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Abstract While the retrieval of datasets from human
subjects based on demographic characteristics such as
gender or race is an ability with wide-ranging appli-
cation, it remains poorly-studied. In contrast, a large
body of work exists in the field of biometrics which has
a different goal: the recognition of human subjects. Due
to this disparity of interest, existing methods for re-
trieval based on demographic attributes tend to lag be-
hind the more well-studied algorithms designed purely
for face matching. The question this raises is whether
a face recognition system could be leveraged to solve
these other problems and, if so, how effective it could
be. In the current work, we explore the limits of such
a system for gender and ethnicity identification given
(1) a ground truth of demographically-labeled, texture-
less 3-D models of human faces and (2) a state-of-the-
art face-recognition algorithm. Once trained, our sys-
tem is capable of classifying the gender and ethnicity
of any such model of interest. Experiments are con-
ducted on 4007 facial meshes from the benchmark Face
Recognition Grand Challenge v2 dataset.
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recognition, retrieval.
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1 Introduction

Face recognition is an intensely-studied task in com-
puter vision. There exist a plethora of algorithms which
address this problem for 2-D intensity images, 2.5-D im-
ages (i.e., range scanners), 3-D meshes with and with-
out textural information, and the fusion of these and
any number of more exotic modalities. Face recogni-
tion research has also branched in a limited manner to
address related problems such as the estimation of age,
gender, and ethnicity based on features measured from
the human face. Such abilities have broad application in
identity verification, criminal forensics, anthropology,
and other fields which rely on accurate anthropometry.
Unfortunately, these non-recognition problems remain
less popular than the extremely well-studied problem
of identity verification.

In this paper, we address two of the above problems:
the estimation of gender and race1 based on facial im-
agery. We will be examining 3-D meshes of the face
without any associated texture or photographic infor-
mation. As skintone will be ignored, these experiments
provide a demonstration of the discriminative power of
facial structure alone. However, instead of explicitly ex-
tracting features from the facial model in an attempt to
capture the gender or ethnicity of the face, we leverage
prior research into face recognition to accomplish the
same task. In this paper, we assume a face recognizer
is some function which provides a distance d(x, y) ≥ 0
between two subjects x and y, where ideally d(x, x) ≈ 0
and d(x, y) > d(x, x) for x 6= y. We seek to answer if
such a function may act as a proxy for a higher-level
application such as gender or race classification. Super-
ficially this may not appear to be the case: among other

1 We use “race” and “ethnicity” interchangeably here as the
same concept is expressed by both terms in the prior literature.
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Fig. 1 A depiction of the similarity space to be described later: the central plot contains clouds of points organized automatically by
our algorithm, labeled according to our ground truth (red=Asian, blue=White), and smoothed to highlight the segmentation of the
classes. A random subset of our subjects’ photographs have been drawn in their appropriate locations as an overlay and magnified in
the two circular figures. This figure illustrates the natural clustering into racial groups which is a byproduct of our method. Projected
along other dimensions, the separation of genders may be witnessed as well. While differences in skin tone are obvious here, note that
our method used only facial shape to generate the data for this plot: no skin texture or other photographic data were involved. The
meaning of the axes of this plot will be discussed in Sec. 3.3.3.

reasons, face recognition algorithms are notoriously sen-
sitive to intra-subject facial variation.

In this paper, we start with a groundtruth data-
set of n meshes, for each mesh i of which we are pro-
vided a gender gi and a racial category ri. For a face
distance function we use one earlier developed by our
group (Kakadiaris et al (2007)). Then, given this data
and this function, the tasks before us are to deter-
mine the most likely gender and ethnicity of any given
subject (i.e., facial mesh). One of the techniques we
present to solve this problem makes partial use of an
automatically-constructed space in which subjects sim-
ilar in appearance occupy localized regions in the space
(Fig. 1). Our main contributions are (1) an analysis of
the effectiveness of a purely facial-structure-based dis-
tance function for gender and ethnicity classification,
(2) a training scheme which is agnostic of the under-
lying facial distance function, and (3) a resulting fully-
automatic system which achieves accuracy of ∼ 99%
for race and ∼ 94% for gender on a public benchmark
dataset. (For context, a comparison to what we believe
to be the most similar existing system will be presented
in the following section.)

