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Abstract

Recurrent fractal interpolation functions are very useful in modelling
irregular (non-smooth) data. Two methods that use bounding volumes
and one that uses the concept of box-counting dimension are introduced
for the identification of the vertical scaling factors of such functions. The
first two minimize the area of the symmetric difference between the bound-
ing volumes of the data points and their transformed images, while the
latter aims at achieving the same box-counting dimension between the
original and the reconstructed data. Comparative results with existing
methods in imaging applications are given, indicating that the proposed
ones are competitive alternatives for both low and high compression ra-
tios.

Keywords: fractal interpolation, recurrent iterated function system,
vertical scaling factor, symmetric difference metric, Hausdorff metric, box-
counting dimension.

1 Introduction

Affine fractal interpolation as defined in [1] and [2] (but see also [11]) offers an
alternative to traditional interpolation techniques aiming mainly at data that
exhibit an irregular, non-smooth structure which can not be conveniently de-
scribed using functions such as polynomials. Examples of such data include
projections of physical objects such as coastlines or plants as well as experi-
mental data that have non-integral dimension. The affine fractal interpolation
which is based on the theory of iterated function systems provides a procedural
way to reconstruct real data; in other words, we do not store any direct infor-
mation about the data but rather the parameterisation of a procedure used to
reconstruct them. Recurrent fractal interpolation (see [3]) is essentially a gen-
eralisation of fractal interpolation, providing a more efficient way to reconstruct
data that present self-affinity in a piecewise form and not in their entirety.

The closeness of fit of a recurrent fractal interpolation function is mainly
influenced by the determination of its vertical scaling factors. No direct way to
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find the optimal values of these factors exists but various approaches have been
proposed. The most popular one [12] employs analytic (algebraic) or geometric
methods. The algebraic approach derives an analytic expression for the vertical
scaling factors by minimizing the sum of squared vertical distances between the
original and the reconstructed points. According to the geometric approach,
the factors are obtained by calculating ratios of vertical distances between the
data points and the straight lines connecting the endpoints of the address, or the
interpolation, intervals. In the case of an affine fractal interpolation function,
there is a wider variety of algorithms for determining the vertical scaling factors.
The most popular are probably the affine versions of the aforementioned geo-
metric and algebraic algorthms, which are also proposed in [12]. An alternative
approach using the concept of fractal dimension is suggested in [18]. The use of
wavelets is employed in various works, such as [4] and [7].

Our aim is, firstly, to create an alternative methodology for determining
the vertical scaling factors of a recurrent fractal interpolation function by using
bounding volumes of appropriately chosen data points such that the resulting
fractal function provides a closer fit, with respect to some metric, to the orig-
inal data points. This approach has been successfully applied to affine fractal
interpolation functions in our previous work [9]. In this paper, we extend it to
recurrent fractal interpolation and present two such methods, an analytic and
an algorithmic one. Moreover, we present a new method for calculating the
vertical scaling factors of a recurrent fractal interpolation function such that
the resulting function has the same box-counting dimension with the original
data. Finally, we examine the possibility of using wavelets for calculating the
vertical scaling factors of a recurrent fractal interpolation function, following
the rationale of the existing literature for the affine case.

As far as the evaluation of the proposed methods and their comparison with
existing ones is concerned, we examine their applicability to imaging and signal
processing. The test samples used in our experiments include geographic data,
often occuring in real-world applications. Specifically, we examine the represen-
tation and compression of geographic region boundaries, such as coastlines.

The paper is organised as follows. In Section 2 we briefly review recurrent
fractal interpolation functions and in Section 3 we describe our methods for
computing the vertical scaling factors. Section 4 contains the experimental
results of our methods as applied to geographic data as well as a comparison to
existing methods. Section 5 summarises our conclusions and points out areas of
future work.

