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Abstract A novel pose normalization method based on 3D
object reflective symmetry is presented. It is a general pur-
pose global pose normalization method; in this paper it is
used to enhance the performance of a 3D object retrieval
pipeline. Initially, the axis-aligned minimum bounding box
of a rigid 3D object is modified by requiring that the 3D
object is also in minimum angular difference with respect
to the normals to the faces of its bounding box. To esti-
mate the modified axis-aligned bounding box, a set of pre-
defined planes of symmetry are used and a combined spatial
and angular distance, between the 3D object and its sym-
metric object, is calculated. By minimizing the combined
distance, the 3D object fits inside its modified axis-aligned
bounding box and alignment with the coordinate system is
achieved. The proposed method is incorporated in a hybrid
scheme, that serves as the alignment method in a 3D object
retrieval system. The effectiveness of the 3D object retrieval
system, using the hybrid pose normalization scheme, is eval-
uated in terms of retrieval accuracy and demonstrated using
both quantitative and qualitative measures via an extensive
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consistent evaluation on standard benchmarks. The results
clearly show performance boost against current approaches.
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1 Introduction

The diversity of 3D object acquisition sources implies that
3D objects which may even be part of the same dataset, have
their geometrical properties arbitrarily defined. Therefore,
before any kind of processing is carried out, it must be en-
sured that the 3D objects have been normalized in terms of
position, scaling and rotation.Pose normalization of 3D ob-
jects is a common preprocessing step in various computer
graphics applications (Bustos et al 2004; Shilane et al 2004;
Tangelder and Veltkamp 2008; Zaharia and Prêteux 2004).
Visualization, broken fragment reconstruction, biometrics and
3D object retrieval are only a few examples of applications
that benefit from a pose normalization procedure. To achieve
normalization, for every 3D object, a corresponding set of
normalization transformations (translation, scaling andro-
tation) in 3D space must be defined.

In most cases, translation and scale normalization can be
achieved by standard techniques. The most frequently used
method for performing translation normalization is to posi-
tion the centroids of 3D objects at the origin. Scale normal-
ization can be performed through the definition of a fixed
surrounding object (a sphere or a rectangle) within which
every 3D object is contained exactly. Rotation normaliza-
tion (or 3D object alignment), however, is the most difficult
part and still under investigation (Chaouch and Verroust-
Blondet 2009; Chen and Ouhyoung 2002; Kazhdan 2007;
Paquet 2000; Rustamov 2007; Vranić et al 2001). Although
it is relatively easy to perform manual alignment of a 3D
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Fig. 1: Comparison between the alignment results of the CPCA(Vranić 2004), NPCA (Papadakis et al 2007) and ROSy
methods on objects of the ‘LAMP’ class of the PSB dataset. (a)CPCA, (b) NPCA, (c) ROSy.

object with a fixed number of rotations and acceptable accu-
racy, the high complexity and the numerous variations of 3D
objects render the automation of such a procedure difficult.

In this paper, rotation normalization is achieved by con-
straining the 3D objects’ bounding boxes to be minimal based
on PCA and reflective object symmetry. For this, an axis-
aligned bounding box is defined and a distance measure,
that estimates the degree of parallelization of a 3D object
to the faces of that structure, is given. This distance mea-
sure is based on the spatial and angular relation of a 3D
object and its symmetric object, with respect to the prin-
cipal planes, which are set as the planes of symmetry. Ex-
perimental results of the proposed method show that the
qualitative normalization outcome is improved, compared to
current approaches (Figure 1). Additionally, when the pro-
posed method is incorporated in a hybrid pose normaliza-
tion scheme, it can significantly enhance the discriminative
power of a 3D object retrieval system.

We shall definepose normalization as the complete nor-
malization procedure which includes rotation, translation and
scaling normalization;alignment will refer to rotation nor-
malization only. Furthermore, throughout this paper the terms
3D model and3D object, unless otherwise stated, will refer
to both vertices and normals sets of a 3D mesh. The term
symmetric object will refer to a 3D object that is the result
of a reflective symmetry transformation on a given 3D ob-
ject, against a specified principal plane of symmetry.

The remainder of the paper is structured as follows. In
Section 2, previous work in pose normalization and 3D ob-
ject retrieval is discussed. In Section 3, the problem of pose
normalization is defined and preliminaries for the presented
work are given. Section 4 details the proposed pose normal-
ization method and Section 5 presents detailed experimental
results achieved in the course of the method’s evaluation.
Finally, conclusions are drawn in Section 6.
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2 Related Work

In this section an overview of the state-of-the-art in pose
normalization methods, with a particular focus on the align-
ment phase, is presented. A discussion on the state-of-the-art
in 3D object retrieval techniques is also included.

2.1 Pose normalization

Pose normalization methods can be divided into three ma-
jor categories: (i) methods that are based on principal com-
ponent analysis of the 3D objects; (ii) methods that exploit
symmetry characteristics of the 3D objects and (iii) meth-
ods that achieve alignment by defining a shape descriptor of
the 3D objects. Based on this categorization, an overview of
pose normalization methods follows.

The best-known approach for computing the alignment
of 3D objects is Principal Component Analysis (PCA) or
Karhunen - Loeve transformation (Paquet 2000; Shilane et al
2004; Theodoridis and Koutroumbas 2006; Vranić et al 2001;
Zaharia and Prêteux 2004). The PCA algorithm, based on
the computation of 3D object moments, estimates the prin-
cipal axes of a 3D object that are used to determine its ori-
entation. In its original form, PCA has a number of disad-
vantages: it can be imprecise and often the principal axes of
3D objects that belong to the same class produce poor align-
ments (Chen et al 2003). To alleviate these problems, Vranic
introduced an improvement to the original method, the Con-
tinuous PCA (CPCA) algorithm (Vranić 2004; Vranić et al
2001; Vranic 2005). CPCA computes the principal axes of
a 3D object based on the continuous triangle set. Similar
to the CPCA method, Papadakis et al. proposed the Nor-
mal PCA (NPCA) algorithm (Papadakis et al 2007, 2008),
which computes the principal axes of the 3D object based on
the surface normal set. Related to PCA is the use of Singu-
lar Value Decomposition (SVD) for alignment (Theodoridis
and Koutroumbas 2006). In (Elad et al 2001; Osada et al
2002), the SVD of the covariance matrix of the 3D object is
computed and the unitary matrix is applied to the 3D object
for rotation normalization. The PCA-based pose normaliza-
tion methods and especially the CPCA and NPCA variants,
although general and well performing in most cases can fail
to capture some specific characteristics of 3D objects such
as symmetries and large planar or bumpy surfaces.

