorithm on transputers
and the DAP respectively were prese,nted and con-
trasted. It would be interesting to expand our work in
order to include more parallel implementation stra-
tegies (e.g. data parallelism on tra.nsputers) as well as a
wider range of parallel machines.

References

l. INMOS Ltd. Transputer Reference Manual,
October 1986.

2. Parkinson, D., *The Distributed Array Processor
(DAP)," Computer Physics Commwications 8,
pp. 325-336 (1983).

3. INMOS Ltd. OCCAM hogremming Manual,
INMOS Ltd, 1000 Aztec West, Almondsbury,
Bristol BSl2 4SQ, U.K. (1984).

4. TNMOS Ltd. OCCAM 2 Langaage Definition,
February 1987.

5. Hoare C.A.R., Commwricating Sequential
P rocesses, Prentice-Hall (I 985).

6. Hwang K. and Briggs, F.A., Cornputer Architec-
twe and Parallel Processing McGraw-Hill (1984).

7. ICL. DAP: Introduction to FORTRAN Program-
ming, ICL, 60 Portman Road, Reading, Berks
RG3 lN& U.K. (1980).

8. ICL. DAP: FORTRAN Language, April 1981.

9. Sutlerland, I.E. and Hodgman, G.W., "Reentrant
Polygon Clipping," Comm. ACM l7(l), pp.3242
(January l97a).

10. Foley, J.D. and Van Dern, A. Fwdamentals of
Ineractive Computer Graphics, Addison-Wesley
(1e83).

ll. Clark, J.H., "The Geometry Engine: A VLSI
Geometry System for Graphics," Computer
Graphics 16(3), pp. 127-133 (July 1982).

12. Theoharis, T., "Exploiting Parallelism in the
Graphics Pipeline," Technical Monograph PRG-
54, Oxford University Computing Laboratory,
8-ll Keble Road, Oxford OXI 3QD, U.K.
(1e85).

13. Gouraud, H., "Continuous Shading of Curved
Surfac€s," IEEE Transactions on Computers C-
2O(6), pp. 623-628 (June l97l).

14. Theoharis, T., "Graphics Algorithms on General
Purpose Parallel Processors," Drctoral Dissertt-
tion, OrJord University Computing Laboratory
(reEE).