2 Recurrent fractal interpolation functions

Let Δ1, Δ2 be two partitions of the real compact interval I = [a, b], i.e.
Δ1 = {u0, u1, . . . , uM} satisfying a = u0 < u1 < · · · < uM = b and Δ2 =
{x0, x1, . . . , xN} satisfying u0 = x0 < x1 < · · · < xN = uM , such that
Δ1 is a refinement of Δ2. Let us represent as P = {(um, vm) ∈ I × R:
m = 0, 1, . . . , M} the given set of data points and as Q = {(xi, yi) ∈ I × R:
i = 0, 1, . . . , N ≤ M} a subset of them, the interpolation points. The subinter-
vals of Δ2 are known as interpolation intervals and may be chosen equidistantly
or not. The data points within the nth interpolation interval are represented as
Pn = {(ui, vi) : i ∈ Mn}, n = 1, 2, . . . , N , where Mn is an index set of Pn such
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that
⋃N

n=1 Mn = {0, 1, . . . , M} and P =
⋃N

n=1 Pn. Each interpolation interval is
associated with a pair of data points called address points. Specifically, the in-
terpolation interval In = [xn−1, xn] is associated with the points (x′

n,1, y
′
n,1) and

(x′
n,2, y

′
n,2) for n = 1, 2, . . . , N , where (x′

n,k, y′
n,k) = (um, vm) for all k ∈ {1, 2}

and some m = 0, 1, . . . , M . Each pair of address points defines the address in-
terval [x′

n,1, x
′
n,2] and it is x′

n,1 < x′
n,2 for every n = 1, 2, . . . , N by definition.

Note that the address points need not necessarily be distinct and that each
address interval has strictly greater length than its corresponding interpolation
interval.

Let wn, n = 1, 2, . . . , N be affine transformations defined as

wn

[
x
y

]
=
[

an 0
cn sn

] [
x
y

]
+
[

dn

en

]

and constrained to satisfy

wn

[
x′

n,1

y′
n,1

]
=
[

xn−1

yn−1

]
and wn

[
x′

n,2

y′
n,2

]
=
[

xn

yn

]

for every n = 1, 2, . . . , N , i.e. each address interval is mapped to its correspond-
ing interpolation interval. Solving the above equations results in

an =
xn − xn−1

x′
n,2 − x′

n,1

dn =
x′

n,2xn−1 − x′
n,1xn

x′
n,2 − x′

n,1

cn =
yn − yn−1

x′
n,2 − x′

n,1

− sn

y′
n,2 − y′

n,1

x′
n,2 − x′

n,1

en =
x′

n,2yn−1 − x′
n,1y

′
n,2

x′
n,2 − x′

n,1

− sn

x′
n,2y

′
n,1 − x′

n,1y
′
n,2

x′
n,2 − x′

n,1

for every n = 1, 2, . . . , N , i.e. the real numbers an, dn, cn, en are completely
determined by the interpolation and address points, while the sn are free pa-
rameters of the transformations satisfying |sn| < 1, so that the transformations
wn are contractive with respect to an appropriate metric. The transformations
wn are shear transformations : line segments parallel to the y-axis are mapped
to line segments parallel to the y-axis contracted by the factor |sn|. For this
reason sn are called vertical scaling, or contractivity, factors.

Let H(R2) be the metric space of all non-empty, compact subsets of R
2 with

respect to the Hausdorff metric

h(A, B) = max{max
a∈A

min
b∈B

‖a − b‖, max
b∈B

min
a∈A

‖a − b‖}, A, B ∈ H(R2).

Moreover, let W (A) =
⋃N

n=1 wn(A[n]), where A ∈ H(R2) and A[n] = {(x, y) ∈
A : x′

n,1 ≤ x ≤ x′
n,2}, for n = 1, 2, . . . , N . The unique set G ≡ A∞ =

limk→∞ W k(A0), for every starting set A0 ∈ H(R2), is the graph of a continuous
function f : [x0, xN ] → R that passes through the interpolation points (xi, yi),
for all i = 0, 1, . . . , N (see [3], [12]). This function is called recurrent fractal
interpolation function, or RFIF for short, corresponding to these points. A sec-
tion is defined as the function values between interpolation points. A RFIF is a
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Figure 1: A recurrent fractal interpolation function (gray) for a set of five
interpolation points (black).

piecewise self-affine function since each affine transformation wn maps the part
of the (graph of the) function defined by the corresponding address interval to
each section. An example is depicted in Figure 1, where a RFIF is constructed
for the set of interpolation points Q = {(0, 3), (1, 4), (2, 2), (3, 3), (4, 4)} and
respective address intervals [0, 2], [0, 4], [1, 4], [0, 3] using vertical scaling factors
sn = 0.35, for every n = 1, 2, 3, 4.

