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Abstract. Fractal interpolation provides an efficient way to describe
data that have an irregular or self-similar structure. Fractal interpola-
tion literature focuses mainly on functions, i.e. on data points linearly
ordered with respect to their abscissa. In practice, however, it is often
useful to model curves as well as functions using fractal intepolation tech-
niques. After reviewing existing methods for curve fitting using fractal
interpolation, we introduce a new method that provides a more econom-
ical representation of curves than the existing ones. Comparative results
show that the proposed method provides smaller errors or better com-
pression ratios.
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1 Introduction

Fractal interpolation has been developed as an alternative interpolation tech-
nique suitable for capturing data with inherent fractal structure, i.e. details at
different scales or some degree of self-similarity. In contrast to traditional in-
terpolation, which is built on elementary functions such as polynomials, fractal
interpolation is based on the theory of iterated function systems producing in-
terpolants that are convenient for fitting physical or experimental data.

Fractal interpolation literature focuses on functions, i.e. the data points are
linearly ordered with respect to their abscissa and the interpolant is a function of
(usually) non-integral dimension. This is often sufficient, e.g. when interpolating
time series data. In practice, however, there are many cases where the data are
suitable for fractal interpolation but define a curve rather than a function, e.g.
when modelling coastlines or plants. So, it is useful to extend fractal interpolation
to include curves as well as functions, an issue not fully addressed so far. Methods
based on generalizations to higher dimensions are introduced in [1], [2] and [3].
The use of index coordinates is suggested in [4]. Non-affine fractal interpolation
is employed in [5]. Various combinations of IFS models and free form curves are
proposed in [6] and [7]. A method of data fitting by means of fractal interpolation
functions is proposed in [8]. An interpolation method for multifractal structures
is presented in [9].

In this paper we review existing approaches in this area and introduce a new
method for curve fitting by fractal interpolation. Our motivation is to create



a method that is more accurate and economical than the existing ones, thus
being more suitable for practical applications such as shape representation. All
methods are compared in practical applications showing the advantages of the
proposed FCF method in terms of either accuracy or compression ratio. The
paper is structured as follows. In Sect. 2 we present the necessary background
on fractal interpolation functions. Section 3 contains existing appoaches to curve
fitting by fractal interpolation, while Sect. 4 introduces the new method. Section
5 contains the application of our method in various practical cases and compar-
isons against previous approaches. Finally, Sect. 6 presents our conclusions and
indicates areas of future work.

2 Fractal Interpolation Functions

Fractal interpolation functions as defined in [10] and [11] are based on the the-
ory of iterated function systems. An iterated function system (IFS), denoted
by {X ; wn, n = 1, 2, . . . , N}, consists of a complete metric space (X, ρ), e.g.
(IRn, || · ||) or a subset, and a finite set of continuous mappings wn: X → X ,
n = 1, 2, . . . , N . If wn are contractions with respective contractivity factors sn,
n = 1, 2, . . . , N , the IFS is termed hyperbolic. The transformation W :H(X) →
H(X) with W (B) = ∪N

n=1wn(B), where H(X) denotes the metric space of
nonempty compact subsets of X with respect to the Hausdorff metric, has a
unique fixed point A∞ = W (A∞) = limn→∞ Wn(B) for every B ∈ H(X),
which is called the attractor of the IFS.
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Fig. 1. The difference between dA(B) and dB(A).

The Hausdorff distance between the points A and B of H(X) is given by

h(A, B) = max{dA(B), dB(A)},

where dB(A) = max{d(x, B) : x ∈ A} and dA(B) = max{d(x, A) : x ∈ B}
(Fig. 1). The function dA(B) sometimes is called the directed Hausdorff distance
from A to B. Because of the sensitivity of the Hausdorff metric to noise or iso-
lated points that stems from its ‘worst-case’ nature, some Hausdorff-like metrics
have been proposed such as the Modified Hausdorff Distance (MHD) (see [12]).