2 Background

It has been argued for some time that the 3-D struc-
ture of the face is a more effective indicator of gender
than facial texture (O’Toole et al (1995, 1997)). Recent
research has developed this idea to provide gender de-
tectors based on 3-D models of the face (Lu et al (2006))

and from 2.5-D models of the face derived from shape-
from-shading algorithms (Wu et al (2007, 2008)). How-
ever, since extant facial imagery still predominantly
consists of 2-D intensity images, researchers continue to
develop algorithms for gender detection in these data
(Gutta et al (2000); Lian et al (2005); Yang and Ai
(2007)). For processing very large datasets, these algo-
rithms have been tuned to operate on extremely low-
resolution “thumbnail” images (i.e., 24 pixels or less
along one axis) (Moghaddam and Yang (2002); Baluja
and Rowley (2007); Mäkinen and Raisamo (2008)). A
surprising commonality between these studies is that
increasing image resolution leads to little improvement
in performance when the imagery is normalized with
respect to lighting and facial alignment. With some ex-
ceptions (e.g., Baluja and Rowley (2007)), these studies
also show consistently good performance from support
vector machine (SVM) learners.

The discrimination of ethnicity from facial imagery
remains relatively undeveloped compared to the cor-
responding algorithms for gender identification. Some
recent works have looked at this task in the context
of intensity images (Hosoi et al (2004); Lu and Jain
(2004); Yang and Ai (2007)) and 3-D range imagery
(Lu et al (2006)). The latter work suggests, similarly to
the earlier case of gender, that 3-D information can be
by itself superior to intensity information for the iden-
tification of ethnicity. With the exception of Hosoi et al
(2004), which considers African, Asian, and European
classes, all of the cited works consider a binary classi-
fication problem: Asian versus non-Asian. This is not
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necessarily due to algorithmic limitations, but to a lack
of standard datasets which contain significant represen-
tation from other classes.

A concept similar to the “face-similarity space” used
for illustrative purposes later has been described in the
context of analyzing facial attractiveness (Potter et al
(2007)). Such mappings have a long tradition in the vi-
sualization of human preference data (Young (1987)).
However, the results obtained in such preference studies
tend to require extensive manual effort (by definition),
making such approaches impractical for database-scale
use. Computational methods are therefore becoming
more common for these tasks. These methods make use
of multidimensional scaling (MDS) and related embed-
ding algorithms not only for analyzing (down-projecting)
3-D facial mesh data onto simpler domains, but also for
inter-face comparison (Elbaz and Kimmel (2003); Bron-
stein et al (2006, 2007)) and representing raw distances
in a more easily-visualized Euclidean space (Aharon
and Kimmel (2006); Elbaz and Kimmel (2003)). The
latter is especially relevant to the procedure described
later (Sec. 3.3.3).

In the current work, the only manually-produced
data required are race and gender labels over a set of
training meshes. During deployment, only the mesh of
the target subject is required. The most similar system
to this we are aware of is that of Wu et al (2007), though
instead of operating on 3-D meshes, the authors employ
2.5-D needle maps recovered with shape-from-shading.
That study reports a gender recognition level of 93.6%
on 260 manually-aligned images (the study does not ad-
dress race). This performance is comparable to our own
system, however we do not require manual guidance.

3 Methods

3.1 Data

For this study we use the set of 3-D facial meshes made
available by the Face Recognition Grand Challenge v2
(Phillips et al (2005)). These meshes were captured
with a commercial structured light sensor. For the pur-
poses of these experiments we ignore texture informa-
tion and associated still photographs (except for later
illustration).

Metadata for the meshes in this dataset include the
following racial categories: Asian (n = 1121), Asian-
Middle-Eastern (n = 16), Asian-Southern (n = 78),
Black (n = 28), Hispanic (n = 113), Unknown (n = 97),
and White (n = 2554). Included gender labels are Fe-
male (n = 1840) and Male (n = 2167). Each subject
participated in from 1 to 22 separate imaging sessions;
the 4007 total meshes were captured from 466 subjects.

For the race-determination experiments in this paper
we will consider only the Asian and White classes, as the
others contain too few participants to support mean-
ingful results. However, the methods presented in this
paper are not inherently binary and can readily be ex-
tended to multiple classes where the training data is
sufficient to do so. For our gender experiments, all sub-
jects are included regardless of their racial category.

