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STJMMARY
The main design choices involved in parallel RIIBMSs are discussed and the design ctroices
made for the authors' system, PARDB, are justified. The parallel architecture, the pmcess
structure and the parallel algorithms used to implement each of the relational opcrators in
PARDB are described. Performance measurements show that near-linear speedup is achieved
in uniscan operators (such as select), whereas multiscan operators (such as join) perform
slightty worte because of the communication involved in exchanging relation data between the
processors.
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1 INTRODUCTION

Commercial and scientific database sizes are ever increasing. Applications such as banking,
government (and particularly tax departments), geographical information systems, large
engineering designs and scientific data visualization require database response times that
cannot usually be provided within the required time frame given their large size. The
exploitation of parallelism in database management syslems (DBMS) has been a goal of
DBMS designers for almost as long as these systems have been commercially available[1].
The demand for performance constantly outstrips the limits of existing technology, and
parallel processing is the only means available to bridge this gap. Parallelism can improve
a DBMS's performance in both the time and space dimensions by reducing processing time
and by making the efficientcontrol of multiple mass storageunitspossible. Aparallel DBMS
employs parallel processing techniques with the aim of achieving better performance and
should not be confused with a distributed DBMS which has the aim of correctly managing
geographically distributed data. Nevertheless, the two areas do share many techniques since
parallelism requires some form of data distribution between processors.

A number of parallel relational database management systems (RDBMS) are currently
under construction[2]. Most of those publicizd are academic research projects, and we
outline in this paper what we think are some representative systems. The authors' system,
PARDB[3], is described in detail. The aim of the PARDB (PArallel Relational DataBase)
project was to provide the operators of an RDBMS on a Transputer[4] based parallel
machine running under the operating system Helios[S] in a form that is transparent to
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the user. In other words, the interface routines are the same as those of a sequential
RDBMS, and the user only observes the increased performance and the existence of
some extra routines which may be used in order to fine tune the parallel system. This
implementation takes advantage of intra-query parallelism only; inter-query parallelism

should be addressed in the future. Transputer technology provides the means to build
cheap multiple instruction multiple data (MMD) stream parallel processing systems (see

Section 4.1) and has been available for over a decade. Unix-like operating systems, such
as Helios, enable the relatively easy porting of existing software onto Transputer systems.

The rest of this paper is structured as follows. Section 2 outlines the major design
alternatives that are open to the designer of a parallel RDBMS while Section 3 presents a
survey of parallel RDBMS projects for comparison. Section 4 describes PARDB in detail;
a description ofthe parallel processing platform is followed by the design choices that were

made, an outline of the system's process structure and hardware architecture, a description
of the parallel algorithms that implement each major class of relational operators in a CSP-
like notation, and finally a presentation of the measured performance results. Section 5
concludes this paper and outlines our future research plans. A brief description of the

CSP notation is given in Appendix I and the CSP algorithms for relational operators are
presented in Appendix 2.

2 PARALLEL RDBMS DESIGN ALIERNATIVES

The following list of design alternatives is a result of the experience produced by a number
of parallel RDBMS projects; see Section 3. It is by no means exhaustive, but it highlights
the main decisions that a parallel RDBMS designer has to make.

2.1 Level of parallelism

As is the case in all parallel processing projects, the first question to answer is at what
level the RDBMS will be parallelized. There are three levels at which parallelism can be
introduced in an RDBMS, resulting respectively in query, operator and nple parallelism.

Query parallelism can be divided into inter- and infia-query parallelism. The first involves
the processing ofdifferent queries in parallel, possibly on different partitions ofthe daCabase,
whereas the latter involves deciding how to best exploit ttre parallelism within a query. If a
query involves the join of four relations Rl, R2, R3 and R4 for example, Rl and R2 may be
joined in parallel wittr the join of R3 and R4 by a system exploiting inna-query parallelism.

Operator parallelism arises when the function of a relational operator is distributed among
different processors. This involves the partitioning of the database over multiple secondary
storage devices and leads to the consideration of data distribution and load balancing issues.

Tuple parallelism, at the lowest level, attempts to increase processing power and sec-
ondary storage UO bandwidth by dividing the bits making up each tuple of a relation among

several secondary storage units connected to different pr(rcessors. This is certainly effective
and has few overheads, but can only result in a limited amount of speedup and requires

expensive interprocessor communication in order to put a tuple together. A large number

of systems use tuple parallelism.
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2.2 Machinegranularity

Machine granularity refers to the complexity of the individual processors of a parallel ma-
chine. Simple bit-processors, such as those found on the Goodyear MPP or the Connection
Machine, usually come in the thousands and it seems attractive to assign a tuple per pro-
cessor as is the case in [6]. Suchfine-grained systems require a completely new RDBMS
design and indexing in particular becomes difficult. Fewer, but more complex processors,
such as the Inmos Transputer or the Intel iPSC, provide coarse-grainparallelism and allow
more conventional RDBMS design and indexing. Stone[7] concludes that indexing, by
significantly reducing VO faffic, gives such a great advantage that serial algorithms using
indexing can sometimes outperform massively parallel algorithms that do not use it.