Specifically,

hMHD(A, B) = max{dMHD(A, B), dMHD(B, A)}
where dMHD(A, B) = (1/Na)Σa∈Ad(a, B), Na denotes the number of points in
A and d(a, B) is the usual point to set distance.

2.1 Fractal Interpolation Functions in the Plane

Let us represent the given set of data points as {(um, vm) ∈ IR2: m = 0, 1, . . . , M}.
In general, the interpolation is applied to a subset of them, the interpolation
points, represented as {(xi, yi) ∈ IR2: i = 0, 1, . . . , N}. Both sets are linearly
ordered with respect to their abscissa, i.e. u0 < u1 < · · · < uM and u0 = x0 <
x1 < · · · < xN = uM . The interpolation points partition the set of data points
into interpolation intervals and may be chosen equidistantly or not. The greater
the number of interpolation points the better the fit of the data, but more in-
terpolation points result in a smaller compression ratio since more information
is required to describe the interpolation function.

Let {IR2; wn, n = 1, 2, . . . , N} be an IFS with affine transformations
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for every n = 1, 2, . . . , N . Solving the above equations results in
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i.e. the real numbers an, dn, cn, en are completely determined by the interpolation
points, while the sn are free parameters of the transformations satisfying |sn| <
1, in order to guarantee that the IFS is hyperbolic with respect to an appropriate
metric. The transformations wn are shear transformations : line segments parallel
to the y-axis are mapped to line segments parallel to the y-axis contracted by the
factor |sn|. For this reason, the sn are called vertical scaling (or contractivity)
factors.

It is well known (see for example [11]) that the attractor G =
⋃N

n=1 wn(G)
of the aforementioned IFS is the graph of a continuous function f : [x0, xN ] → IR



that passes through the interpolation points. This function is called fractal inter-
polation function (FIF) corresponding to these points. It is a self-affine function
since each affine transformation wn maps the entire (graph of the) function to
its section, i.e. function values between the interpolation points (xn−1, yn−1) and
(xn, yn) for all n = 1, 2, . . . , N . For example, let {(0, 0), (0.4, 0.5), (0.7, 0.2), (1, 0)}
be a given set of data points. Figure 2 shows the graph of an affine FIF with
s1 = 0.5, s2 = −0.2 and s3 = 0.4.
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Fig. 2. The construction of an affine FIF starting from the unit square.

The graph of a FIF is bounded by the rectangle [x0, xN ]× [a, b] if the vertical
scaling factors sn satisfy smin

n ≤ sn ≤ smax
n and |sn| < 1, where

smin
n = max

{
a − yn−1

b − y0
,
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b − yN
,
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,
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}

smax
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,
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a − yN
,
a − yn−1

a − y0

}

for every n = 1, . . . , N (see [5], [13]).
Although the FIF passes by definition through the interpolation points, this

is not necessarily the case for the remaining data points {(um, vm)} \ {(xi, yi)}.
The accuracy of fit can be measured as the squared error between the ordinates
of the original and the reconstructed points

ε =
M∑

m=0

(vm − G(um))2 (1)



or, alternatively, as the Hausdorff distance between the two sets

ε = h({(um, vm)}, G).

The vertical scaling factors of a FIF are usually chosen so as to minimize such an
error measure. For example, in [14] and [15] the minimization of (1) is achieved
by algebraic or geometric methods. Moreover in [15], a greedy algorithm for
finding some proper (but not necessarilly globally optimal) interpolation points
is presented.

An extension of the FIFs are the so-called piecewise self-affine FIFs (see
[15]), which are essentially an application of the recurrent IFSs (see [11]). Their
motivation is the fact that data often present self-affinity in subintervals and not
in their whole length. This is modelled by the introduction of the address points,
represented as {(x̃n,1, ỹn,1), (x̃n,2, ỹn,2) ∈ IR2: n = 1, 2, . . . , N}, that define the
intervals of self-affinity. The affine transformations wn, n = 1, 2, . . . , N are then
constrained to satisfy
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]
.