Another major category of normalization methods ex-
ploits symmetry characteristics found in a large number of
3D objects. Kazhdan et al. (Kazhdan et al 2002) define a
reflective symmetry descriptor that represents a measure of
reflective symmetry for an arbitrary 3D voxel object, for all
planes through the object’s center of mass. This descriptor
is used for finding the main axes of symmetry or to deter-
mine that none of them exist in a 3D object. In (Podolak
et al 2006), Podolak et al. extended this work and introduced

a Planar Reflective Symmetry Transform (PRST) that com-
putes a measure of the reflective symmetry of a 3D shape
with respect to all possible planes. This measure is used to
define the center of symmetry and the principal symmetry
axes of the global coordinate system. Rustamov improved
this approach with the augmented symmetry transform in
(Rustamov 2007). Minovic et al. (Minovic et al 1993) com-
pute symmetries of a 3D object, based on the computation of
a principal octree aligned with the principal axes. Then the
degree of symmetry is computed, based on the number of
distinct eigenvalues associated with the principal axes. Mar-
tinet et al. (Martinet et al 2006) use generalized moments
to detect perfect symmetries in 3D shapes and Mitra et al.
(Mitra et al 2006) compute partial and approximate symme-
tries in 3D objects. Sun and Sherrah (Sun and Sherrah 1997)
convert the symmetry detection problem to the correlation
of the Gaussian image. Using both PCA-alignment and pla-
nar reflective symmetry, Chaouch and Verroust - Blondet
(Chaouch and Verroust-Blondet 2009) compute a 3D ob-
ject’s alignment axes and then, using a Local Translational
Invariance Cost (LTIC), make a selection of the most suit-
able ones. Using a rectilinearity measure, Lian et al. (Lian
et al 2009) attempt to find a 3D object’s best rotation by es-
timating the maximum ratio of its surface area to the sum
of its three orthogonal projected areas. Similar to the previ-
ous approach, (Chaouch and Verroust-Blondet 2009), a se-
lection between the proposed and a PCA-based alignment is
made. Most of the methods that exploit symmetry charac-
teristics for achieving pose normalization, seem to perform
quite well in most cases. However, a major problem related
to the symmetry-based techniques is that symmetry detec-
tion either focuses on small fragments or larger abstract ar-
eas of the 3D objects, and thus it is unable to handle 3D
objects that present complex, multilevel (global and local)
symmetry in their structure.

A third category of methods achieves rotation invari-
ance by the definition of the shape descriptor. These de-
scriptors are invariant under rotation, but usually discard dis-
criminative information regarding the 3D object. Descrip-
tors based on spherical harmonics (Kazhdan et al 2003; Tan-
gelder and Veltkamp 2008), Zernike moments (Novotni and
Klein 2004; Tangelder and Veltkamp 2008) and shell his-
tograms (Ankerst et al 1999; Xiang et al 2007; Yu et al 2007)
are examples of representation methods able to achieve ro-
tation invariance by definition. Kazhdan et al. in (Kazhdan
et al 2003) introduce the Spherical Harmonic Representa-
tion, a general method for obtaining a rotation invariant rep-
resentation of spherical shape descriptors that describesthem
in terms of the distribution of energies across different fre-
quencies. The same authors extended this method with sym-
metry information to provide a more discriminating repre-
sentation in (Kazhdan et al 2004). Novotni and Klein in
(Novotni and Klein 2004) use 3D Zernike invariants as de-
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scriptors for 3D shape retrieval and Ankerst et al. (Ankerst
et al 1999) proposed the Shape Histograms descriptor, where
3D space is divided into concentric shells, sectors, or both
and for each part, the object’s shape distribution is computed
giving a sum of histogram bins. Finally, Chen and Ouhyoung
(Chen and Ouhyoung 2002) use a region based 2D shape de-
scriptor to recover the affine transformation between two 3D
objects and thus achieve normalization between them. The
majority of methods that achieve rotation invariance by the
definition of shape descriptors, perform best on specific 3D
object classes that are composed of 3D objects with similar
structure. Due to this explicit behavior, these methods are
unable to handle general 3D objects originating from differ-
ent classes, or with significant structural differences. Also,
these methods generally result in descriptors with relatively
low discriminating power.

A careful review of the works presented shows that in or-
der to achieve better results, most recent studies attempt to
combine techniques from the same or different categories;
these often include variations of PCA and/or exploitation
of 3D object symmetry characteristics. However, although
it seems that most of these methods perform exceptionally
well, a major problem is that they usually combine results
blindly without taking into account any complementarity in-
volved.

2.2 3D Object Retrieval

Content-based 3D object retrieval methods can be classi-
fied into three major categories according to the spatial di-
mensionality of the information used, namely 2D, 3D and
their combination. According to this categorization, a brief
overview of the related work in the area of 3D shape de-
scriptors for generic 3D object retrieval is presented.

One of the most acknowledged methods for 3D object
retrieval, based on the extraction of features from 2D repre-
sentations of the 3D objects, was the Light Field descriptor,
proposed by Chen et al. (Chen et al 2003). This descriptor
is comprised of Zernike moments and Fourier coefficients
computed on a set of projections taken at the vertices of
a dodecahedron. Lian et al. (Lian et al 2009) proposed an
enhancement to the Light Field descriptor, by computing
the same features on projections taken from the vertices of
geodesic spheres generated by the regular unit octahedron.
Vranic (Vranić 2004) proposed a shape descriptor where
features are extracted from depth buffers produced by six
projections of the object, one for each side of a cube which
encloses the object. In the same work, the Silhouette-based
descriptor is proposed which uses the silhouettes produced
by the three projections taken from the Cartesian planes.
Zarpalas et al. (Zarpalas et al 2007) introduced a 3D shape
descriptor called the spherical trace transform, which is the
generalization of the 2D trace transform. In this method,

a variety of 2D features are computed for a set of planes
intersecting the volume of a 3D object. A newly proposed
method is the depth line descriptor proposed by Chaouch
and Verroust - Blondet (Chaouch and Verroust-Blondet 2009;
Chaouch and Verroust-blondet 2007) where a 3D object is
projected to the faces of its bounding box giving six depth
buffers. Each depth buffer is then decomposed into a set of
horizontal and vertical depth lines that are converted to state
sequences which describe the change in depth at neighbor-
ing pixels. Papadakis et al. in (Papadakis et al 2009) pro-
posed PANORAMA, a 3D shape descriptor that uses a set
of panoramic views of a 3D object which describe the posi-
tion and orientation of the object’s surface in 3D space. For
each view the corresponding 2D Discrete Fourier Transform
and the 2D Discrete Wavelet Transform are computed.