2.3 Network topology

The topology of the parallel processor network should reflect design requirements. Hyper-
cubeslS,9lminimize network diameler and are suitable when interprocessorcommunication
is expected to be heavy. Trees minimize the length of the maximum broadcast path. For
modest communication or when there is not a sufficient number of connections (e.g. T8xx
Transputer links are limited to four) a gri.d, ring or pipe may suffice.

There are two main communication requirements of a parallel RDBMS. First there is
the necessity for communication between the processors to exchange relation data in the
parallel implementation of certain operators. Second is the need to broadcast commands
to all processors and to receive the results ofoperations at a central site before presenting
them to the user. The first requirement suggests minimization of the network diameter
(hypercube) whereas the second one suggests minimization of the maximum broadcast
path (tree). However, the type of interprocessor communication required here usually
involves the distribution of each processor's inner relation partition to all other processors
and this can be handled with reasonable efficiency on a ring architecture.

2.4 Sharing

Main memory and secondary storage are two resources that may or may not be shared among
the processors of a parallel RDBMS and the following system classes exist: shared-nothing
(SN),sftared-memory(SM),r shared-disks(SD),2 and shared-everyt tng(SE)[0,]l].

In the SN class each processor has its own local memory and disk(s) and thus owns a
portion of the database which it can manipulate directly. The database is thus partitioned
among the processors. SN architectures are easily scalable and can efficiently use cheap off-
the-shelf disk units, but they suffer from data distribution and load-balancing problems. The
SM approach attempts to make interprocessor communication and synchronization easier
through the use of common memory, and furthermore avoids replication of the RDBMS
code. Common memory, however, makes this architecture difficult to scale. SD on the other
hand tries to alleviate the data distribution and load balancing problems by making all disks
accessible to all processors (and thus loses in scalability). Finally SE shares both memory
and hard disks and is the least scalable.
I Memory will refer to main memory.
2 Disk will refer a secondary storage device.
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2.5 Partitioning

There are two main methods for partitioning a database among a number of secondary
storage devices; horizontal panitioning (or declustering) and vertical partitioning. T\e
former distributes a relation's tuples (or rows) whereas the latter distributes the attributes
(or columns) among the secondary storage devices. Horizontal partitioning enables the
system processors to use normal RDBMS algorithms when operating on a partition of the
relation. Interprocessor communication is only necessary when implementing multiscan3
operators. In the case of vertical partitioning interprocessor communication is necessary
in order to form any complete tuple by joining the distributed attribute values. However,
vertical partitioning does not suffer from the uneven data distribution that may arise in
horizontal partitioning.

Tuples can be partitioned horizontally using one of three main shategies; hashing,where
a hash function of a tuple's attribute values determines where it shall go, round robin,
where the tuples are arbitrarily divided among the storage units, and range partitioning,
where each secondary storage unit stores only tuples with a certain range ofattribute values.
Hashing and range partitioning allow the implementation of multiscan operators without
interprocessor communication when the hashing or range partitioning atfribute is involved.
However, multiscan operators based on other attributes require the repartitioning of the
relations involved among the processors. In on-line transaction processing (OLT?), hashing
and range partitioning are advantageous because Eansactions for a particular record can be
directed to the secondary storage device upon which the record is known to be stored[l2].

3 PARALLELRDBMSSURVEY

Table I lists six parallel RDBMSs which, with the exception of Bubba, are academic
research projects. It can be seen that certain design alternatives have been selected in most
systems. This is a preview of the characteristics of future RDBMSs.

Bubba[13], Gammall4l, MDBS[15] and PARDB (Section 4) share a significant number
ofcharacteristics including operatorparallelism, coarse grainedprocessors, shared-nothing
architecture and horizontal tuple partitioning. Coarse grained processors allow the use of
existing RDBMS techniques and code (including the significant advantage of indexing)
whereas the shared-nothing architecture and horizontal partitioning both serve the puqpose
of system expandability. Operator parallelism does not exclude query or tuple parallelism
and one can envisage systems taking advantage of all three types of parallelism. The
hypercube topology is also a common choice because it minimizes network diameter, and
is expandable and theoretically appealing.

XPRS[16] follows a different philosophy; it uses a shared-memory architecture to aid
interprocessor communication and load-balancing, and proposes a different relation par-
titioning scheme which is a combination of horizontal and vertical partitioning. It mainly
addresses query parallelism but there are plans to exploit all three types ofparallelism.

Finally the MPP approach[6] is an attempt to implement relational operators on a fine-
grained SIMD machine by assigning a tuple to the memory of each processing element; in
such a fine-grained architecture it is not viable to provide a secondary storage unit for each
processing element. Though elegant, it is not easy to see how all aspects of a RDBMS can

3 As defined in [8] a multiscan operator is one in which 'the processing ofan individual tuple involves comparing
its attribute value(s) against other oples'.
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Tbble 1. Parallel RDBMS

Bubba Gamma

Operator

IfY: Hypercube. SM: Shared-memory. HO: Horizontal. IIA: Hashing. SD: Shared-disks.
SN: Shared-nothing. VE: Vertical. RA: Range. RR: Round Robin.

be efficiently implemented on such a system.
Other attempts at Transputer based RDBMSs have been made in the past. Akaboshifl7]

presents exp€rimental Transputerbased hardware for theJoin (only) operator, and Bryanfl8]
reports on the design of a Transputer-based database machine called MEDUSA for the
storage of GIS information. Englandfl2] compares two commercial tansaction processing
modes (OLTP, MIS) in the banking and financial sector.