Piecewise self-affine FIFs are more flexible than affine FIFs, but require the ad-
ditional cost of determining the address points. Moreover, a greedy algorithm for
locating both some proper (but not necessarilly globally optimal) interpolation
and address points is presented in [15].

2.2 Generalized Fractal Interpolation Functions

The FIF model described in the previous section can be extended to higher
dimensions, producing functions that interpolate points in IRk. Let {pm ∈ IRk:
m = 0, 1, . . . , M} be the set of data points and {qi ∈ IRk: i = 0, 1, . . . , N} the set
of interpolation points. Both sets are again assumed to be linearly ordered with
respect to their abscissa. Let {IRk; wn, n = 1, 2, . . . , N} be an IFS with affine
transformations
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constrained to satisfy

wn(q0) = qn−1 and wn(qN ) = qn

for every n = 1, 2, . . . , N . The real numbers an, ci
n, dj

n for every n = 1, . . . , N , i =
1, 2, . . . , k−1 and j = 1, 2, . . . , k are completely determined by the interpolation
points by solving the above equations, while the si,j

n , i, j = 1, 2, . . . , k − 1 are



free parameters of the transformations chosen such that the contractivity factor
sn of the matrix (called contractivity matrix )⎡

⎢⎣
s1,1

n · · · s1,k−1
n

...
. . .

...
sk−1,1

n · · · sk−1,k−1
n

⎤
⎥⎦

has modulus less than unity, in order to guarantee that the IFS is hyperbolic
with respect to an appropriate metric. The exact values of si,j

n can be determined
by minimizing an error measure as in the planar case (see e.g. [2]) .

The attractor G =
⋃N

n=1 wn(G) of the IFS is the graph of a continuous
function f : [q1

0 , q
1
N ] → IRk−1 that interpolates the points qi, i = 0, 1, . . . , N (see

[11]). It is a self-affine FIF in IRk; however, its orthogonal projections to IR2

are not necessarilly self-affine. The accuracy of fit of a Generalized FIF can be
defined similarly to the planar case.

For example, in IR3 we have the IFS {IR3; wn, n = 1, 2, . . . , N} with affine
transformations
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for n = 1, 2, . . . , N . Solving the above equations results in
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has modulus less than unity.
For example, let {(0, 2, 1), (1, 4, 3), (2, 8, 5), (3, 6, 2), (4, 5, 6), (5, 2, 4), (6, 3, 7),

(7, 4, 4), (8, 2, 3), (9, 1, 2)} be a given set of data points in IR3. Figure 3 shows the
graph of a Generalized FIF with s1,1

n = s1,2
n = s2,1

n = s2,2
n = 0.1. The concept of
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Fig. 3. A Generalized FIF in IR3. The projections of the Generalized FIF on the xy,
xz and yz planes are depicted in gray.

piecewise self-affine FIFs in IR2 can be similarly extended to higher dimensions.

Hidden Variable Fractal Interpolation Functions The Generalized FIFs
can also be used for interpolating points in IR2. The idea is to extend the data to
a higher-dimensional space, interpolate them by a Generalized FIF and project it
back to IR2 to obtain a function that interpolates the original data. Specifically,
we apply to the interpolation points the mapping T : IR2 → IR3 with (xi, yi) �→
(xi, yi, Hi), i = 0, 1, . . . , N , where the Hi are freely chosen. The new set of
points (xi, yi, Hi), i = 0, 1, . . . , N is the generalized set of data corresponding to
the original points and is interpolated by creating an IFS in IR3 as described in
the previous section. The attractor G′ =

⋃N
n=1 wn(G′) of the IFS is the graph of

a continuous function f ′: [x0, xN ] → IR2 that interpolates the points (xi, yi, Hi),
i = 0, 1, . . . , N . The orthogonal projection of the attractor to IR2, defined by
PH : G′ → G with (x, y, H) �→ (x, y), is the graph of a continuous function
f : [x0, xN ] → IR that interpolates the points (xi, yi), i = 0, 1, . . . , N . The extra
coordinate Hi is called hidden variable and can be used to adjust the shape of



the resulting interpolation function f which is thus called hidden variable fractal
interpolation function (HVFIF). Note that although the attactor G′ is self-affine,
this is not necessarily the case for its projection G.