In the second major category of 3D object retrieval tech-
niques, shape descriptors are extracted from 3D shape rep-
resentations. A set of subcategories can be identified here,
namely, statistical, graph-based and spherical function based
descriptors. In the shape histogram descriptor proposed by
Ankerst et al. (Ankerst et al 1999), 3D space is divided into
concentric shells, sectors, or both and for each part, the ob-
ject’s shape distribution is computed giving a sum of his-
tograms bins. The shape distributions descriptor proposed
by Osada et al. (Osada et al 2002) measures a set of shape
characteristics for a random set of points belonging to the
object, using appropriate shape functions, e.g. the D2 func-
tion which measures the distance between two random sur-
face points. Zaharia and Petreux (Zaharia and Preteux 2001)
presented the 3D shape spectrum descriptor which is the his-
togram that describes the angular representation of the first
and second principal curvature along the surface of the 3D
object. Xiang et al. in (Xiang et al 2007) propose a rigid
transformation insensitive descriptor, called the Poisson shape
histogram descriptor, extracted by a voxelized representa-
tion of the 3D objects. In (Yu et al 2007) a two-step descrip-
tor called Sorted Extended Gaussian Image (SEGI) is pre-
sented. Based on Extended Gaussian Image and Shell his-
tograms, SEGI initially performs approximate 3D object re-
trieval based on the sorted histogram bins and them refines
the results by recording the relations between the bins. In
Zhang et al. (Zhang et al 2005) consider the use of medial
surfaces to compute an equivalent directed acyclic graph of
an object. In the work of Sundar et al. (Sundar et al 2003),
the 3D object passes through a thinning process producing a
set of skeletal points, which finally form a directed acyclic
graph by applying the minimum spanning tree algorithm.
Cornea et al. (Cornea et al 2005) propose the use of curve
skeletons produced by the application of the generalized dis-
tance field to the volume of the 3D object and similarity is
measured using the earth mover’s distance. The P3DS de-
scriptor developed by Kim et al. (Kim et al 2004) uses an at-
tributed relational graph whose nodes correspond to parts of
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the object that are represented using ellipsoids and the simi-
larity is computed by employing the earth mover’s distance.
In (Kazhdan et al 2004, 2002) Kazhdan et al. proposed pla-
nar reflective symmetry descriptor (PRSD), a collection of
spherical functions that describes the measure of a model’s
rotational and reflective symmetry with respect to every axis
passing through the center of mass. Extending this work to
every possible plane Podolak et al. presented the planar re-
flective symmetry transformation (PRST) in (Podolak et al
2006).

Besides the previous categories, combinations of differ-
ent methods have been considered in order to enhance the
overall performance. Vranic (Vranić 2004) proposed the Ray-
based descriptor which characterizes a 3D object by a spher-
ical extent function capturing the furthest intersection points
of the object’s surface with rays emanating from the origin.
Spherical harmonics or moments can be used to represent
the spherical extent function. A generalization of the pre-
vious approach uses several spherical extent functions of
different radii. The GEDT descriptor proposed by Kazh-
dan et al. (Kazhdan et al 2003) is a volumetric representa-
tion of the Gaussian Euclidean Distance Transform of a 3D
object, expressed by norms of spherical harmonic frequen-
cies. In Papadakis et al. (Papadakis et al 2007), the CRSP
descriptor was proposed which uses the Continuous PCA
(CPCA) along with Normals PCA (NPCA) to alleviate the
rotation invariance problem and describes a 3D object us-
ing a volumetric spherical-function based representationex-
pressed by spherical harmonics. Generalizing from 2D to
3D, Novotni and Klein (Novotni and Klein 2004) presented
the 3D Zernike descriptor, Daras et al. (Daras et al 2006)
introduced the generalized radon transform and Ricard et
al. (Ricard et al 2005) developed the 3D ART descriptor by
generalizing the 2D angular radial transform. Vranic (Vranic
2005) developed a hybrid descriptor called DESIRE, that
consists of the Silhouette, Ray and Depth buffer based de-
scriptors, which are combined linearly by fixed weights. Pa-
padakis et al. (Papadakis et al 2008) proposed a hybrid de-
scriptor formed by combining features extracted from a depth-
buffer and spherical function based representation, with en-
hanced translation and rotation invariance properties. The
advantage of this method over similar approaches is the top
discriminative power along with minimum space and time
requirements.

3 Preliminaries

In this section, the problem of pose normalization is de-
scribed through the Surface-Oriented Minimum Bounding
Box (SoMBB), a modified version of the Axis-Aligned Bound-
ing Box (AABB) which is commonly used in collision de-
tection techniques (van den Bergen 1997; Goldsmith and

Salmon 1987). Furthermore, using the properties of the re-
flective symmetry transformation the problem will be math-
ematically formulated and the foundation for the proposed
solution will be set.

Pose normalization is, by definition, a complex proce-
dure, highly dependent on the target application. For that
reason, various definitions have been proposed in the liter-
ature (Kazhdan et al 2004; Tangelder and Veltkamp 2008;
Vranić 2004). We next attempt to provide the definition of
a 3D object’s SoMBB and formulate the problem of pose
normalization based on the notion of the SoMBB. A 3D ob-
ject’s Surface-Oriented Minimum Bounding Box (SoMBB)
is an axis-aligned bounding box that has the minimum pos-
sible volume while simultaneously the normals to its faces
are in minimum angular difference with the majority of the
contained 3D object’s face normals (Figure 2). Pose normal-
ization is the procedure of finding a set of homogeneous
transformations (translation, scaling, rotation) that fita 3D
object into its SoMBB.

(a) (b)

Fig. 2: Difference between the AABB and SoMBB on ob-
jects of the same class. On column (a) two 3D objects are
enclosed inside their AABB, while on column (b), the same
3D objects are enclosed inside their SoMBB. Marked faces
indicate faces whose normals are parallel to the SoMBB’s
face normals.
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(a) (b)

Fig. 3: 3D objects enclosed in their SoMBBs. Marked faces
illustrate the components of a 3D objects’ planar surface
and the arrows show the direction of its averaged normal
axis (parallel to the normals to the left - right faces of the
SoMBB). (a) illustrates a 3D object that has a planar sur-
face defined by structure and (b) illustrates a 3D object that
defines a planar surface through many small triangles with
similar orientation.

Constraining the face normals of a 3D object to be in
minimum angular difference with the faces of its SoMBB
can be interpreted as making the average normal to the ob-
ject’s large planar areas parallel to the box’s face normals
(Gottschalk et al 1996). Example 3D object classes that ex-
plicitly define large planar areas are buildings, airplanes,
ships, tables, billboards, etc (Figure 3a). Object classesthat
define large planar areas as the average normal of many
small triangles with similar orientation are quadruped ani-
mals, hands, human bodies, etc (Figure 3b).

If a 3D object is not aligned with the coordinate system
axes but arbitrarily positioned in space, the calculation of the
corresponding SoMBB is not an easy task. However, let us
suppose that the SoMBB is already precalculated, although
the object has an arbitrary rotation in space. If the object is
fit inside its SoMBB, then it becomes aligned with the co-
ordinate system. Translation and scaling of the 3D object,
to fit inside the SoMBB can be adequately solved by one of
the common techniques, however, the rotation of the 3D ob-
ject, so as to satisfy the two SoMBB conditions (minimum
volume and minimum angular difference between the nor-
mals to its faces and the 3D object’s face normals) remains a
hard task. To solve this problem, properties of the reflective
symmetry transformation will be taken into account.