4 PARDB

The following subsections describe the authors' parallel RDBMS which was built at the
National Technical University of Athens and the University of Athens.

4.1 Parallel processing plaform

The parallel hardware used was a Parsytec Multicluster-2. It consists of 16 T8004 Trans-
puters, an interconnection network, a large external hard disk and a SPARCstation host (see
Figure l). Each Transputer is a floating point processor with 4 Kbytes of on-chip memory,
four on-chip links which enable it to be connected to other Transputers, and 2 Mbytes of
external RAM. At present, all links of all 16 Transputers are connected to the intercon-
nection network which can join any link to any other and thus allows the construction of
a MIMD system of arbitary topology consisting of up to 16 nodes. The interconnection
network is made up of a hierarchy of Inmos C0O4 link switch chips.

The Helios operating system controls the above hardware; it is Unix-like but unfortu-
nalely not Unix compatible. Producing a parallel application under Helios involves the
following steps:

1. The physical network interconnections are defined in a special file (resource map
file).

a The floating point capabilities of the TE00 Transputer arc not extensively used in database procassing and, in a
commercial environment, such a system could be built out oflower-end Transputers.

level of Operator Operator
parallelism

Granularity Coarse Coarse
Topology HY HY/Ring
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2. The application is written as a number of separate C processes communicating 
between them via streams. 

3. A logical network topology is requested for the C processes using a special Compo- 
nent Description Language (CDL). 

Interconnection Network 

4 Links 

Transputer 

Figure 1. Parallel processing platform 

Helios undertakes to map the logical network onto the physical one as well as possible. 
Virtual links that cannot be mapped onto physical links, are implemented transparently to 
the user by Helios using message routing through the network. 

The C processes defined in the CDL script will usually execute on separate Transputers 
(true parallel processing). However Helios allows multiple processes to run on the same 
Transputer (pseudoparallelism). This arises out of a specific user request (multithreading) 
or when hardware resources are insufficient (multitasking). 

4.2 Design choices 

The design of PARDB was guided by the following objectives: 

1. interface compatibility with serial RDBMS 
2. scalability and speedup 
3. Transputer based 
4. code reliability 
5 ,  short development time 

The choices that have been made for each of the design alternatives described in Section 2 
are presented in this section. The system exploits operator parallelism on a shared nothing 
(SN) architecture where the tuples are horizontally partitioned among the processors; 
initially only the simpler round robin distribution strategy is considered. 

The SN architecture can easily be scaled by replication; it does not involve any shared 
resource which would be a potential performance bottleneck. It is assumed that each 
Transputer has access to a local hard disk (see Figure 1) where it can store its partition of 
the database (disk I/0 is the usual performance limiting factor). The existing hardware has 
only one hard disk. To circumvent this problem a simulator was built[l9] which accurately 
estimates the performance that would be achieved if a hard disk per processor really 
existed. Transputer hardware is ideal for implementing SN systems; distributed memory 
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and communication via messages is part of the philosophy behind the Transputer parallel
processing model.

Another advantage of the SN system is that every one of its processor nodes can be
seen as an independent sequential RDBMS. A conventional RDBMS can thus be taken off-
the-shelf and run at every p(rcessor node, resulting in a significant saving in development
effortand exploiting the reliability of a thoroughly tested RDBMS. Underthis scheme each
processor node runs the RDBMS on a partition of the database and holds the corresponding
sub-indices. An important goal was inlerface compatibility i.e. making the application
interface identical to that of the original off-the-shelf RDBMS.

PARDB was built around the concept of operatorparallelism which naturally fits the goal
of interface compatibility. Tirple parallelism has been avoided in order to keep the original
RDBMS code. Horizontal partitioning is therefore used for tuple distribution between the
processors; if multiple hard disks were connected to each processor, it would be possible to
use vertical partitioning in order to increase the VO bandwidth into the hard disks. Query
parallelism can be added at a higher level (see Section 5).

4.3 Systcm structure

A number of sequential RDBMS's were considered by the authors, who finally selected
'UMDBASE'[20] as the basis for the project, for the following reasons:

l. Availability of C source code.
2. Nicely layered stucture (paged file, heap file & access method layers).
3. Informal support by T. Sellis of the University of Maryland.
4. Free ofcharge.

LIMDBASE was ported onto the Helios and subsequently onto the Parix operating systems
and runs on every Transputer that holds a partition of the database. Such a Transputer, along
with the software that it hoss, is called a slave. A slave independently manages is local
database partition and stores all the relevant data (such as subindices and RDBMS code).