Let A ∈ H(Rd) and N (A, ε) denote the smallest number of d-dimensional
boxes of side ε needed to cover A. If

D = lim
ε→0

ln(N (A, ε))
ln(1/ε)

exists, then D is called the box-counting dimension of A.
In case of address intervals defined by interpolation points, i.e. (x′

n,k, y′
n,k) ∈

Q for every n = 1, 2, . . . , N and k ∈ {1, 2}, the connection matrix of an RFIF
is defined as C = (cij), where cij = 1 if [xj−1, xj ] ⊂ [x′

i,1, x
′
i,2] and cij = 0

otherwise, for every i, j = 1, 2, . . . , N . Moreover, let S(d) = diag{|s1||a1|d−1,
. . . , |sN ||aN |d−1} and D be the unique value such that ρ(CS(D)) = 1, where
ρ(·) denotes the spectral radius of a matrix. If ρ(CS(1)) > 1 and there exists an
address interval with noncollinear interpolation points, then the box-counting
dimension of the RFIF is dimB(G) = D (see [3]).

3 Identifying the vertical scaling factors

3.1 Problem formulation

Although a RFIF passes by definition through its interpolation points, this is
not necessarily the case for the remaining data points P \Q. The closeness of fit
depends solely on each vertical scaling factor sn, n = 1, 2, . . . , N , the only free
parameters for a given P , and can be measured as the squared error between
the ordinates of the original and the reconstructed points

∑M
m=0(vm −G[um])2,

where G[um] denotes the ordinate of the RFIF point with abscissa um or as the
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Hausdorff distance h(P, G). Because of the sensitivity of the Hausdorff metric
to noise or to isolated points that stems from its ‘worst-case’ nature, a useful
alternative can be the Modified Hausdorff Distance, or MHD for short (see [19]),

hMHD(A, B) = max

{
1
|A|

∑
a∈A

min
b∈B

‖a − b‖, 1
|B|

∑
b∈B

min
a∈A

‖a − b‖
}

for A, B ∈ H(R2) and |A| denoting the cardinality of the set A. The squared
error measure is employed by existing methods (see e.g. [12]) in order to cal-
culate the vertical scaling factors and evaluate their accuracy. The two others
are adopted in this paper because the Hausdorff distance is considered more
appropriate in the case of RFIF’s as defined previously, since it resides in the
core of their definition.

Each affine transformation wn transforms the set [x′
n,1, x

′
n,2] × R ⊃ P [n] =

{(u, v) ∈ P : x′
n,1 ≤ u ≤ x′

n,2} into the set [xn−1, xn]×R ⊃ Pn, n = 1, 2, . . . , N .
Although

h

(
P,

N⋃
n=1

wn(P [n])

)
= h

(
N⋃

n=1

Pn,

N⋃
n=1

wn(P [n])

)
≤ max

1≤n≤N
{h(Pn, wn(P [n]))},

the direct evaluation of the optimal sn that minimize h(Pn, wn(P [n])) is not
feasible. Therefore, their calculation should be achieved differently.

3.2 Parameter identification using bounding volumes

Following the approach of [9], we propose to work with bounding volumes of
P [n] and Pn in order for the transformed points wn(P [n]) to best approximate
the data points within Pn. Let B[n] ∈ K2

0 be a bounding volume of P [n], where
K2

0 denotes the set of convex, compact subsets of R
2 with non-empty interior,

and Bn ∈ K2
0 be convex bounding volumes of Pn for every n = 1, 2, . . . , N . In

other words, it is P [n] ⊂ B[n] and Pn ⊂ Bn, for every n = 1, 2, . . . , N . We use
the symmetric difference metric