Assume that a 3D objectM, represented by a set ofm
verticesP ∈ R

m×3, and a corresponding set of normalsN ∈
R

m×3, exists in the EuclideanR3 space. The reflective sym-
metry transformation (or reflection) (Theoharis et al 2008)
is a linear transformation which computes the symmetric
object M−1

Π about a candidate plane of symmetryΠ (Π :

ax+ by + cz + d = 0). The planes of symmetry used, are
the three principal planes of the Cartesian coordinate sys-
tem (i.e. XY, XZ, YZ). Figure 4 illustrates example reflec-
tive symmetry transformations against the principal planes
of the Cartesian coordinate system.

X

Y

Z

X

Y

Z

X

Y

Z

Fig. 4: Examples of the reflective symmetry transformation
on planes YZ, XY and XZ, respectively.

We also need to introduce Euler angles which will prove
useful in the sequel. According to Euler’s Rotation Theo-
rem, to reach any target frame, a specific sequence of three
rotations, that are described by three angles is required. If the
three rotations are written in terms of rotation matrices, then
the general rotation can be written as the product of these
rotation matrices. The three angles giving the corresponding
rotation matrices are called the Euler angles (Mitchell 1965;
Goldstein and Poole 2001). There are six possible conven-
tions regarding the Euler angles (X −Y − X , X − Z − X ,
Y −X −Y , Y − Z−Y , Z−X − Z andZ−Y −Z), depend-
ing on the axes about which the rotations occur. The first
two rotations establish a common principal rotation axis be-
tween the source and target frames (also known as the ‘line
of nodes’). The third rotation, about the principal rotation
axis, aligns the remaining axes of the reference and target
frames. Different conventions result in a different axis or-
dering of the target frame.

Note that in the remainder of the paper, when referring to
axes or planes that belong to thetarget coordinate system,
they will be denoted with uppercase lettering (eg. axisX
and planeYZ), while when referring to axes or planes that
belong to thesource coordinate system of the 3D object,
they will be denoted with lowercase lettering (eg. axisx and
planeyz).

4 The proposed method

In this section, a minimization criterion that measures the
fitness of a 3D object into its SoMBB will be defined and
the complete pose normalization method will be described.

According to (Chan and Tan 2001) if an arbitrary model
is reoriented in such way that the areas of the bounding
boxes of its projections onto the three principal planes are
minimum, then the volume of the bounding box of the reori-
ented model is also minimum. Ahn et al. in (Ahn et al 2005,
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2008) showed that finding the minimum convex hull of the
union of two convex sets1 is equivalent to finding maximum
overlap2 between them. Therefore, defining the maximum
overlap between a 3D object and its symmetric object, with
regard to a given symmetry planeΠ is equivalent to defin-
ing the two objects’ minimum convex hull projected ontoΠ .
However, since 3D objectsM andM−1

Π are symmetric, their
projected convex hulls are identical and will be minimized
simultaneously.

To define the maximum overlap between 3D objectsM
andM−1

Π we use a measure based on the distance between
their corresponding vertices. The distance between each ver-
tex pi of the original 3D objectM and the corresponding
vertex p−1

i,Π of the symmetric objectM−1
Π is twice the dis-

tance betweenpi and the plane of symmetryΠ . The mean
distance between all the corresponding vertices of objects
M andM−1

Π can be used as a measure of the total distance
between the original 3D object and the plane of symmetry
(eq. 1). When this distance becomes minimal, with regard to
the dimension defined by the normal to the plane of symme-
try, the volume of the 3D object’s SoMBB is minimized as
well (by maximizing the overlap between the two objects).
During the minimization process (see eq. 6) the 3D object is
transformed while the planes of symmetry remain fixed.

Dist(M,M−1
Π ) =

1
m

m

∑
i=1

∣

∣

∣
pi− p−1

i,Π

∣

∣

∣
(1)

Using eq. 1 as the minimization function, we achieve
the results shown in Figure 2a. As has been described be-
fore, our motivation is to achieve an alignment which is intu-
itively shown in Figure 2b. To this end, we enrich the func-
tional with an additional term that expresses the minimum
angular difference measure based on the angular distance
between the corresponding face normals of 3D objectsM
andM−1

Π . The angleθi,Π between a surface normalni of the
original 3D objectM and the corresponding surface normal
n−1

i,Π of the symmetric objectM−1
Π is supplementary to the

angle between the surface normalni and the normal to the
plane of symmetry (eq. 2). Whenθi,Π is minimized, surface
normalsni andn−1

i,Π become perpendicular to the normal to
the plane of symmetry, whereas whenθi,Π is maximized sur-
face normalsni andn−1

i,Π become parallel to the normal to the
plane of symmetry.

θi,Π =



cos−1





ni ·n
−1
i,Π

|ni|
∣

∣

∣n−1
i,Π

∣

∣

∣







 (2)

The mean angle between all the corresponding normals
of 3D objectsM andM−1

Π can be used to define the angular

1 E.g. the convex hulls of our 3D objects.
2 The maximum overlap is achieved when the union of the two con-

vex sets occupies the minimum total space.

difference between the normal to the plane of symmetry and
the face normals of the 3D object (eq. 3).

Ang(M,M−1
Π ) =

1
m

m

∑
i=1

1
π

θi,Π (3)

Since the parallelization of the corresponding face nor-
mals of a 3D object and its symmetric object is not always
perfect,Ang(M,M−1

Π ) could be relaxed so that narrower an-
gles are rewarded over wider angles (eq. 4). Figure 5 illus-
trates the difference between equations (3) and (4).

Angtanh(M,M−1
Π ) =

1
m

m

∑
i=1

tanh

(

3
2
(θi,Π −π)

)

+1 (4)

When Angtanh(M,M−1
Π ) is minimized, the mean angle

between the face normals of the 3D object and the normals
to the SoMBB’s faces that are parallel to the plane of sym-
metry is also minimized.

0 pi/4 pi/2 3pi/4 pi
0
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← Angtanh
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Fig. 5: Graphical representation ofAng(M,M−1
Π ) and

Angtanh(M,M−1
Π ), respectively.

Equations (1) and (4) aim to minimize the volume of the
SoMBB and to have the 3D object’s face normals as par-
allel as possible to the normals to the SoMBB’s faces. We
use them together (eq. 5), with equal weights, to create our
minimization criterion.

kΠ = argmin
{

Dist(M,M−1
Π )+Angtanh(M,M−1

Π )
}

(5)

In equation (5),Dist(M,M−1
Π ) is dependent on the scal-

ing of the 3D objects, the distance between their centroids
and the distance between the corresponding vertices, while
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Angtanh(M,M−1
Π ) depends only on the angle between the

normals and lies in the range [0, 1]. To normalize equa-
tion (5) and give equal weights to the two factors, 3D ob-
jectsM andM−1

Π need to be centered at the origin and prop-
erly scaled so as to fit inside the unit sphere. Once transla-
tion and scale normalization are performed,Dist(M,M−1

Π )

ranges in the interval [0, 2]. The final form of the mini-
mization criterion is expressed by equation (6), where the
ranges ofDist(M,M−1

Π ) andAngtanh(M,M−1
Π ) are equalized

through multiplication ofDist(M,M−1
Π ) with a normaliza-

tion factor of 0.5.

kΠ =argmin

{

1
2

Dist(M,M−1
Π )+Angtanh(M,M−1

Π )

}

=argmin

{

1
2m

m

∑
i=1

∣

∣

∣pi− p−1
i,Π

∣

∣

∣+

1
m

m

∑
i=1

tanh

(

3
2
(θi,Π −π)

)

+1

}

(6)

Dist(M,M−1
Π ) andAngtanh(M,M−1

Π ) contribute equally
to the computation ofkΠ and, as will be shown in the evalu-
ation section, experimental results support this choice.