One Transputer is reserved to provide a unique interface to applications (which is almost
identical to the interface of the original sequential RDBMS) and for delegating the work to
the appropriate slaves through message passing. This Transputer and the associated software
isthe master. The master does not take part in the execution of relational operators and thus
does not constitute a bottleneck. PARDB can comprise many slaves but only one master
(see Figure 2).

The master interfaces with the application via a script file that contains relational com-
mands. The current list of commands includes Create, Destroy, Append, Delete, Project,
Select, Union, Intersection, Difference, Join, Load (load a database onto the disk of each
slave), Collect (dump a database from 0re disk of each slave onto a central disk), RmDupl
(remove duplicate tuples that may exist between different partitions of a relation) and Bal-
ance (redistribute the tuples between partitions so that the difference between the partitions
with the minimum and maximum number of tuples is no more than l).

A table of the number of tuples per relation per slave is kept by the masler (see Figure 3).
This important table is called the relation nble. The relation table is maintained by a
service routine, reltableservice, which is called by the master to create a new entry, delete
an existing one, change the number of tuples of a particular slot or get statistical information
necessary for the efficient functioning of PARDB. This table gives the master a picture of
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SIAVE
((hcofooy)

MASTER
(OEndoly)

Script File

Figure 2. Parallel processing platform

the size of each partition and is always kept up to date; all changes to tuple distribution are
recorded immediately in the central relation table.

After a script file command is read by the master, messages are sent to the slaves which
execute the command (usually that simply involves broadcasting the command and any
arguments to the slaves). The master then waits for messages from the slaves; the messages
contain any results and report successful termination of a command. The master finally
records any changes in the relation table.

Conespondingly upon receiving a command from the master, a slave calls the appropriate
sequential RDBMS routine to perform the necessary processing on the local partition of
the database(s), it then exchanges partition data with other slaves (necessary for multiscan
operators) and sends a tennination message to the master.

The network architecture is determined by the pattern of interprocessor communication
requirements and the capabilities of the underlying hardware. Most multiscan relational
operations can be implemented on a parallel system eith erby the global partitioning method
or by the cycling method[2l].

Flgure 3. Relation table
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physical
links

Figure 4. Communication structure

Global partitioning algorithms redistribute the tuples of the relation to be operated on
so that the partitions of all operand relations that reside on the same processor have the
same range of values for the attribute of interest. So, for example, ttre partitions of all
relations resident on processor 0 may contain only tuples whose field name is in the range
fuAJquA,/q,rquA,rd\ to AZ-7f,-7-7,7-2. With global partitioning, each processor need only perform
the relational operators on its local tuples, after redistribution. The redistribution itself is
usually based on sorting or hashing techniques. Global partitioning avoids the exhaustive
comparison of every tuple of one relation with every tuple of the other, but incurs the extra
cost of partitioning. The sorting or hashing of the global partitioning method is made more
efficient by minimizing the network diameter; the hypercube is then a suitable choice, and
good sorting and hashing algorithms exist for this topology. Our 16 T800s can be configured
so as to form a 4D hypercube of diameter 4.

By contrast, the cycling method performs an exhaustive comparison and broadcasts
every partition (of the smaller relation) from its host processor to all other processors. This
broadcast is easily implemented by 'cycling' partitions around a ring, thus avoiding the
necessity to hold the whole of one relation at any one node and overlapping the VO of a
partition with the processing of another.

It is not easy to predetermine which method will achieve befter performance as it is
dependent on factors such as the relative size of the operand relations, whether they are
balanced, the speed of the underlying communication network etc. It was chosen to opt
for the simpler ring architecture (in which all of our available processors can easily be
connected using physical - as opposed to virnral - links). Correspondingly our algorithms
were implemented using the cycling technique. Direct (virtual) links also exist between the
master and each slave for the hansmission of conEol (relational commands and arguments)
and housekeeping information; see Figure 4. One thread per link handles communication,
thus enabling the parallel execution of link VO and relational processing on each node
(pseudo-parallel in the case of virtual links). Threads (lightweight parallel processes) are
provided by the Helios and PARIX operating systems. In the future it is hoped to implement
the hypercube/global partitioning version and compare the two.
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4.4 Parallel relational operator algorithms

In this section, the parallel relational algorithms are grouped into three major classes rnds-
can,multiscanandappendaccording to their pattern of computation and communication. A
general description ofeach class is given and example operators are described in a superset
of C enriched with CSP message passing and parallel constructs[22]; see Appendix l. The
remaining parallel operators are described in Appendix 2. The actual implementations are
in Helios C and CDL[SJ; they have recently been ported to C under the PARD( OSt23].
Under Helios, sequential code is written in straight C and the CDL language acts as a
'parallel glue' that allocates processes to processors and specifies the interconnections
between them. In PARIX, C programs handle the process allocation and the interprocess
communication using OS libraries.

4.4.1 Uniscanoperators

A uniscan operator is an operator whose processing does not require the comparison ofeach
tuple with other tuples. This class comprises the select, proiect, union, delete and aggregate
relational operators. The last operator computes an aggregate of a specific attribute of a
relation based on a selection filter; it requires slightly different processing and is treated
separately.