The hidden variable FIFs can be extended by introducing more than one
hidden variables, having thus more free parameters in order to adust the shape
of the resulting interpolation function.

3 Existing Applications of FIFs to Curve Fitting in the
Plane

When the interpolation points define a curve rather than a function, i.e. they
are not linearly ordered with respect to their abscissa, the direct use of a frac-
tal interpolation function is not possible. In order to construct an IFS whose
attractor interpolates the given points, and is therefore a curve, we can trans-
form or extend the original points such that the application of a FIF is possible.
This is then transformed or projected back to the plane to obtain a curve that
interpolates the original points.

3.1 Curves as projections of Generalized FIFs

One possibility is to extend the idea of hidden-variable FIFs ([1], [2], [3]). We
transform the original set of points to a higher-dimensional set that defines a
function, then create the respective FIF and project it back to IR2 to obtain a
curve that interpolates the original points.

Let {(xi, yi) ∈ IR2: i = 0, 1, . . . , N} be the set of interpolation points. These
points do not define a function but a curve on the xy-plane, i.e. it is not nec-
essarily xi < xj for i < j. We apply the transformation T : IR2 → IR3 with
(xi, yi) �→ (ti, xi, yi), i = 0, 1, . . . , N , where the introduced index coordinates
ti satisfy t0 < t1 < · · · < tN ; usually we set ti = i. The new set of points
(ti, xi, yi), i = 0, 1, . . . , N is the generalized set corresponding to the original
points and defines a function. We create a FIF that interpolates the generalized
set as described in Sect. 2.2. The attractor G′ =

⋃N
n=1 wn(G′) of the IFS is the

graph of a continuous function f ′: [t0, tN ] → IR2 that interpolates the generalized
set of points (ti, xi, yi), i = 0, 1, . . . , N . The projection of the attractor to IR2,
defined by Pt: G′ → G with (ti, xi, yi) �→ (xi, yi), is the graph of a continuous
curve f : [x0, xN ] → IR that interpolates the points (xi, yi), i = 0, 1, . . . , N and is
thus called fractal interpolation curve (FIC) [1]. Note that although the attactor
G′ is self-affine, its projection G is not necessarily self-affine.

The FIC defined above is open, assuming that the first and last interpolation
points are different. In order to construct a closed fractal interpolation curve,
we append to the original points an additional one that is the same as the first,
i.e. we add (xN+1, yN+1) = (x0, y0). The curve is afterwards constructed in the
same way. A FIC of this kind is depicted in Fig. 4(a), which is constructed on
a simple, manually selected set of 10 interpolation points. Specifically, the data
points {(3, 1), (2, 2), (1, 4), (0, 3), (−1, 3), (−2, 1), (−1,−1), (0,−2), (2,−1),



(3.5,−0.5)} have been used and the contractivity factors sn have been set to
0.1.

(a) (b) (c)

Fig. 4. (a) A FIC constructed by projecting a Generalized FIF. (b) A FIC constructed
by coordinate separation. (c) A polar FIF. All three interpolation curves have been
constructed from the same ten interpolation points (depicted in grey) using predefined
vertical scaling factors.

3.2 Curves by Coordinate Separation

A similar way to construct a FIC involves the introduction of index coordinates
without generalization to a higher-dimensional space ([4]). Specifically, we split
the original set of points into two new sets by introducing an index for each
coordinate. Then a fractal interpolation function is constructed for each new set,
and these are finally combined in a single curve that interpolates the original
points.

As previously, let {(xi, yi) ∈ IR2: i = 0, 1, . . . , N} be the set of interpolation
points. We apply the transformations T1: IR2 → IR2 with (xi, yi) �→ (ti, xi),
i = 0, 1, . . . , N and T2: IR2 → IR2 with (xi, yi) �→ (ti, yi), i = 0, 1, . . . , N , where
the introduced index coordinates ti satisfy t0 < t1 < · · · < tN ; usually we set
ti = i.