Next, the use of the minimization criterion will be ex-
panded on all three principal planes of the Euclidean space.
The complete method is called 3D object pose normalization
based on Reflective Object Symmetry (ROSy) and aligns an
arbitrary 3D object with a reference coordinate system. The
corresponding algorithm is outlined in Algorithm 1.

A preliminary step of the proposed method is the re-
sampling of the input 3D objectM (Algorithm 1: step 2)
to ensure that any deficiencies of the digitization process are
eliminated. Unwanted conditions like irregular distribution
of vertices on the 3D object’s surface could potentially re-
sult in a poor alignment. Object resampling is achieved by
redistributing the vertices of the 3D object along its surface

triangles, based on a ratio offi =
tarea
i

tarea
sum

, wheretarea
i denotes

the area of trianglei andtarea
sum denotes the total area of the

object’s surface. Note that at least one vertex will accrue
from every initial triangle and so, it is possible that the final
number of 3D object vertices is greater than the original.

Standard translation and scale normalizations are then
performed (Algorithm 1: steps 3 - 4). Translation invari-
ance is achieved by using the Continuous Principal Compo-
nent Analysis (CPCA). The centroid of the object is com-
puted using CPCA and then the whole object is translated,
so that the centroid coincides with the coordinate origin (Pa-
padakis et al 2007; Vranić 2004; Vranić et al 2001). Scale
invariance is achieved through the scaling ofM so that it fits
exactly into the unit sphere. Translation and scale normal-
ization, position the object ‘inside’ its SoMBB and limit the
range ofDist(M,M−1

Π ) in the interval [0, 2].

At this point, although 3D objectM is positioned at the
center of its SoMBB, it is uncertain if it complies with the
two SoMBB constraints: minimum bounding box volume
and minimum angular difference between the 3D object’s
face normals and the normals to the bounding box’s faces.
To ensure this, criterionkΠ must be minimized on all three
orthogonal planes of symmetry (Algorithm 1: steps 5 - 22).

In the proposed methodology, following the concept of
Euler angles, the target is to establish the common princi-
pal rotation axis, by aligning the 3D object with two faces
of the corresponding SoMBB. Then, the input object will
be rotated about this common principal rotation axis, so as
to further align it with the third face of the SoMBB and
thus with the coordinate system. CriterionkΠ will ensure
that the normals to the faces of the SoMBB will attain min-
imum angular difference to the 3D object face normals and,
simultaneously, that the SoMBB will attain minimum vol-
ume. Note that since the ordering of axes is not important,
theZ−Y −Z convention will be arbitrarily selected, for the
alignment procedure.

The selected plane of symmetry for each iteration step
must fulfill two conditions: (i) its normal must be perpen-
dicular to the target SoMBB face normal and (ii) the axis
about which the rotation occurs must be perpendicular to
the plane’s normal. On each iteration, 3D objectM and its
symmetric objectM−1

Π are rotated by 180 degrees in oppos-
ing directions with a step of 2 degrees, untilkΠ is minimized
(Figure 6). Since vertex and normal cardinality is fixed for
each model, the time required for the alignment process to
complete is linear in the number of iteration steps. We have
selected a step of 2 degrees which results in good alignments
while preserving acceptable processing speed. Exhaustive
search is performed here askΠ is not necessarily a mono-
tonic function. When the rotation normalization procedure
is complete, objectM will be aligned with the Cartesian co-
ordinate system.

In detail, let us assume that the initial orientation of the
3D object is arbitrary. The first rotation about axisZ, given
minimization criterionkXZ, aligns the 3D object with the
first selected plane of symmetry,XZ. The direction of the 3D
object’s orientation becomes constrained by the first plane
of symmetry. The second rotation, about axisY , given min-
imization criterionkY Z (symmetry planeY Z), further aligns
the input 3D objectM with axisZ of the coordinate system
(the 3D object is aligned with both planesXZ andYZ). The
direction of the 3D object’s orientation thus becomes con-
strained by axisZ of the coordinate system, which is the
intersection of the first and the second planes of symme-
try, XZ andY Z, respectively. Once the common principal
rotation axis has been established, rotation of the 3D object
about this axis, around symmetry planeXZ, given minimiza-
tion criterionkXZ , results in the alignment of the 3D object
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Algorithm 1 Object pose normalization based on Reflective Object Symmetry (ROSy)

1: Read input 3D objectM;
2: Resampling ofM;
3: Translation normalization of the centroid ofM to the origin of the coordinate system;
4: Scale normalization ofM to the unit sphere;
5: for ROT AXIS in (Z,Y,Z) do
6: if ROT AXIS =Y then
7: Π ←Y Z;
8: else ifROT AXIS = Z then
9: Π ← XZ;

10: end if
11: kbest ← ∞;
12: M−1

Π ← ReflectionTransform(M, Π );
13: for ANGLE = 0◦ to 180◦ step 2◦ do
14: M← RotationTransform(M, ANGLE, ROT AXIS);
15: M−1

Π ← RotationTransform(M−1
Π , -ANGLE, ROT AXIS);

16: kΠ = 1
2Dist(M,M−1

Π )+Angtanh(M,M−1
Π );

17: if kΠ < kbest then
18: kbest ← kΠ ;
19: Mbest ←M;
20: end if
21: end for
22: end for
23: for Π in (XY,Y Z,ZX) do
24: M−1

Π ← ReflectionTransform(Mbest ,Π );
25: dΠ = 1

2Dist(Mbest ,M
−1
Π );

26: end for
27: Label axes in ascending plane distance order(XY <Y Z < ZX);
28: return Mbest ;

with the remaining axesX andY of the coordinate system
(Figure 7).

The symmetric objectM−1
Π of the input 3D objectM is

created by the reflective symmetry transformation function
(Algorithm 1: step 12) that takes as input the vertices and
surface normals of a 3D objectM and a plane of symmetry.
The rotation transformation function (Algorithm 1: steps 14
- 15) takes as input a 3D object, an angle of rotation and the
axis about which the rotation occurs and returns the rotated
3D object. The rotation function is iteratively used with op-
posing angles for the 3D object and its symmetric object (to
maintain the symmetry property) and the transformation that
results from the bestkΠ value, is kept.