δS(K, L) = H2(K 	 L) = H2((K \ L) ∪ (L \ K)), K, L ∈ K2
0 (1)

where H2 denotes the Hausdorff measure in R
2, in order to minimize the area

of the symmetric difference Bn 	 wn(B[n]), n = 1, 2, . . . , N . Notice that since
we are constrained in K2

0 the Hausdorff measure coincides with the Lebesgue
measure, i.e. the area, in R

2. So, Eq. 1 can be written in the form

δS(K, L) = area(K \ L) + area(L \ K) = area(K ∪ L) − area(K ∩ L). (2)

Therefore, by selecting the values of sn that result in the maximum overlap of
the respective bounding volumes we are able to produce a better approximation
of the data points. As explained in [9], this approach has the advantage that,
for suitably chosen bounding volumes B[n] and Bn, we are able to efficiently
obtain the optimal sn using either analytic expressions or efficient algorithms.
Two types of bounding volume for the minimization of δS(Bn, wn(B[n])), for
all n = 1, 2, . . . , N are selected, namely the bounding rectangle and the convex
hull. The first type allows the calculation of the optimal vertical scaling factors
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using analytic expressions, while the second provides tighter bounds and efficient
algorithmic calculations.

The first method (Minimum Bounding Rectangle Method or MBRM for
short) employs bounding rectangles aligned with the axes of the co-ordinate
system. Let Rn be the MBR of Pn and R[n] the MBR of P [n]. In view of Eq.
1, our aim is the minimization of δS(Rn, wn(R[n])), for every n = 1, 2, . . . , N .
This is achieved by minimizing the area of the non-overlapping parts of Rn and
wn(R[n]). The possible cases of intersection of Rn and wn(R[n]) along with
the analytic expressions for the optimal sn that minimize the area of the non-
overlapping parts in each case are presented in detail in [9].

The second method (Convex Hull Method or CHM for short) employs the
convex hull as bounding volume. This provides a tighter bound than the rect-
angle and is actually the smallest convex volume containing the data points.
Similarly to the case of bounding rectangles, we want to minimize the area of
the non-overlapping parts of the convex hull of the points in the n-th inter-
polation interval and the transformation of the convex hull of P [n] under wn.
According to Eq. 2, this is

δS(CH(Pn), CH(wn(P [n]))) = Area{CH(Pn)} + Area{CH(wn(P [n]))} −
−2Area{CH(Pn ∩ wn(P [n]))}, (3)

where CH(·) is the convex hull of a set of points. The calculation of the optimal
sn cannot be performed analytically as in the MBRM. As implied by Eq. 3,
the calculation of δS is algorithmic and involves the computation of convex
hulls, polygon intersections and areas. As suggested in [9], a method for one-
dimensional minimization without derivatives should be used, such as Brent’s
method which is a bracketing method with parabolic interpolation. The detailed
parameterisation of this method can be found in the afore-mentioned work,
where it is also shown that the method’s time complexity is linear to the number
of data points.

3.3 Parameter identification using the box-counting di-
mension

An alternative approach is based on the concept of box-counting dimension.
This is suggested in [18], where the vertical scaling factors of an affine FIF are
determined by first calculating the sum of their absolute values. This is achieved
by using the equation

N∑
n=1

|sn|aD−1
n = 1,

where an, sn are the respective affine transformation coefficients and D is the
box-counting dimension of the affine FIF. Assuming equidistant interpolation
points, we have that

N∑
n=1

|sn| = ND−1.

The value of D used in this equation is the box-counting dimension of the data
points, thus guaranteeing that both data points and FIF have the same box-
counting dimension. Each vertical scaling factor is then calculated as |sn| =
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weight(n) ·∑N
n=1 |sn|, where the weight is calculated as the proportion of the

n-th interpolation interval’s contribution to the complexity of the whole data,
using the box-counting dimension as a measure of complexity. This is based on
the observation that larger values of the vertical scaling factors result into more
complicated FIFs with higher box-counting dimension. Thus, the resulting FIF
has the same box-counting dimension as the original data.