Then, we create a fractal interpolation function for each of the two sets in the
way described in Sect. 2.1. Let Gx = (txi , xi) and Gy = (tyi , yi) be the attractors
of the respective IFS. We can merge Gx and Gy in order to obtain G = (xi, yi)
which is the graph of a continuous curve f : [x0, xN ] → IR that interpolates
the points (xi, yi), i = 0, 1, . . . , N and is thus called fractal interpolation curve
(FIC). Note that although the attactors Gx and Gy are self-affine, this is not
necessarilly the case for G.

We can construct a closed curve, as previously, by appending to the original
points an additional one that is the same as the first. A FIC of this kind is
depicted in Fig. 4(b), where the same interpolation points and contractivity
factors as in Fig. 4(a) have been used.



3.3 Curves as Polar Fractal Interpolation Functions

If the data points that define the curve are ordered by angle in their polar form,
we can interpolate them using a class of non-affine FIFs, the polar FIFs (see
[5]). Specifically, let {(xi, yi) ∈ IR2 \ {(0, 0)}; i = 0, 1, . . . , N − 1} be the set of
interpolation points and (ri, θi) ∈ (0,∞] × [0, 2π), i = 0, 1, . . . , N − 1 be their
representation in polar coordinates obtained by the transformations x = r cos θ
and y = r sin θ. We assume that at least one point (xi, yi) exists in each quadrant
and that it is 0 = θ0 < θ1 < · · · < θN−1 < θN = 2π, i.e. the points define a
function in the polar plane.

We create a FIF for the points (ri, θi), i = 0, 1, . . . , N , where (rN , θN ) =
(r0, θ0) and we transform it back to the xy−plane to obtain a closed curve
that interpolates the points (xi, yi). This FIF is called polar fractal interpolation
function. Note that this curve is not self-affine since we have used a non-affine
(polar) transformation. A polar FIF is depicted in Fig. 4(c), where the same
interpolation points and contractivity factors as in Fig. 4(a) have been used.

4 Fractal Interpolation Curves in the Plane

We introduce a new method for creating fractal interpolation curves (FICs) in
the plane without using index coordinates or generalizing to a higher-dimensional
space. Our motivation is to create a more compact representation of curves using
fewer parameters, as will be analyzed in the next section. We apply a reversible
transformation to the data points in order to define a function in the plane. Then
a FIF is constructed as usual and its attractor is transformed back to the original
coordinates in order to obtain a curve that interpolates the original points.

Let us represent the given set of data points as {(um, vm) ∈ IR2 : m =
0, 1, . . . , M} and the set of interpolation points as {(uJ(i), vJ(i)) ∈ IR2 : i =
0, 1, . . . , N}, where the labelling function J: {0, 1, . . . , N} → {0, 1, . . . , M} defines
the indices of the interpolation points. We apply the transformation T1(um, vm) =
(u′

m, v′m), m = 0, 1, . . . , M , where

u′
m = u0 +

m∑
j=1

(|uj − uj−1| + ε) = u′
m−1 + (|um − um−1| + ε)

v′m = vm,

and ε > 0 is an arbitrary constant necessary when all points in an interpolation
interval have equal u-coordinates, i.e. um = um−1 for every m = J(i)+1, . . . , J(i+
1) and some i ∈ {0, 1, . . . , N}. Otherwise, we set ε = 0. The resulting points
(u′

m, v′m), i = 0, 1, . . . , M are linearly ordered with respect to their abscissa,
i.e. u′

m < u′
n for every m < n. This transformation is essentially arraying the

data points so as to preserve their horizontal distances. This is shown in the
example depicted in Fig. 5, where the same interpolation points as in Fig. 4
have been used. Note that this transformation preserves the distances between
consecutive points, i.e. d((um, vm), (um−1, vm−1)) = d((u′

m, v′m), (u′
m−1, v

′
m−1))

for all m = 1, . . . , M .
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Fig. 5. The interpolation points (black) and their transformation (grey) for the FIC
construction.