The aforementioned pose normalization procedure is able
to orient the principal axes of a 3D object with the Cartesian
coordinate system axes. However, although the object is cor-
rectly aligned with the reference coordinate system, the or-
dering of the dimensions is not defined, yet. The final step of
the method is to label the principal axes of the aligned object
by computing the mean distance of its vertices from each co-
ordinate system axis (Algorithm 1:steps 23 - 27). Although
the direct calculation of the mean distance between the ver-
tices of the 3D object and each of the three coordinate sys-
tem axes is the simplest method, structural specificities like
symmetries or density variations of the 3D object’s surface
could lead to inaccurate results. To overcome this problem,

symmetric objects can also be used for the labeling of the
3D object’s axes.

This procedure is similar to using the Manhattan dis-
tance for the calculation of the mean distance between the
3D object vertices and the coordinate system axes, and the
results derive from a 2-step calculation, therefore distinguish-
ing better similar dimensions of the 3D object. If the mean
distance between the vertices of the original and symmetric
3D objects is small, against a specific principal plane, then
most of the 3D object’s vertices lie close to that plane, which
possibly contains the primary and secondary principal axes
of the 3D object. If the vertex distance is large, then most of
the 3D object’s vertices lie far from the principal plane and
thus, this plane cannot contain the principal axis of the 3D
object.

The primary principal plane, which has the smallest ver-
tex distance between the 3D object and its symmetric 3D
object, is assumed to contain the 3D object principal axis,
while the tertiary principal plane (with the largest vertexdis-
tance) is assumed to contain the tertiary principal axis. Since
the principal axes are perpendicular, they are defined as the
two non-common axes of the primary and the tertiary prin-
cipal planes and the second principal axis of the 3D object
is defined as their common axis.
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(a) (b) (c)

(d) (e) (f)

Fig. 6: Illustration of the alignment procedure for a singlerotation step on theY Z plane of symmetry. The bounding rectangle
illustrates the SoMBB of the 3D object’s projection on planeXY . (a) Original 3D object orientation. (b) Original (M) and
its symmetric (M−1

Π ) 3D objects. (c) Selected principal axes projection of the original (dashed axis) and the symmetric (solid
axis) 3D object, on principal planeYZ. (d) - (f) Stepwise minimization of the distance between theoriginal and its symmetric
3D object.

5 Experimental Evaluation

This section provides detailed performance results of the
ROSy pose normalization method. The first step of the eval-
uation process is to set up the testing framework. The result
of pose normalization is an aligned placement of the input
3D object in space. As it is not trivial to directly quantify
the quality of the alignment, an indirect way of testing and
comparison will be addressed.

Since pose normalization procedures are primarily used
as a preprocessing step in graphics applications like visual-
ization, reconstruction from broken fragments and 3D ob-
ject retrieval, it is possible to evaluate the performance of
the proposed method through the final results of such a sys-
tem. We have chosen a state-of-the-art 3D object retrieval
methodology, by Papadakis et al. (Papadakis et al 2008) as
the evaluation vehicle. The datasets, on which the experi-
ments were conducted, are the following: the training and

test sets of the Princeton Shape Benchmark (PSB) (Shilane
et al 2004), the classified objects of the National Taiwan
University database (NTU) (Chen et al 2003), the MPEG-
7 dataset (Vranić 2005), the Engineering Shape Benchmark
dataset (ESB) (Jayanti et al 2006) the National Institute of
Standards and Technology dataset (NIST), which contains
shape normalized and visually categorized 3D objects found
in the SHREC 2009 competition (Fang et al 2008) and both
the Articulated and Non Articulated objects of the McGill
dataset (Zhang et al 2005). From the NTU dataset, only the
classified objects were used, as unclassified objects would
not give accurate retrieval results. Table 1 shows the number
of categories and the total number of objects in each dataset
used for the experiments.

In the previous section,12Dist(·) andAngtanh(·) were de-
fined as equally weighted in the equation of the minimiza-
tion criterionkΠ . This choice is justified through a series of
retrieval tests with differently normalized weight factors. In
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Overview of all the steps of the alignment procedure.(a) initial 3D object orientation. (b) symmetric 3D object against
planeXZ. (c) - (d) minimumkXZ point after rotation of the 3D object and its symmetric object about axisZ. (e) symmetric
object against planeYZ. (f) - (g) minimumkY Z point after rotation of the 3D object and its symmetric object about axisY .
(h) symmetric 3D object against planeXZ. (i) minimum kXZ point after rotation of the 3D object and its symmetric object
about axisZ. (j) final aligned 3D object.

Table 1: Categories and cardinalities of evaluation datasets

3D object dataset # of Categories # of objects

PSB training 90 907
PSB test 92 907
NTU 41 549
MPEG-7 135 1300
ESB 48 866
NIST 40 800
McGill Articulated 10 254
McGill Non Articulated 9 202

these tests ROSy was used as the pose normalization proce-
dure of the 3D object retrieval system and the resulting Dis-
counted Cumulative Gain (DCG) (Jarvelin and Kekalainen
2002) was measured on the PSB test, the NIST, the ESB
and the MPEG7 datasets. The DCG statistic gives a sense of
how well the overall retrieval would be viewed by a human.
Correct shapes near the front of the list are more likely to be
seen than correct shapes near the end of the list. Table 2 con-
firms that the most suitable choice is the use of equal weight
factors in the minimization criterion.

Table 2: Impact of the weight factor (in the minimization
criterionkΠ ) on DCG score for four datasets. Higher DCG
score is better.

Weight Factors DCG Score
1
2Dist(·) Angtanh(·) PSB test NIST ESB MPEG7

0 1 0.665 0.719 0.729 0.805
0.25 0.75 0.666 0.756 0.732 0.812
0.5 0.5 0.678 0.764 0.732 0.821
0.75 0.25 0.667 0.763 0.700 0.809
1 0 0.645 0.724 0.698 0.790

Papadakis’ 3D object retrieval system, in its original form,
uses a combination of the CPCA and NPCA algorithms to
achieve pose normalization of a 3D object set. This approach
defines a successful hybrid scheme that could be further im-
proved by the proposed method. However, to test if the three
pose normalization methods can benefit the retrieval pro-
cess, without adding any redundant complexity to it, a com-
plementarity test needs to be performed. This test assesses
the number of classes that are best aligned by each method in
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1 (62) sedan 32 (19) eyeglasses 63 (37) submarine
2 (63) hourglass 33 (81) rabbit 64 (79) barren
3 (64) monstertruck 34 (20) billboard 65 (38) ship
4 (1) hammer 35 (21) snake 66 (39) hot air balloon
5 (2) human 36 (86) vase 67 (40) dog
6 (67) dining chair 37 (22) city 68 (80) seaturtle
7 (68) biplane 38 (23) butterfly 69 (41) desktop
8 (3) racecar 39 (87) wheel 70 (42) hand
9 (69) handgun 40 (24) slot machine 71 (43) fish
10 (4) glider 41 (25) standingbird 72 (44) skull
11 (71) glasswith stem 42 (26) two story home 73 (45) fireplace
12 (5) face 43 (91) barn 74 (46) shovel
13 (6) horse 44 (90) sink 75 (47) shelves
14 (7) flying saucer 45 (27) staircase 76 (48) flying bird
15 (8) humanarmsout 46 (28) satellite 77 (88) train car
16 (9) pottedplant 47 (92) church 78 (49) semi
17 (10) tie fighter 48 (29) coveredwagon 79 (50) single leg
18 (11) jeep 49 (65) electricalguitar 80 (51) conical
19 (75) door 50 (66) fighter jet 81 (52) flowers
20 (74) streetlight 51 (30) gazebo 82 (85) walking
21 (77) mailbox 52 (70) enterpriselike 83 (53) axe
22 (76) sword 53 (31) head 84 (54) book
23 (12) helicopter 54 (32) stealthbomber 85 (55) newtoniantoy
24 (13) ant 55 (33) deskchair 86 (89) cabinet
25 (82) geographicmap 56 (34) chessset 87 (56) schooldesk
26 (14) bush 57 (72) motorcycle 88 (57) pail
27 (15) largesail boat 58 (73) commercial 89 (58) onepeaktent
28 (83) knife 59 (35) bench 90 (59) onestory home
29 (16) gear 60 (84) rectangular 91 (60) skyscraper
30 (17) hat 61 (36) computermonitor 92 (61) satellitedish
31 (18) ladder 62 (78) umbrella