4.4.1.1 Description
Uniscan operators are implemented in three steps as shown in Figure 5:

Broadcest command &
parametem

Local Proccssing
PutA op PartB

OR
op Part A

Bold bons lndicau local Feessing,
Shded bores indicatc iraclive prcceeturs

Figure 5. Uniscan processing

Collcct Rcsult Partition
lnfo

E]

ElEEl
G1 EI



PARDB

Step 1. The uniscan operator and associated pararneters are broadcast from the master to
the slaves.

Step 2. All slaves execute in parallel the sequential relational operator on their local
database partitions (one or two operand partitions depending on the operator).

Step 3. Information on each resulting partition (size etc.) is collected by the master in
order to update central data structures.

In the case of aggregate an extra step is performed by the master:

Step 4. Computation of global aggegate from partial aggregates (Figure 6).

t
nrMl t

TT
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Brcadcst comrnd &

Prmcim
Locd hoc,crsing

opPutA

CollcdPrrid
Aggrqg&

ComFrE Olobd
Aggtlg|tr

tr'igure 6. Aggregate processing

4.4.1.2 Example operator- select and aggegate
The select operator acts as a selector oftuples from the source relation based on a selection
filter. The resulting tuples are placed in a new relation.

The master creates a new entry in the relation table for the relation resulting from
the selection, it sends the select operator arguments to the slaves, receives the size of
each newly created partition from them and updates the relation table. The slaves operate
correspondingly.

PeeI.ect

llaster

Pselect (resrelname, srcrelname, selection) {
reltable-sevice(create, resrelna.me, -, -,) ;
| | i in sr,ews t

toslave[i] ! resrelname, srcreluan€, selection);
fronslave[i] ? nuntuples;
reltable-service (add, resrelname, i, nuntuples) ;

)
)
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SIawq

fronmaster ? resreluane, srcrelname, selection ;

D-tup=sslEct (resrelnane, srcreluane, selection) ;

tomaster ! n-tuP

In the case of aggregale, the master sends the aggregation operator arguments to the slaves,

gets the uggr"gution result from each slave and computes the global aggregate over all

itre stanes. thii is compurcd as an atomic operation; the master UO threads use a binary

semaphore for this purpose. Conespondingly each slave receives the aggregation arguments

from the master, computes the aggregate on its own partition of the relation and sends the

result to the master. Aggfegation types currently implemented aIe count, sum, average, min

and max. The code below computes sum.

Pagrgr€getc

lf,arlcr
Paggregate (aggrtype, attribute, srcrelnane, selection) {

global-aggr = 0; /* assune sun t/

| | i in slnves t
toslave[i] ! aggrtype, attribute, srcrelnane, selectiou;

fronslaveli] ? aggr;
wait (binary-sena);

global-aggl = global-aggr + aggr; /* assume sun */

signal (binarY-sena);

)
)

BIavs

fronnaster ? aggrtype, attribute, srcrelname, selection;

aggr = aggregate (aggrtype, attribute, srcrelnane,
selection) ;

tonaster ! aggr;

4.4.2 Multiscanoperators

A multiscan operator is an operator whose processing requires the comparison of each tuple

with other tuples. This class comprises join, difference and intersection.

4.4.2.1 Description
A multiscan operator is implemented in four steps, as shown in Figure 7.

Step l. The multiscan operator and associated pararneters are broadcast from the master

to the slaves.
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Repeat P timess

Step 2. All slaves execute in parallel the sequential relational operator on their local
database partitions.

Step 3. The partitions of the smaller relation are circulated by one hop6 around the ring.

End

Step 4. Information on each resulting partition (size etc.) is collected by the master in
order to update central data structures.

Flgure 7. Multiscan processing

4.4.2.2 Example operator- join
A distributed version of the nested loop join algorithm was implemented. The smaller of the
two relations is cycled around the ring. Join is commutative; this implies that the algorithm
is the same irrespective of which relation is smaller (contast that to the Difference operator
in Appendix 2). The master broadcasts the identity of the largerrelation to the slaves, along
with the other join parameters, and then waits until the numbers of tuples in each partition
of the resulting relation are transmitted back from the slaves; this information is then used
by the master to update the relation table.

Thejoin algorithm does not attempt to balance the operand relations nor does it guarantee
that the result relation will be balanced. Rather, the task of balancing is left to the user
who can explicitly call the balancing routine. The performance of the join algorithm can
be significantly improved by providing it with balanced operand relations.