The next step is to create an IFS whose attractor is the graph of a function
that interpolates the points (u′

J(i), v
′
J(i)), i = 0, 1, . . . , N . This is achieved by

using a 2D affine IFS (Sect. 2.1) and the result is its attractor G′.
The final step is to apply a second transformation to G′ in order to ob-

tain the graph G of a curve that interpolates the initial points {(um, vm):
m = 0, 1, . . . , M}. Let (u′, v′) ∈ G′ be a point of the attractor. We apply the
transformation T2: G′ → G with (u′, v′) �→ (u, v), where

u = um−1 + (um − um−1)
(

u′ − u′
m−1

u′
m − u′

m−1

)
, u′ ∈ [u′

m−1, u
′
m]

v = v′.

Note that the overlapping at the endpoints of successive intervals [u′
i−1, u

′
i] in the

above formula is not ambiguous, since the resulting u is the same in both cases.
The transformation T2 can be efficiently computed, if the points of the attractor
are first sorted by u′ and then the attractor and transformed data points are
sweeped in parallel in order to calculate the appropriate (u, v).

The FIC defined above is open, assuming that the first and last points are
different. To construct a closed FIC, we append an additional interpolation point
that is the same as the first, i.e. we add (uJ(N+1), vJ(N+1)) = (uJ(0), vJ(0)). The
curve is afterwards constructed in the same way. A fractal interpolation curve
constructed by this method is depicted in Fig. 6, where the same interpolation
points and contractivity factors as in Fig. 4(a) have been used. We note that
the resulting curve is more similar to the one generated by the projection of
Generalized FIF methods.

We call the proposed method fractal curve fitting (FCF). The advantage of
the FCF method is that it offers a more compact representation using fewer
parameters. As will be explained in the next section, for each interpolation in-
terval it requires five parameters while the methods of Sect. 3.1 and 3.2 require



Fig. 6. A fractal interpolation curve constructed by the proposed FCF method.

ten. Moreover, it can be readily extended to represent curves in IR3. The third
coordinate has the same treatment as v, i.e. it remains unchanged by the trans-
formations.

5 Results

In Fig. 7–9 the coastlines of the Greek islands Kimolos (A), Skyros (B) and
Lemnos (C) consisting of 3897, 4663 and 7185 points, respectively, are presented.
The coastlines have been extracted from digital aerial photographs of the islands
using typical edge detection techniques. These data sets define closed curves
and are suitable for fractal interpolation. A traditional interpolation method,
using e.g. polynomials, would require very dense interpolation points in order to
capture all the fine details of the coastlines.

Fig. 7. A data set consisting of 3897 points and representing coastline A (Kimolos).



Fig. 8. A data set consisting of 4663 points and representing coastline B (Skyros).

Fig. 9. A data set consisting of 7185 points and representing coastline C (Lemnos).



Tables 1–3 show the Hausdorff distance h and the Modified Hausdorff dis-
tance hMHD between the original and reconstructed data for the three afore-
mentioned coastlines, along with the total number of required transformation
parameters p. We compare the projection of Generalized FIF method (Sec. 3.1),
the coordinate separation method (Sec. 3.2) and the proposed FCF method
(Sec. 4)1. The contractivity matrix for the projection of generalized FIF method
is calculated with the algorithm of [3], while the vertical scaling factors for the
other two methods are calculated with the analytic algorithm of [15]. The two
algorithms are similar2, both minimizing the sum of squared distances between
original and reconstructed point coordinates using derivatives. Thus the results
reflect the differences between the curve construction methods and not between
the algorithms for calculating the scaling factors. The interpolation intervals have
been chosen with a fixed increment L of 10 to 100, i.e. by taking every 10th to
100th point as interpolation point. As expected for all methods, the smaller the
interpolation intervals/compression ratio, the smaller the distance between the
original and reconstructed data. We also notice that in a few cases the increase
in the length of the interpolation interval decreases the Hausdorff distance. This
is rational, since the Hausdorff distance is sensitive to isolated, poorly approxi-
mated points. In these cases, the Modified Hausdorff distance provides a better
overall comparison.