(c)

Fig. 8: DCG retrieval scores for the CPCA, NPCA and ROSy pose normalization methods, color coded by the method that
achieves the best results per class. (a) Per class CPCA and NPCA complementarity results. (b) Per class CPCA, NPCA and
ROSy complementarity results. (c) The correspondence between class ids and class names. Parenthesized ids refer to plot
(b).

terms of retrieval accuracy, by performing the DCG test on
the retrieval results of the test PSB dataset. If the percentages
of success of the three methods are similar, then the methods
can be considered complementary. Firstly, a test of the com-
plementarity between the CPCA and the NPCA methods
was performed and then the same evaluation was conducted
for all three pose normalization methods. The results, illus-
trated in Figure 8, confirm that both CPCA and NPCA meth-
ods are between them complementary in terms of per class
retrieval accuracy and that the proposed method is also com-
plementary to them. Therefore, the addition of the ROSy
method to the pose normalization procedure, could poten-
tially improve the overall performance of the retrieval sys-
tem, by achieving better alignment (in terms of retrieval ac-
curacy) on a subset of objects where the original two com-
ponent approach fares badly.

The next step is to test whether the retrieval system can
actually benefit by using ROSy in addition to the original
pose normalization approach. This quantitative evaluation is
based on Precision-Recall (P-R) plots. In this test, for every

query object that belongs to a classC, recall is the percent-
age of objects of classC that are retrieved and precision is
the proportion of retrieved objects that belong to classC over
the total number of retrieved objects. The best score is 100%
for all plots.

In Figure 9, the P-R plot of the retrieval process on the
PSB test dataset is illustrated. The proposed triple (CPCA,
NPCA and ROSy) approach, identified as ROSy+ for the re-
mainder of the paper, is compared against the CPCA, NPCA
and ROSy standalone methods and the dual (CPCA, NPCA)
approach. To make the illustrated results more concrete, four
quantitative measures are also displayed: Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST) and Discounted Cu-
mulative Gain (DCG) (Shilane et al 2004). Nearest Neighbor
(NN) indicates the percentage of queries where the closest
match belongs to the query class. First Tier (FT) and Sec-
ond Tier (ST) statistics measure the recall for the(D− 1)
and 2(D− 1) closest matches respectively, whereD is the
cardinality of the query’s class.
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Fig. 9: Precision-Recall plot for the Princeton Shape Bench-
mark test dataset. The use of ROSy alongside the origi-
nal approach significantly boosts the performance of the re-
trieval process.

ROSy itself has similar performance to CPCA and NPCA.
However, the combination of the three pose normalization
methods (ROSy+) gives a significant boost to the discrimi-
native power of the retrieval process, outperforming the orig-
inal hybrid (CPCA, NPCA) approach. Similar to the orig-
inal methodology, the descriptor consists of three sets of
coefficients corresponding to the three aligned versions of
the object (using CPCA, NPCA and ROSy). The compari-
son between two objects is done between the corresponding
aligned sets, consequently, the CPCA aligned query object
is compared with the CPCA aligned version of the gallery
object, the NPCA aligned query object is compared with the
NPCA aligned version of the gallery object and similarly for
the ROSy version. The 2D and 3D features are computed for
three alternative rotation normalized versions of a 3D object.
Thus, the final hybrid 3D shape descriptorsi of an objecti is
the concatenation of the 2D and 3D features for each aligned
version of the 3D object, giving:

si = (2D fCPCA
i ,2D f NPCA

i ,2D f ROSy
i ,

3D fCPCA
i ,3D f NPCA

i ,3D f ROSy
i ) (7)

where 2D f j
i and 3D f j

i are the 2D and 3D feature vectors of
modeli, respectively. Each feature vector is computed by an
alignment of modeli, using CPCA, NPCA or ROSy, denoted
by j ∈ {CPCA,NPCA,ROSy}.

To compare the descriptorss1 ands2 of two 3D objects
the following schema is adopted, to compute their distance:

Distance(s1,s2) = dist2D f + dist3D f (8)

wheredist2D f anddist3D f is the distance between the 2D
and 3D features, respectively, computed as:
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Fig. 10: Precision-Recall plot for the Princeton Shape
Benchmark test dataset. ROSy+ retrieval results are com-
pared against state-of-the-art 3D object retrieval techniques.

dist2D f = min j(L1(2D f j
1 ,2D f j

2))

dist3D f = min j(L1(3D f j
1 ,3D f j

2)) (9)

where j ∈ {CPCA,NPCA,ROSy} andL1 is the Manhattan
distance between the corresponding features.

The comparison giving the minimum distance sets the
distance score between the query and gallery objects. The
notion of taking the minimum distance is based on the ex-
pectation that the best establishment of correspondences be-
tween two objects is achieved when the difference between
the shape descriptors is minimum.

In Figure 10 it is further illustrated that the 3D object
retrieval system using ROSy+ outperforms two recent pose
normalization methods: DLA (Chaouch and Verroust-Blondet
2009) and GSMD+SHD+R (Lian et al 2009), the PANORAMA
descriptor (Papadakis et al 2009) and also three classic 3D
object retrieval methods: Lightfield (Chen et al 2003), SH-
GEDT (Kazhdan et al 2003) and DESIRE (Vranic 2005) ap-
proaches. Again, the P-R plot of the retrieval process on the
PSB test dataset and the four quantitative measures (NN, FT,
ST, DCG) are displayed.