As in the face-recognition literature, the ground-
truth dataset will be referred to as the gallery. The
unlabeled face mesh for which we are tasked with de-
termining gender and ethnicity will be referred to as
the probe.

3.2 Face Distance Measure

A detailed description of our 3-D face recognition sys-
tem, URxD, is not necessary here (see Kakadiaris et al
(2007)), but we will describe it briefly.2 The main idea
of our approach is to represent an individual’s facial
structure as a deformed version of a “standard” hu-
man face. The deformed model captures the idiosyncra-
cies of the specific face and represents its 3-D geome-
try in an efficient 2-D structure by utilizing the model’s
UV parameterization. This structure is decomposed us-
ing both Haar wavelet decomposition and the steerable
pyramid transform (Simoncelli et al (1992)). The two
resulting sets of coefficients define the final metadata
that are used for comparing different subjects.

Given the metadata for a pair of subjects, we may
then define a distance function between the two ge-
ometries. This is obtained as a weighted sum of two
independent distance measures: an L1 measure on the
Haar wavelets and the CW-SSIM similarity measure
on the pyramid coefficients (the latter is a translation-
insensitive similarity measure inspired by the structural
similarity (SSIM) index of Wang et al (2004)).

It is important to note that for the purposes of
the current work, the absolute distances between fa-
cial meshes are not as relevant as the idea that our
distance function should correspond to the intuitive
concept of a facial distance measure described earlier
(Sec. 1). Namely, that for our measure d(·, ·), if d(a,b) <

d(a, c) then meshes a and b are more likely to belong
to the same subject than a and c. Under this assump-
tion, face recognition algorithms of sufficient strength
may in principle be used interchangeably for the task
at hand. How this is accomplished will be described in
the following sections.

2 This algorithm competed in the 2006 Face Recognition Ven-
dor Test and achieved the top performance in the shape-only
(3-D) category.
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3.3 Gender/Ethnicity Estimation

Assuming we are given a ground-truth gallery of n facial
meshes xi (not necessarily from unique subjects) along
with associated gender gi and race ri information, we
are tasked with the problem of, given a probe mesh
xn+1, to determine its most probable labels gn+1 and
rn+1. For the purpose of comparing the performance of
successively more advanced techniques for accomplish-
ing this, we will present four possible methods along
with their performance tradeoffs. Experimental results
for each will be presented in Sec. 4.

3.3.1 Solution #1: k-Nearest-Neighbors

The most obvious solution to our task is to find the k

most similar meshes to our probe mesh and, through
majority voting on their gender and ethnicity labels,
pick gn+1 and rn+1. (In cases where ethnicity is a non-
binary decision, k must be extended incrementally until
a clear winner emerges.)

3.3.2 Solution #2: Kernelized k-Nearest-Neighbors

One apparent shortcoming of the previous approach is
it lacks consideration of the absolute distances in the
nearest-neighbor list. By applying a weight function
that decays by distance, we may remedy this. For ex-
ample:

wmale =
∑

x∈males

exp(−σd(xprobe,x)), (1)

where xprobe is the probe mesh, σ is a falloff param-
eter, d(·, ·) our face-similarity function, and wmale can
be considered a confidence score that the subject be-
longs to the male class. This function may be modified
in the obvious manner to score competing classes. The
optimal value of σ will vary according to the distance
function used; for the results presented later we deter-
mined through a grid search that σ = 1/8 resulted in
the highest classification accuracy.

3.3.3 Solution #3: Learning from the Face-Similarity
Space

The previous naive techniques may be effective to a
degree, but they make little attempt to understand the
relationships between any faces in our gallery except for
the probe. We now describe a more elaborate method
which, during a training phase, constructs a face sim-
ilarity space from our gallery. A high-level learning al-
gorithm segments this Euclidean space into subregions
which are intended to be occupied by only a single de-
mographic label (i.e., based on the training set). This

is performed twice: once for gender and once for ethnic-
ity. During deployment, the location of the probe within
the space is determined and its coordinates treated as
a feature vector. With the aid of the previously-learned
models, the demographic labelings corresponding to the
location of this new point are determined. For the re-
sults we present in this paper, we use off-the-shelf sup-
port vector machines (SVMs) with their parameters op-
timized for our tasks of gender and ethnic identification.