Duplicate tuples would not arise as a result of the join operation provided that they did
not exist before in the source relations.
5 P is the number ofprocessors in the ring
6 That is, each slave receives a partition from its predecessor in the ring.

tf,l

ElIEl
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Lml Proaing RitgCo.rrnnicdd
P [ r A ? h B
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PJoLa

l{rstar
Pjoin (resrelnane, srcrelnanel, srcrelnaoe2) {

reltable-service (create, resrelnane, -, -);

sizel = reltable_servj.ce (total, srcrelnanel, -, -);

size2 = reltable_service (total, srcrelname2, -, -)i
if (sizel > size2)

| | i in sr,nves {toslaveli] ! resreluame, Brcrelnanel,
srcrelname2);

e lse
I I i. in snves {toslave[i] ! resrelnane, srcrelnane2,

Ercreluanel);
l l i i r r s n w s  t

fronslave[i] ? nuntuples;
reltable-service (add, resrelnaue, i, nuntuples) ;

)
)

The slaves circulate the partitions of the smaller relation around the ring. At each step
the local partition of the larger relation is joined with the incoming partition. The simple
(sequential) procedures, rcopy and rappeud copy and append (without checking for
duplicates) respectively one relation to another.

Pjo in

SIave
fronmaster ? resrelna[e, bigsrcrel, snallsrcrel;
create (tenprel) ;
creat€ (relbufl);

create (relbuf2) ;
rcopy (relbuJl, suallsrcrel) ;
D-tuP = join (resrelnane, bigsrcrel, retbufl);
f o r ( i = 1 ; i c p ; i + + ) {

i f  odd( i )  {
{fronleftslave ? relbuf2 l l torightslave ! relbufl};
n-tup = n-tup+join (tenprel, bigsrcrel, relbuf2);
rappend (resrelnane, tenprel) ;

)
e lse {

{fronleftslave ? relbufl l l  torightslave ! relbuf2 };
n-tup = u_tup+join (tenprel, bigsrcrel, relbufl);
rappend (resrelaane, tenprel) ;

) ;
) ;
destroy (tenprel);
destroy (relbufl);
destroy (relbuf2);
tonaster ! n_tup;
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4.4.3 Append

Append is the procedure that inserts a new tuple to a relation and is implemented in three
steps @gure 8).

Step 1. The master uses the relation table service routine to determine the processor
identifier (pid) of the slave with the minimum number of tuples for the given
relation and then transmits the relation name and the tuple to that slave.

Step 2. The selected slave appends the tuple to its local partition.
Step 3. The master receives acknowledgement from the slave and updates the relation

table.

Send Tuple to
Appropriate Slave

Append Tuple

Figure E. Append processing

The code for this operation follows.

Pa1lgend

Uast'aE
Pappend (relnane, aewtuple) t

ninpid = reltable-service (niu,re1name,-,-) i
toslave[ninpidJ ! relname, uewtuple;
reltable-service (add,relnane,ninpid, 1) ;

)

Al.avelulnOlil
fronmaster ? relnane, newtuple;
appeud (relname, newtuple) ;

GetAck.

JFN
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E
nHn

EN
nFf

EI
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4.4.4 Duplicate rernoval

The duplicate removal utility eliminates duplicate tuples that may exist between different
partitions of a relation. Duplicates may arise from the execution of the projec! union or
append operators. Local duplicates (within a partition) are not dealt with, as these are
supposed to be cleared up as part of the execution of any sequential operator that may give
rise to such duplicates.

The duplicate removal utility is under the explicit control of the user. It is the only
algorithm that does not exploit the symmetrical properties of the ring, but instead, requires
pipeline connectivity (i.e. the link between slave P and slave 0, is unused). It achieves its
objective by passing the partitions through the pipeline and, at each stage, subtracting the
incoming partition from the local partition using the local difference operator. In designing
the algorithm caxe was taken to ensure that a duplicate tuple is not subtracted from all the
partitions in which it occurs.

The duplicarc removal algorithm requires that each slave operates according to its posi-
tion in the pipeline @gure 9):

l. The first slave (pid 0) simply forwards is local partition to the next processor.
2. \\e last slave (pid P - l) receives the P - I consecutive partitions coming down

the pipeline and subtracts each of them from its local partition.
3. Intermediale slaves (pids 1, . . . , P -2)Eansmit their local partition and all incoming

partitions (from preceding slaves) to their successor and successively subtract the
incoming partitions from their local partition.

Step I

Step 2

Step 3

Step 4

Figure 9. Duplicate removal utility

The master simply broadcasts to the slaves the name of the relation and then waits for
the final partition size of each slave so that it can update the relation table. Each slave
implements the algorithm discussed above using two buffers in order to process input and
output in parallel.

f **-l f *""1
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Dn-dW1

Urll.t
Prn-dupl (relnane) t

l l  r rtrsr,erms{
toslave[i] ! relnane;
fronglavelil ? nuntuples;
reltable-Eervice (set, relname, i, numtuplee) ;

)

Prn-dug1

Sbvr
fron nastEr ? relnane;
create(relbufl) ;
create (relUuf2) ;
rcopy(relbuf 1, relnane) ;
toggle = TRIIE;

for( i  = 1;  i  a= p id i  i++)  {
if toggle t

if pid < (P-1) {
fronleftslave ? relbuf2 l l
torightslave I relbufl

)
else fronleftslave ? re1buJ2;
D-tup = difference (relnam€, relnane, relbuf2);

)
elEe {

if pid < (l{-1) t
fronleftslave ? relbufl ll
torightslave ! relbuf2

)
else fronleftslave ? relbufl;
n-tup = difference (r€lDame, relnane, relbufl);

)
toggle = -toggl€;

)

if pid < (P-1) {
if toggle torightslave ! relbufl
else torightglave ! relbuf2

)
destroy (relbufl);
destroy (re1buf2);

toDaster ! n_tup;
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(b) Select with selectivity l%

(c) Select with selectivity l0%

(d) Select with sclectivity l0% indexed

Flgure 10. Select speedup

4.5 Performance results

Performance measurements for two representative operators, select (uniscan) and join
(multiscan) are presented. Other operato$ within each class (uniscan, multiscan) exhibit
similar performance.