We are extending this idea to RFIFs. As mentioned in Section 2, in the
case when the endpoints of the address intervals are interpolation points, the
box-counting dimension D of a RFIF satisfies the equation ρ(CS(D)) = 1 under
certain conditions. Here, we examine the case when additionally for every n =
1, 2, . . . , N we have that (a) the vertical scaling factors are the same, i.e. sn = s,
(b) the address intervals are of equal length, i.e. x′

n,2−x′
n,1 = L′ and

∑N
j=1 cij =

c, for every i = 1, 2, . . . , N , (c) the interpolation intervals are of equal length,
i.e. xn − xn−1 = L, so an = L/L′ = a.

We have that

CS(D) =
(
cij |sj ||aj |D−1

)
=
(
cij |s||a|D−1

)
,

for i, j = 1, 2, . . . , N and

ri ≡
N∑

j=1

cij |s||a|D−1 = c|s||a|D−1 ≡ r.

The matrix CS(D) is non-negative and in the context of the Perron-Frobenius
theorem (see [6]) it is

min
i=1,2,...,N

{ri} ≤ ρ(CS(D)) ≤ max
i=1,2,...,N

{ri}

Therefore, we have that

r = ρ(CS(D)) = 1 ⇒ c|s||a|D−1 = 1 ⇒ |s| =
1

c|a|D−1
.

The box-counting dimension D in the above equation is calculated for the data
points P (see e.g. [17] for an efficient algorithm). The sign of the vertical scaling
factor is determined by selecting the one that minimizes the Hausdorff distance
between the original and the reconstructed points. Henceforth, we will call this
method the Box-Counting Dimension Method, or BCDM for short.

3.4 Parameter identification using wavelets

A hybrid algorithm using wavelets for the parameter identification of affine FIFs
which is motivated by earlier works is presented in [4]; see also the references
therein. The paper focuses on data sets that are known a priori to be attractors
of IFSs that define affine FIFs. The existing data’s self-affinity results into
specific structure of their continuous wavelet transform (CWT), thus allowing
the detection of specific points of the CWT, the so-called “toppoints”, that are
connected to the affine transformation coefficients. In the examples examined
in [4], the proposed hybrid algorithm yields better results than earlier methods.

In this paper, we focus on the general case of arbitrary data sets and not only
on attractors of interpolating IFSs or RIFSs which are rather unlikely to occur
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Figure 2: The modulus of the CWT of an affine FIF plotted against the scale
(ordinate) and translation (abscissa) parameters.

Figure 3: The modulus of the CWT of an EEG signal plotted against the scale
(ordinate) and translation (abscissa) parameters.

in practical applications. In the general case, the use of wavelets is questionable;
see e.g. [7] where the application of the CWT using a similar rationale to non
self-affine data has not yielded satisfactory results even though the self-affine
case was successful. Another example is given in Figures 2 and 3. In the first
figure, the modulus of the CWT1 of the FIF defined by the points (0, 0), (1

3 , 1),
(2
3 , 2) and (1, 0.4) is depicted. The axes of the plot correspond to the scale

and translation parameters of the CWT, while brighter areas indicate greater
modulus. The structure and the corresponding toppoints described in [4] that
stem from the self-affinity of the data are evident. In the latter figure, the CWT
of an EEG signal is depicted. In this case, the lack of self-affinity results in a
different structure of the CWT that renders the location and usefulness of such
points for the parameter identification questionable. We conclude that the use
of the CWT, as proposed in the aforementioned literature, is not expected to
be fruitful for every arbitrary data set and thus will not be further examined in
this paper.

4 Applications

In this section, we examine the application of the previously described methods
to geographic data. The use of fractal interpolation in geographic applications,
such as GIS, has been suggested in various works, since geographic data often
present an intrinsic fractal structure. For example, coastline representation
using curves constructed by affine fractal interpolation functions is examined in
[8], [10] and [18].

1The CWT in both figures has been calculated with biorthogonal spline wavelets (see e.g.
[5]); specifically, “bior5.5” from the “bior” wavelet family of Matlab has been used.
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Figure 4: The original coastline (left) as well as its reconstruction by the CHM
(right).