Table 1. The Hausdorff and Modified Hausdorff distance between origi-
nal/reconstructed data and the number of required parameters for various interpolation
interval lengths (coastline A).

L
Method

Proj. of Gen. FIF Coord. separation Proposed FCF
h hMHD p h hMHD p h hMHD p

10 1.559 0.365 3890 2.974 0.519 3890 1.731 0.347 1945

20 2.651 0.486 1940 5.220 1.000 1940 3.157 0.506 970

30 2.976 0.683 1290 8.517 1.552 1290 5.047 0.704 645

40 4.503 0.874 970 11.493 1.939 970 5.545 0.855 485

50 4.987 1.107 770 13.865 2.449 770 6.262 1.113 385

60 10.161 1.330 640 13.930 2.982 640 9.234 1.278 320

70 10.430 1.592 550 16.396 3.378 550 9.225 1.524 275

80 9.967 1.829 480 19.057 3.644 480 14.469 1.766 240

90 10.162 2.085 430 17.758 3.828 430 11.369 1.811 215

100 14.481 2.238 380 18.363 3.928 380 15.559 2.135 190

In terms of Hausdorff and Modified Hausdorff distances, the proposed FCF
method significantly outperforms the coordinate separation method in almost
all cases and performs equally well to the projection of generalized FIF method.
1 We have not compared the polar FIFs since the data are not ordered by angle in

their polar form.
2 The first is essentially an extention of the second.



Table 2. The Hausdorff and Modified Hausdorff distance between origi-
nal/reconstructed data and the number of required parameters for various interpolation
interval lengths (coastline B).

L
Method

Proj. of Gen. FIF Coord. separation Proposed FCF
h hMHD p h hMHD p h hMHD p

10 1.712 0.370 4660 2.105 0.443 4660 1.861 0.339 2330

20 2.202 0.498 2330 4.017 0.755 2330 3.374 0.484 1165

30 3.017 0.664 1550 5.759 1.105 1550 4.364 0.680 775

40 3.788 0.858 1160 6.433 1.362 1160 5.274 0.849 580

50 4.926 1.033 930 9.327 1.701 930 6.211 1.049 465

60 7.596 1.263 770 10.846 1.939 770 7.885 1.278 385

70 7.946 1.460 660 11.908 2.404 660 8.650 1.501 330

80 7.721 1.624 580 11.411 2.356 580 10.538 1.520 290

90 11.632 1.875 510 15.132 3.099 510 12.063 1.907 255

100 11.571 2.007 460 13.173 3.245 460 13.874 2.126 230

Table 3. The Hausdorff and Modified Hausdorff distance between origi-
nal/reconstructed data and the number of required parameters for various interpolation
interval lengths (coastline C).