Figure l0 shows the select speedup in the case of an aggregation (uniscan) operator
(a), a selection with I per cent selectivity (b), a selection with l0 per cent selectivity (c)
and an indexed selection with l0 per cent selectivity (d). They were all executed on a
partitioned lO0K-tuple relation and it can be seen that speedup is alnost linear in all cases
except the indexed one; even in this case, where the sequential algorithm is very efficient,
there is significant speedup, as the major cost in database processing is disk VO and this
is divided among the multiple hard disks. The query used involved a single selection
filter; it is expected that speedup figures will improve further if complex select queries
are used because the resulting higher computational complexity will be divided among the
processors.
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Join

Figure 11. Join speedup

Figure I I shows join operator speedup on partitioned lKx lOK-tuple relations. Here the
high communication cost involved in exchanging partitions (oin is a multiscan operator)
limits the value of the speedup. Hash or bucket-based join algorithms could eliminate the
need for communication during the join but it is doubtful whether they could significantly
improve performance as the sorting step necessary before the join requires heavy com-
munication. Complexity analysis (to be published) has shown that it should be possible to
improve multiscan operator performance by pre-sorting each database partition (if an index
on required attribute does not exist). A merge-type algorithm with linear complexity can
then be used to execute the operation.

Finally Figure 12 shows the results of a join scaleup experiment with relation sizes
lKx 10K, 2Kx 10K,4Kx 10K, 6Kx 10K and 8Kx 10K. The computational complexity is
proportional to the number of processors used in each case. The results again reflect the
fact that database operators are heavily VO based, thus increasing the VO throughput in
line with relation size results in near-linear scaleup.

Measurements involving 16 processors have slightly worse performance than expected
because in this case there are not enough processors in the system for a one-to-one process
to processor allocation. Thus one slave is run on the same processor as the master process
and another slave on the same processor as the multiple hard disk simulator.

Unfortunately system resources (single hard disk also accessible by other users) did not
allow experimentation with very large databases.
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Join

8 1 0

Proccrrors

Figure 12. Join scaleup

5 CONCLUSIONS AND FUTURE DIRECTIONS

VO is usually the main performance bottleneck in database processing. The shared-nothing
approach allows multiple processors to exploit multiple hard disks and thus increase VO
(as well as computational) performance with no limit as far as the system is concerned.

Given the relational operator algorithms which we have presented in this paper, such
systemscan be builtvery cheaply from off-the-shelf processors with built-in communication
capability (e.g. Transputers) and cheap hard disks. The authors' Transputer implementation
showed that the most significant performance gains are in the case of uniscan operators.

The area of parallel RDBMS's lacks significant complexity results which can reveal
the theoretical limits of such technology. The authors are currently working on formal
specifications and complexity analysis for the parallel algorithms involved (in cooperation
with Dr. A. E. Abdallah of the University of Reading).

Further speedup is possible by exploiting intra-query parallelism. The authors are at
present investigating intra-query parallelism in conjunction with the possibility of avoiding
the use of hard disk storage at internal node of the query tree.

Alternative connectivity topologies (e.g. hypercube) and partitioning strategies (e.g.
hashing) should be implemented on the same system and compared.

Commercial application of academic research results such as those presented in this pa-
per, requires that some standard database facilities be provided. These include concurrency
control for OLTP, referencial integrity, security and recovery.

APPENDD( 1: CSP NOTATION BASICS

The notation used for the description of the parallel algorithms is blackboard C enriched with
CSP[22] parallel constructs. In CSP a number of independent processes communicate via
channels. The parallel constructor symbol 'll' indicates the parallel execution of processes
and it is extended to accept a set index where necessary, e .g. ll s in 5d{process with parameter
e). The '?' symbol indicates reception of a message on a channel and the '!' symbol
indicates transmission on a channel. For example channelname ? variable, channelname !
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value. Reception and transmission are point-to-point, synchronized, and unbuffered. The
sequential process combination symbol is the semicolon.

APPENDD( 2: PARALLEL RELATIONAL OPERATORS

A2.l Uniscan operators

A2.I.I Delete

To delete a selection of tuples, the master broadcasts the relation nane and selection filter
to all slaves, then receives from them the number of tuples deleted and finally updates the
relation table. Each slave receives the relation name and selection filter from the master,
deletes the required tuples using the sequential RDBMS delete operator and returns the
number of deleted tuples to the master.