Similarity space construction. In this step, we construct
a face-similarity space from our gallery. In this space,
each face will be represented as a point in a Euclidean
space of p dimensions, where p ¿ n, and the distance
between each pair of points approximates the inter-face
distances d(·, ·) which are the product of our face recog-
nition algorithm. We begin by organizing the inter-face
distances into the symmetric distance matrix

D =




d1,1 d1,2 · · · d1,n

d2,1

...
...

. . .
dn,1 · · · dn,n




, (2)

where di,j = d(xi,xj) and di,i = 0. We use multidi-
mensional scaling (MDS) (Härdle and Simar (2003);
Kruskal and Wish (1978); Seber (1984)) to transform
this distance matrix into the desired point cloud. This
is accomplished by letting A be the matrix where ai,j =
− 1

2d2
i,j and letting Cn be the n × n centering matrix,

Cn = In − 1
n1n1T

n (where I is the identity and 1 is a
column vector of unit entries). We let B = CnACn and
let λ1 ≥ λ2 ≥ . . . ≥ λn and v1 . . .vn be the eigenvalues
and associated eigenvectors of B. The number of posi-
tive eigenvalues is denoted by p ≤ n. We now form the
matrix

Y =
(√

λ1v1,
√

λ2v2, . . . ,
√

λpvp

)
, (3)

where each row of Y specifies a point in a p-dimensional
space. The ith row of Y corresponds to the ith face
in our gallery and collectively Y populates our face-
similarity space.

Similarly to methods used in principal component
analysis, we may reduce the dimensionality of the space
described by Y to a number of dimensions p′ < p

to make subsequent computations less expensive. The
rightmost p − p′ columns of Y may then be removed.
This may be accomplished in two ways. For the first,

we define the function f(i) =
i∑

j=1

λj

/
p∑

j=1

λj and let

p′ be the minimum integer such that f(p′) ≥ β, where
1 ≤ p′ ≤ p and β ∈ [0, 1] is a retention threshold (i.e.,
values closer to 1 lead to higher p′). However, this only
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considers the general importance of each axis without
considering the actual points in the space. A more in-
formative method is to analyze the stress of the point
configurations induced by various p′. Stress is measured
by producing a dissimilarity matrix DY from Y itself
(i.e., by measuring the Euclidean distance between each
pair of rows in Y) and comparing DY to the original
matrix D by a measure such as

S(D,DY ) =

√√√√√√

∑
i

∑
j

(di,j − dY
i,j)2

∑
i

∑
j

d2
i,j

. (4)

As fewer of the rightmost columns of Y are retained,
we expect S to increase. Selecting a p′ associated with
an acceptable level of stress again allows the dimension-
ality of our space to be reduced. Note, though, that the
MDS transformation can only be zero-error if the dis-
tances in D are Euclidean (equivalently, if B is positive
semidefinite). In our case this is not true, so stress will
be non-zero. In practice, stress and the selection of p′ is
somewhat dependent on the idiosyncracies of the face-
recognition algorithm providing the distance function
that is the basis of D. However, as we will see later,
p′ may be small compared to n while still providing
reasonable results.

For the remainder of this paper, we will assume Y
is an n × p′ matrix, where n is the number of faces
in our gallery and p′ ¿ n is the p′-dimensional loca-
tion of each face. These p′-vectors may be considered
a compact representation of the original facial meshes,
though, of course, these feature vectors are only rele-
vant in the context of the entire gallery.

Determining the classification of a probe face. Given
an unclassified probe mesh x, we first determine the p′-
vector v which places x in our space Y. To begin, we
find the distances between x and m randomly-chosen
faces in our gallery, f1..m. The higher m, the greater
the accuracy of our placement, but generally this value
can be much smaller than the size of the gallery.