The left part of Figure 4 contains a coastline sample (from the Greek island
of Lemnos) consisting of 5070 points. This has been extracted from a satel-
lite image of the region using standard image processing techniques. The right
part of the same figure contains the coastline reconstruction using the CHM for
interpolation intervals of 40 points, i.e. every 40th point is chosen as interpola-
tion point, and address intervals of 507 points. Following the approach of [12],
the address intervals have been chosen to be consecutive and non-overlapping.
The optimal address interval for each interpolation interval has been chosen
by testing all address intervals and selecting the one that results in the lowest
Hausdorff distance between the original and the reconstructed points. Note that
an address interval may correspond to more than one interpolation interval or
may not correspond to any at all. In case where an address interval results
in a vertical scaling factor of modulus greater than or equal to unity, the pre-
determined value of ±0.99 is used instead. This approach is adopted in order
to handle the case when, for a given interpolation interval, there is no address
interval with vertical scaling factor of modulus less than unity.

We note that in this example the data form a curve rather than a function,
i.e. they are not linearly ordered with respect to their abscissa. In order to
represent them with a RFIF, we apply the methodology of [8] and [10] where
the affine case is considered. As can be seen from the figure, the reconstruction
of the coastline is successful despite the considerable sparsity of the interpola-
tion points. This is more clear in Figure 5 that depicts a zoom in a subinterval
of the previous figure; the black curve represents the original coastline while
the gray curve represents its reconstruction. As shown in the figure, the recon-
structed curve approximates faithfully the details of the original one even in this
subinterval which corresponds to the most complicated part of the coastline; in
less complicated intervals the approximation is even better. More specifically,
for 4577 out of the 5070 points of the original curve, i.e. 90.28% of them, the
corresponding point of the reconstructed curve is exactly the same or lies within
a 1–pixel neighbourhood.

Table 1 contains the Hausdorff distance whereas Table 2 contains the Mod-
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L
Method

Geometric Algebraic MBRM CHM BCDM
10 1.8894 1.6985 1.9185 1.5928 2.0149
20 2.9587 2.9320 2.9447 2.7072 3.1331
30 4.1633 3.9420 3.9222 3.8459 4.9534
40 4.9413 4.8098 4.7483 4.6214 6.1051
50 5.9980 5.7727 5.8813 5.3423 6.7804
60 6.2397 6.1179 6.0951 5.7334 7.5651
70 6.9534 7.0796 7.0105 6.5097 7.9214
80 7.9844 8.0110 7.8182 7.5527 9.0486
90 8.8117 9.1088 8.9053 8.3439 10.8379
100 10.6510 10.0125 10.0359 9.1993 12.5079

Table 1: The Hausdorff distance between the original and the reconstructed
data using the five methods for various interpolation interval lengths.

L
Method

Geometric Algebraic MBRM CHM BCDM
10 0.3961 0.3949 0.4025 0.3902 0.4263
20 0.5699 0.5645 0.5660 0.5541 0.6327
30 0.7350 0.7232 0.7207 0.7164 0.8489
40 0.8727 0.8684 0.8593 0.8475 1.0292
50 1.0982 1.0893 1.0715 1.0461 1.3329
60 1.2546 1.1977 1.2033 1.1386 1.4186
70 1.4778 1.4284 1.4233 1.3869 1.6361
80 1.5967 1.5580 1.5785 1.4798 1.9787
90 1.6609 1.6183 1.6022 1.5411 2.0406
100 2.0343 2.0054 2.0141 1.9047 2.3724

Table 2: The Modified Hausdorff distance between the original and the recon-
structed data using the five methods for various interpolation interval lengths.
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Figure 5: The original coastline (black) as well as its reconstruction by the CHM
(gray).

ified Hausdorff distance between the original and the reconstructed coastline.
We have compared five methods, the geometric and the algebraic methods of
[12] against the bounding volume (MBRM and CHM) and the box-counting
dimension (BCDM) methods proposed in this paper. The first two methods
are widely used and are considered to be the best known for recurrent fractal
interpolation functions. The interpolation intervals have been chosen with fixed
length L of 10 to 100, i.e. by taking every 10th to 100th point as interpolation
point respectively. The address intervals have been chosen with fixed length
L′ = 507 and their correspondance to the interpolation intervals has been de-
termined as previously explained. In the case of the BCDM only, the address
intervals have been chosen with length equal to the multiple of L that is closest
to 507, e.g. for L = 10 we have chosen L′ = 510, while for L = 70 we have cho-
sen L′ = 490. This approach was adopted in order to conform with Condition
(b) of Section 3.3.