To establish that increase in the discriminative power is
not dependent on the PSB dataset, the dual (CPCA, NPCA)
and the ROSy+ approaches were tested on the rest of the
available datasets. The quantitative measure scores of there-
sults are shown in Table 3. These scores show that the results
are consistent throughout the datasets, revealing the stabil-
ity of the proposed approach and the gain with respect to
the original hybrid (CPCA, NPCA) system. Furthermore, it
is clear that ROSy+ performs better than previous methods
and the recently proposed methods by Chaouch and Ver-
roust -Blondet, using the Depth Line Approach descriptor
(Chaouch and Verroust-Blondet 2009), by Lian et al. us-
ing the combined GSMD - SHD descriptors with Rectilin-
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(a)

(b)

(c)

Fig. 11: Alignments of the ‘MAILBOX’ class: (a) ROSy pose normalization results (b) a consistently rotated version of
ROSy pose normalization results by 90 degrees around theZ axis (c) results of the method proposed in (Chaouch and
Verroust-Blondet 2009)

earity (Lian et al 2009) and by Papadakis et al. using the
PANORAMA descriptor (Papadakis et al 2009) by about 2%
- 5%.

Comparing the plots and the four quantitative measures,
it can be concluded that the combined use of the three com-
plementary pose normalization methods significantly ele-
vates the discriminative power of the 3D object retrieval sys-
tem. On all 8 datasets, ROSy+ is able to achieve an average
performance gain of about 3% over the previous dual ap-
proach. This gain is significant, because it is accomplished
exclusively by enhancing the pose normalization procedure
and not the core retrieval algorithm. Note that Papadakis’
object retrieval system (Papadakis et al 2008) has achieved
state-of-the-art performance.

A visual qualitative evaluation is next provided. In Fig-
ure 11, comparative alignments between ROSy and the pro-
posed method by Chaouch and Verroust - Blondet (Chaouch
and Verroust-Blondet 2009), on the complete ‘MAILBOX’
class of the PSB dataset, are illustrated. These alignments

show that ROSy is able to produce accurate alignments, sim-
ilar to those of the method proposed by Chaouch and Ver-
roust - Blondet, while simultaneously achieving better quan-
titative scores. As is illustrated in Figure 12, ROSy is also
capable of producing accurate alignment results that, regard-
less of the originating class or the morphology of the input
objects, are consistent and stable. In Figure 12, 3D objects
(a) - (d) show perfect global symmetry against one principal
plane. 3D Objects (e) - (h) show global symmetry against
one principal plane, that is not perfect however, because of
minor parts of the objects that don’t fully match. 3D Ob-
jects (i) and (j) show global symmetry against two principal
planes simultaneously, while 3D objects (k) - (n) have lo-
cal symmetries in their structures. 3D Objects (o) and (p)
exhibit no symmetry at all.

With respect to the CPCA and NPCA approaches, ROSy
uses a combination of spatial (vertices) and angular (nor-
mals) features, to achieve 3D object alignment. The NPCA
method performs better with objects that have dominant flat
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Table 3: Quantitative measures of ROSy+ and the CPCA-
NPCA pose normalization methods for the PSB train, NTU,
MPEG-7, ESB, NIST, McGill datasets. The quantitative
measures of Figures 9 and 10 are also presented. All mea-
sures are normalized.

Dataset Method NN FT ST DCG

PSB Test

ROSy+ 0.779 0.524 0.659 0.756
CPCA-NPCA 0.742 0.473 0.606 0.712
CPCA 0.673 0.426 0.546 0.676
NPCA 0.677 0.402 0.524 0.664
ROSy 0.678 0.446 0.550 0.678
PANORAMA 0.753 0.479 0.603 0.750
DLA 0.713 0.429 0.552 0.687
GSMD+SHD+R 0.731 0.472 0.602 0.721
LFD 0.642 0.375 0.484 0.642
SH-GEDT 0.553 0.310 0.414 0.584
DESIRE 0.658 0.404 0.513 0.663

PSB Train
ROSy+ 0.799 0.521 0.655 0.765
CPCA-NPCA 0.730 0.460 0.598 0.718

NTU
ROSy+ 0.434 0.237 0.326 0.521
CPCA-NPCA 0.413 0.222 0.300 0.503

MPEG-7
ROSy+ 0.879 0.619 0.731 0.837
CPCA-NPCA 0.861 0.596 0.707 0.819

ESB
ROSy+ 0.874 0.508 0.657 0.796
CPCA-NPCA 0.829 0.465 0.605 0.747

NIST
ROSy+ 0.918 0.634 0.776 0.867
CPCA-NPCA 0.881 0.556 0.721 0.841

McGill
Articulated

ROSy+ 0.965 0.599 0.753 0.871
CPCA-NPCA 0.941 0.568 0.721 0.857

McGill Non
Articulated

ROSy+ 0.881 0.517 0.696 0.822
CPCA-NPCA 0.891 0.513 0.689 0.817

surfaces, while CPCA best aligns objects that are composed
of bumpy surfaces. The ROSy method, while able to handle
well 3D objects composed of either flat or bumpy surfaces,
also exhibits no degradation of performance in the alignment
of 3D objects that have both types of surfaces. Comparative
examples of alignments, against the CPCA and NPCA meth-
ods, on the ‘SWINGSET’ class which contains round-edged
3D objects are illustrated in Figure 13. Also, Figure 1 shows
comparative alignment results for 3D objects that belong to
the ‘LAMP’ class and are composed of both flat and bumpy
surfaces.

At this point a paradox arises. Although ROSy alone
clearly produces visually better alignments than CPCA or
NPCA, its standaloneretrieval results are not spectacularly
different from those of CPCA and NPCA (Figure 9). Since
a 3D object retrieval system is a complex procedure, only
speculations can be made about the cause. However the ex-
perimental process reveals an interesting fact: 3D objects
that belong to different classes, but have related structure
(e.g. trucks and cars) are also aligned similarly by ROSy.
Although this is correct, in terms of alignment, it possibly
interferes with the retrieval process because it enhances the
similarities between the 3D objects and hides their differ-
ences.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 12: Sample alignments of 3D objects originating from
different PSB classes, using ROSy pose normalization
method. The illustrated 3D objects exhibit various types of
global symmetries (a) - (j), local symmetries (k) - (n) or no
symmetries, at all (o) - (p).

The proposed method was tested on a Core2Quad 2.5 GHz
system, with 6 GB of RAM, running Matlab R2009a. The
system’s speed is dependent on the number of 3D object
vertices. The iterations are exhaustive in the current imple-
mentation but an optimization method could be developed
to improve its speed. For a typical 5,000 vertex object, the
time required for the pose normalization process is about 0.8
seconds.
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(a) (b) (c)

Fig. 13: Alignments of the PSB class ‘SWINGSET’. (a) CPCA, (b) NPCA, (c) ROSy.

6 Conclusion

In this paper a novel method for 3D object pose normal-
ization, based on the reflective symmetry properties of 3D
objects, is presented. ROSy successfully complements the
CPCA and NPCA methods as a pose normalization prepro-
cessing step for a 3D object retrieval system. The addition
of the proposed method increases the discriminative power
of the system by about 3%, over the previous best approach.
Furthermore, the proposed method is able to produce high
quality alignments of 3D objects, regardless of their origi-
nating class or morphology. These alignments are both sta-
ble and consistent.
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