Next, the initial location of v, v0, is set to the p′-
length zero-vector: v0 = 0p′ (incidentally, this places
v0 at the center of mass of our space Y). Lastly, a
simple gradient descent moves v0 into its final location.
The cost function we minimize during this process is
equivalent to the stress function (4) which was globally
minimized during the construction of Y:

v = min
v0

√√√√
m∑

i=1

[d(x, fi)− ‖v0 − yi‖]2, (5)

where v is the final estimate of the probe face’s location
given its starting point v0, x is the probe mesh, f1..m

are the randomly-selected gallery faces, and y1..m are
their locations in the similarity space (corresponding
to rows in Y). The vector v, along with the race and
gender models learned previously, together provide the
final classification of our probe face.

Computational complexity. The complexity of the oper-
ation described by (2) is n(n−1)/2 = O(n2), while our
earlier nearest-neighbor solutions were approximately
O(n). There are two ways to minimize this computa-
tional cost: using a simpler face distance measure d(·, ·),
and sparsifying D. We will ignore the first option as
this puts severe limitations on which face recognition
algorithms may be used for our task. As for making
D sparse, unlike spectral clustering approaches such
as normalized cuts (Shi and Malik (2000)), classical
MDS does not allow us to ignore entries in our dis-
tance matrix. This is unfortunate as there is a tremen-
dous amount of redundancy in such matrices: it is not
difficult to find reasonable values for missing distances
based on the remaining associations of each point to its
neighbors. However, nonmetric multidimensional scal-
ing approaches exist which allow the creation of a sim-
ilarity space from incomplete information (Tsogo et al
(2000)). It is not necessary to labor this point here; suf-
fice it to say that if d(·, ·) is sufficiently complex, much
of the burden of filling D can be eliminated in lieu of
moderately greater construction cost and error in Y.
The use of a sparse D ultimately obviates the need for
a significant number of inter-face comparisons; in fact,
D may potentially be constructed as a band-diagonal
matrix.

3.3.4 Solution #4: Learning from Algorithm-Specific
Features

One of the premises of this work is that any sufficiently
advanced face-similarity measure may be employed as
an interchangeable element in a system for identify-
ing and/or retrieving face imagery based on its de-
mographic characteristics. One way to accomplish this
was described previously (Sec. 3.3.3). A point of inter-
est this raises, though, is how much of a decrease in
performance do we suffer when we insist that the face-
similarity algorithm itself be treated as a black box. To
answer this question, we now relax this constraint.

As described earlier (Sec. 3.2), one of the byprod-
ucts of our face recognition algorithm is a set of wavelet
coefficients which compactly describe the shape of the
face. These coefficients are derived from the geometry-
image representation of the fitted deformable model.
This description of the face is far richer than our pre-
vious, which represents each face as a point in a rel-
atively low-dimensional Euclidean space. As such, we
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would expect to obtain higher performance using these
coefficients. To accomplish this, we revise our previous
solution by exchanging the wavelet coefficients for the
p′-dimensional location of each point. All other steps
of the algorithm remain the same. That is, instead of
our training data consisting of n pairs 〈x1..n, class1..n〉
where xi is a face’s location in a face-similarity space
and classi its associated class (e.g., Male or Female),
we substitute xi for the face’s wavelet coefficients and
proceed with training and deployment as usual.

4 Results

4.1 Combined Gender/Race Retrieval

For a retrieval scenario in which the user is interested
in retrieving meshes based on both gender and race, we
combine the probability estimates from the race and
gender SVMs. These two SVMs use 3rd-degree poly-
nomial kernels and are optimized through independent
grid searches. Our underlying SVM implementation is
libSVM (Chang and Lin (2001)).

As the outputs of both classifiers are probabilis-
tic, these outputs may be multiplied to obtain a joint
probability. The user may then choose an operating
point (i.e., a probabilistic threshold) in order to re-
trieve all meshes matching the desired criteria. The re-
sulting ROC curves for each possible race/gender re-
trieval combination are illustrated in Fig. 2(a) for the
MDS technique (Sec. 3.3.3) and Fig. 2(b) for the wave-
let (Sec. 3.3.4). Here, cross-validation (10-fold) was em-
ployed while ensuring that the meshes for a specific sub-
ject are used in either training or testing, but not both.
The relevant performance metrics from all folds were
combined, thus providing our summary ROC curves.

Note that this particular experiment excludes sub-
jects belonging to racial categories which lack adequate
representation in our gallery, so only 3676 of the 4007
available meshes were used to generate these curves.
(The gender-specific results presented in the following
sections include the complete gallery.)