L
Method

Proj. of Gen. FIF Coord. separation Proposed FCF
h hMHD p h hMHD p h hMHD p

10 2.403 0.372 7180 2.836 0.476 7180 2.397 0.353 3590

20 2.666 0.481 3590 5.375 0.742 3590 2.859 0.482 1795

30 3.433 0.627 2390 7.182 1.096 2390 4.564 0.645 1195

40 4.187 0.776 1790 10.063 1.451 1790 6.246 0.844 895

50 5.300 0.966 1430 11.532 1.812 1430 6.648 1.012 715

60 6.342 1.132 1190 13.486 2.326 1190 7.695 1.163 595

70 7.588 1.285 1020 16.582 2.640 1020 9.971 1.451 510

80 8.608 1.482 890 20.037 3.006 890 10.110 1.544 445

90 9.560 1.584 790 21.066 3.462 790 10.813 1.617 395

100 9.845 1.830 710 24.233 3.973 710 12.081 1.865 355



Moreover, the proposed method uses five parameters for each pair of consecu-
tive interpolation points (one affine transformation of five parameters (Eq. 2.1)),
while the other two methods require ten parameters. Specifically, the projection
of generalized FIF method uses one affine transformation of ten parameters (Eq.
2.2), while the coordinate separation method uses two affine transformations of
five parameters each (Eq. 2.1). This implies that for a specific compression ratio
we can use the proposed FCF method with twice the number of interpolation
points than the other two and thus obtain better results. Comparing the previ-
ous results from this point of view it is evident that, for a specific compression
ratio, the proposed method clearly outperforms both others achieving smaller
error or, conversely, for a specific error level it achieves better compression ratio.
Moreover, it has the advantage that for each pair of consecutive interpolation
points only one free parameter (vertical scaling factor) has to be determined,
while two and four such parameters are required for the coordinate separation
and projection of generalized FIF methods respectively. This is useful, for ex-
ample, when using these free parameters to describe a family of curves, thus
offering a more compact representation.

Fig. 10. The data points (black), interpolation points (grey circles) and FIC (grey) for
coastline A using the proposed FCF method with interpolation intervals of length 10
(r = 1: 4.01).

In Fig. 10–12 parts of the reconstructed FICs for coastline A using the pro-
posed FCF method with interpolation intervals of length 10, 30 and 50 respec-
tively are presented. As shown in the figures, the reconstructed FICs provide an
accurate representation of the coastline even with sparse interpolation points,



Fig. 11. The data points (black), interpolation points (grey circles) and FIC (grey) for
coastline A using the proposed FCF method with interpolation intervals of length 30
(r = 1: 12.08).

Fig. 12. The data points (black), interpolation points (grey circles) and FIC (grey) for
coastline A using the proposed FCF method with interpolation intervals of length 50
(r = 1: 20.24).



and therefore high compression ratios are achieved. Specifically, the compression
ratios for these examples are 1: 4.01, 1: 12.08 and 1: 20.24 respectively3.

In the left part of Fig. 13–15 three more coastlines are presented (Amorgos
(D), Astypalaia (E), Tilos (F)), consisting of 4410, 7510 and 6172 points, re-
spectively. In the right part of the figures, the reconstructed curves using FCF
method are presented, achieving compression ratios of 1: 5.01, 1: 6.68 and 1: 8.02,
respectively. As shown in the figures, the reconstructed FICs accurately represent
the coastlines, while requiring considerably less data.

(a) (b) 

Fig. 13. (a) Coastline D (Amorgos) consisting of 4410 points. (b) The reconstructed
curve using FCF method with r = 1: 5.01.

In the previous examples we have used interpolation intervals of fixed length.
It is possible to define intervals of variable length, e.g. using the iterative algo-
rithm of [15]. In this case, we could achieve even better results by exploiting
more efficiently the possible self-affinity of the data.

6 Conclusions

An accurate and economical new method for curve fitting using fractal interpo-
lation has been introduced. Results show that, for a specific compression ratio,
the proposed method clearly outperforms existing ones. Moreover, it has the
advantage of offering a more economical representation using fewer bound and
free parameters. Further work will focus on using piecewise self-affine FIFs ([15])
for interpolating the transformed data of the proposed method. This approach
3 The compression ratio is calculated as r = 5N/2M , where N is the number of affine

transformations and M is the number of data points. Note that the denominator is
multiplied by 2 since the data points have two coordinates.



(a) (b) 

Fig. 14. (a) Coastline E (Astypalaia) consisting of 7510 points. (b) The reconstructed
curve using FCF method with r = 1: 6.68.

(a) (b) 

Fig. 15. (a) Coastline F (Tilos) consisting of 6172 points. (b) The reconstructed curve
using FCF method with r = 1: 8.02.



is expected to be better for curves that present self-affinity in subintervals and
not at their whole length. Moreover, it will be useful to define bounds for the
contractivity factors such that the resulting curve is not self-intersecting.
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