In terms of both error measures, as shown in the tables, MBRM performs
better than the algebraic and geometric methods in most of the cases, while
CHM performs better than all methods in all cases. The advantage of CHM
over the MBRM is expected, since the convex hulls provide a tighter bound
than the rectangles. On the other hand, MBRM provides an efficient, analytic
calculation of the vertical scaling factors. BCDM has the poorest performance
among all methods, which is not unexpected for two reasons. Firstly, the re-
quirement of equal vertical scaling factors for all interpolation intervals limits
the ability of more accurate fitting. Secondly, the method focuses on preserving
the box-counting dimension of the data and not on minimizing some error mea-
sure. Nevertheless, the performance of BCDM is acceptable and comparable
to the other methods. This implies that it is an interesting and efficient alter-
native, especially in applications where the preservation of the dimension is of
importance. Such cases occur when the dimension is an intrinsic characteristic
of the data. In medical applications for instance, the dimension can be used
for diagnosis (see e.g. [13], [14], [15], [16]). Therefore it is desirable for the
reconstructed data to preserve the dimension of the original, so as to receive the
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Figure 6: The original coastline (black) as well as its reconstruction as an affine
FIF by the CHM (gray).

same dimension-based characterization or categorization.
It is worth mentioning that a RFIF represents the data more accurately, in

general, than an affine FIF. This is expected since RFIFs are a generalisation of
affine FIFs. Such an example is depicted in Figure 6, where the data of Figure
4 are modelled by an affine FIF (see also [9]) constructed, as previously, with
interpolation intervals of 40 points and vertical scaling factors computed by
the CHM. Comparison of Figures 5 and 6 which zoom in the same subinterval
indicates that the RFIF represents the data more accurately than its affine
counterpart.

5 Conclusions and further work

Three novel methods for calculating the vertical scaling factors of 1D RFIFs
have been presented. The first two, following the approach of [9], use bound-
ing volumes of appropriately chosen data points and the minimization of their
symmetric difference metric in order to minimize both the Hausdorff distance
as well as its modified version between the original and the reconstructed data
points. One method (MBRM) uses bounding rectangles which allow analytic
calculation of the vertical scaling factors, while the other (CHM) uses convex
hulls with the factors calculated by an efficient algorithm of linear time com-
plexity. The third method (BCDM) provides analytic calculation of the vertical
scaling factors such that the original and reconstructed data have the same
box-counting dimension.

The proposed methods have been compared against two existing ones, the
geometric and the algebraic of [12], which are considered to be the best known.
The test cases have included geographic data that often arise in practical ap-
plications. The results show that the proposed bounding volume methods are
able to yield comparable or better results than the two afore-mentioned ones.
This is especially evident for the CHM that yielded better results in all cases.
In general, it is expected that the CHM performs better than the MBRM since
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it provides a tighter bounding volume. On the other hand, MBRM has the
advantage of analytic calculations. The proposed BCDM has poorer perfor-
mance than the geometric and the algebraic methods. This is reasonable since
it aims at preserving the box-counting dimension of the original data rather that
minimizing some error measure. However, the results indicate that its perfor-
mance is acceptable and therefore should be considered in applications where
the preservation of the dimension is of importance, such as those mentioned in
the previous section. The proposed methods have also been successfully tested
on EEG and MRA data, indicating their applicability in medical applications.

As in the case of affine interpolation, the methods presented in this paper can
be efficiently combined with an algorithm for finding the optimal interpolation
intervals, such as the iterative algorithm of [12]. Future work will focus on
extending these methods to fractal interpolation surfaces.
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