4.2 Independent Gender/Race Classification

We present the results of four different types of clas-
sification experiments: (1) k-nearest-neighbors (kNN)
(here, a majority vote among the k = 10 most simi-
lar faces, Sec. 3.3.1), (2) kernelized kNN (k-kNN, Sec.
3.3.2), (3) learning based on the face-similarity space
(MDS, Sec. 3.3.3), and (4) learning based on wavelet
coefficients (Sec. 3.3.4). In the last two cases, 10-fold
cross-validation is performed for training and testing
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Fig. 2 ROC curves for the combined gender/race retrieval task
using (a) the MDS representation of our gallery meshes and (b)
the wavelet-coefficient representation. (Note that the y-axis has
been truncated below 0.75 for clarity.)

and the mean±standard deviation in accuracy across
these 10 runs is reported in the confusion matrices to
be presented later. (The first two cases do not explicitly
use machine learning, so the cross-validation approach
is not necessary in that case.) That is, 9/10th of the
labeled meshes are used for training each fold and the
meshes in the remaining 1/10th of the data are used as
probes to test the trained models.

We limit our MDS space to 150 dimensions; equiva-
lently, each face is described by a 150-dimensional vec-
tor for experiments of type (3). The number of wavelet
coefficients used for experiment (4) is 3608. As in our
earlier experiments, SVM learners are used for exper-
iments (3) and (4), which differ only in the type of
feature vector used to describe each face. The demo-
graphic labels associated with each face are not used
during construction of the similarity space for experi-
ment (3).

We present our results for gender identification in
Table 1 and for race in Table 2.
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Male Female
kNN Male 92% 18%

Female 8% 82%

k-kNN Male 93% 18%
Female 7% 82%

MDS Male 93.3% ± 6% 7.7% ± 5%
Female 6.7% ± 6% 92.3% ± 5%

Wavelets Male 94% ± 5% 7% ± 4%
Female 6% ± 5% 93% ± 4%

Table 1 Confusion matrices for the four methods (kNN, kernel-
ized kNN, face-similarity space, and wavelet features) for deter-
mining gender. Values are the mean accuracy over all subjects.
The left column indicates the ground-truth labels, the top row
the predicted labels. For those experiments which require cross-
validation, x ± y indicates the mean and standard deviation in
accuracy over 10 folds.

White Asian
kNN White 99.1% 1.6%

Asian 0.9% 98.4%

k-kNN White 99.1% 1.6%
Asian 0.9% 98.4%

MDS White 99.6% ± 0.01% 0.5% ± 0.1%
Asian 0.4% ± 0.1% 99.5% ± 0.1%

Wavelets White 98.2% ± 2% 2.9% ± 3%
Asian 1.8% ± 2% 97.1% ± 3%

Table 2 Confusion matrices of the type presented in Table 1,
but expressing racial classification. Classes which are poorly rep-
resented in our data are excluded (see Sec. 3.1).

4.3 Other Results

A byproduct of our algorithm is a face-similarity space
which, by visual inspection, illustrates interesting fea-
tures of our dataset. In Fig. 3, for instance, we show
our space labeled according to race and gender. As we
may observe, even though the space is built without
regard for these demographic labels, it is not difficult
to visually separate the classes even when most of the
space’s dimensions have been eliminated: here we illus-
trate only 2 of the 150 dimensions used previously for
classification.

In Figs. 4 and 5, we collect photographs from sub-
jects in our dataset by projecting the similarity space
along each of two axes and sampling faces at intervals.
We can see, for instance in Fig. 4, the progression of
faces from “definitely female” to “definitely male.” (Of
course, since this is a very rudimentary way of separat-
ing these classes, not all female subjects appear prior
to male subjects.)

As the centroid of a class’s point cloud corresponds
to the location that is, on average, the lowest distance
from all other points, it may be of interest examining
not only the faces closest to these locations, but also
those furthest away. In Fig. 6 we illustrate this for the
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Fig. 3 Face-similarity space projected into two dimensions and
labeled according to (a) gender and (b) ethnicity. The projection
axes were chosen for maximum visual class separation.

gender identification problem and in Fig. 7, render the
corresponding meshes.

5 Conclusion

We have discussed a number of approaches for leverag-
ing existing face-recognition technologies for the task of
subject retrieval based on high-level demographic fea-
tures (gender and race) estimated from 3-D meshes of
the human face. Both our MDS and wavelet approaches
provide high levels of classification performance on the
benchmark dataset: > 99% mean accuracy for MDS on
the race task and ≈ 94% for wavelets on the gender
task. What renders these results especially unusual is
the fact that our MDS approach is trained on feature
vectors which are generated entirely without regard for
demographic labels or even explicit knowledge of the
facial structure of each subject. In addition, the tech-
nique is even agnostic of the underlying function which
provides it with face-similarity distances. In spite of
this, even off-the-shelf learning algorithms (in our case,
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(a) -446.89 (b) -189.93 (c) -155.95 (d) -125.25

(e) -25.079 (f) -9.1402 (g) 9.819 (h) 26.527

(i) 161.25 (j) 191.29 (k) 228.51 (l) 273.25

Fig. 4 Photographs of subjects sampled along the dimension most discriminative of gender in our data (dimension 3 in Fig. 3(a)).

(a) -743.12 (b) -580.63 (c) -522.05 (d) -451.01

(e) 28.413 (f) 66.656 (g) 101.54 (h) 137.46

(i) 316.63 (j) 363.72 (k) 396.51 (l) 453.62

Fig. 5 Photographs of subjects sampled along the dimension most discriminative of race in our data (dimension 1 in Fig. 3(b)).
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(a) (b)

(c) (d)

Fig. 6 The “most typical” faces in the gallery: (a) the female
face closest to the female centroid in the similarity space and (b)
the male face closest to the male centroid. Outlier faces: (c) the
male face furthest from the female centroid and (d) the female
face furthest from the male centroid.

(a) (b)

(c) (d)

Fig. 7 Rendered meshes corresponding to the faces in Fig. 6.
These are not the original laser-scanned images, but the de-
formable meshes after fitting to the range data as part of our
recognition algorithm (Sec. 3.2). (Note that model rotation and
aspect ratio will not necessarily match the photographs.)

SVMs) trained on the face-similarity space are capable
of surprisingly high levels of performance.

Interestingly, the proposed method of learning from
the wavelet representation of the face, which we ex-
pected to outperform MDS, actually performs worse
on the race-classification task. There are three factors
which could lead to this situation. For one, the “race”
task is inherently fuzzier than the “gender” task, though
both labels are treated as binary. (The race labels are
self-reported by the participants as the race they most
identify with.) Secondly, the wavelet representation is
higher-dimensional than MDS. Lastly, it may suffer from
greater noise as it does not benefit from the implicit
noise reduction of MDS’ dimensionality reduction. One
way to alleviate these problems would be to increase the
size of our training corpus; however, we are constrained
by the bounds of the existing benchmark dataset.

6 Future Work

A natural alternative to our system of converting the
gallery to a distance matrix, the distance matrix to the
face-similarity space with MDS, and then learning from
the point-cloud representation of the faces, is to use
spectral clustering methods on the distance matrix it-
self. We have so far ignored this topic for two reasons:
(1) by projecting into a Euclidean space, MDS is spec-
tacularly well-suited to visualization, an ability spectral
clustering does not share; and (2) spectral clustering’s
strength is in connected-component analysis, which is
not necessarily the best choice for our data. However,
we recognize that spectral techniques could be a fruitful
ground for future discoveries in this area.

One limitation of the current work is a lack of data
for ethnicities outside of Asian and White. As such,
our experiments can only serve to illustrate the poten-
tial power of our approach for solving n-class retrieval
problems. We hope this dearth of labeled facial data
will be addressed by future acquisition studies.

While we have argued that demographic retrieval
tasks can benefit from the vast existing body of work
in face recognition, our results suggest possible areas of
future research which would be mutually beneficial to
both areas. For instance, we have observed that com-
monalities in human facial morphology due to race and
gender express themselves in surprisingly compact sub-
spaces in the universe of faces. As such, one possible
research direction is the possibility of exploiting en-
sembles of race- or gender-specific face recognition ma-
chines, under the assumption that algorithms trained
on individual subspaces would be better-tuned to their
idiosyncracies than the current standard of training one
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system to distinguish all faces. This concept we must
leave as a target of future work.
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