Pdalcte

UaBtqr
Pdelete (rel-nane, selectiou) {

| | i i ' s r a w s  {
toslave[i] ! relname, selection;
fromelave[i] ? nnndeleted;
reltable-service (subtract, relnane, i, nundeleted) ;

)
)

BIavq

fronmaster ? reluane, selection;
n-tup = delete (relname, selection);
tonaster ! n-tup

42.1.2 Project

The master creates a new table entry for tle result relation, sends the project operator
arguments to the slaves, receives the size of each partition of the new relation from the
slaves and updates the relation table.

Each slave receives the project operator arguments from the master, creates a local
relation for the storage of the result, executes the sequential project command and sends
the number of tuples in the resulting relation to the master. Duplicate tuples that arise as
a result of the project operation within any one partition are removed by the sequential
project operator. However duplicates between different partitions may arise and these are
not automatically removed. The user must explicitly request their removal by calling the
RmDupl operator, described in Section 4.4.4.

PgroJcct

Ur.t.-
Pproject (resrelnane, srcrelaane, project-attributes) {
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reltable-service (create, resrelname, -, -, );
| | i in sLaves t

toslave[i] ! resrelnan€, srcreluane,
proj ect-attributes;

fronslave[iJ ? nuntuples;
reltable_service (add, resreluane, i, nuntuples) ;

)
)

EIave
fronmaster ? resrelname, srcrelnane, project_attributes;
cr€ate (reerelnane);

u-tup = project(reereluame, srcrelnane, project_attributes) ;
tonaster ! n_tup

A2.L3 Union

The master creates a new table entry for the result relation, sends the union arguments to
the slaves, receives the size of each new partition of the result relation from the slaves
and updates the relation table. The slaves act correspondingly on their local partitions.
In a similar manner to the project operator, duplicate tuples may exist between different
partitions (processors) of the result relations. It is left to the user to execute the RmDupl
operator on the result relation.

PuaLoa

llagtsE
Puniou (resrelnane, srcrelnamel, srcrelnane2) t

reltable-service (create, resreluane, -, -,) ;
| | i in sr,nves {

toslave[i] ! resrelnane, srcrelnamel, srcrelname2 ;
fronslave[i] ? nuntuples;
reltable_service (add, resrelnane, i, nuntuples) ;

)
)

EIavq
fronmaster ? resrelnaue, srcrelnamel, srcrelnane2;
create (resrelnane);

n-tup = uuioD (resrelnane, srcrelnan€l, srcreluane2);
tonaster ! n_tup;

42.2 Multiscanoperators

A2.2.1 Intersection

The master creates a new table entry for the new relation, determines the sizes of the two
operand relations and sends the names of all three relations to the slaves (larger operand
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before smaller). It then receives the size of each partition of the result relation from the
slaves and updates the relation table accordingly.

PLatcrrcctLon

Uaatcr
Pintersection (resreluane, grcrelnanel, srcrelnane2) {

reltable_service (create, resrelnane, _, _);
sizel = reltable_service (total, srcrelnamel, _, _);
size2 = reltable_service (tota1, ercrelname2, _, _)i
i f  (s ize l  > s ize2)

| | i ir sr,eves {toslave[i] I resrelnane, srcrelnanel,

erse 
srcreruane2 );

I I i in snves {toslave[i] ! resrelname, srcreluane2,
srcrelnanel);

l l i i ' s * w s  {
fronslave[i] ? uuntupleE;
reltable_service (add, resreluame, i, nuntuples) ;

)
)

The slaves implement the intersection by 'cycling' the partitions of the smaller of the two
operand relations around the ring. Intersection is commutative and the algorithm remains
the same irrespective of which relation is larger. At each loop execution a slave receives a
partition of the smaller relation from is left neighbour, intersects it with its local partition
of the larger relation and appends the result to the result relation. The number of tuples in
each partition of the resulting relation is then sent to the master by every slave. Ttre code
fragments below make use of two buffers (relbuf 1 and relbuf 2; wtrictr aia tne circulation
of the smaller relation around the ring. Each of them is shown to be big enough to store a
whole partition of the smaller relation. In practice however, communica=tion missage sizes
close to the ideal message size are used and these also determine the size of these buffers.

PiatersectLoa

SIavr
fronnaster ? resrelname, bigsrcrel, snallsrcrel;
create (resrelname):
create ( tenprel ) ;
create ( re lbuf l ) ;
create ( re lbuf2) ;
rcoPy (rerbufl, snallsrcrel); ,/* relbufl = snalrsrcre! */
D_tup = intersection (resrelname, bigsrcrel, relbufl);
f o r ( i = 1 ; i c P ; i + + ) {

i f  odd ( i )  {
{fronleftslave ? relbuf2 l l torightslave ! relbufl};
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n-tuP = n-tuP + intersection (tenprel, bigsrcrel,
re lbuf2) ;

rappend (resrelnane, tenprel) ;
)
e lse {

{fronleftslave ? relbufl | | torightslave ! relbuf2};
n-tuP = n-tuP + intersection (tenprel, bigsrcrel,

re lbuf l ) ;
rappend (resrelnane, tenprel),

) ;
) ;
destroy ( tenprel ) ;

destroy ( re lbuf l ) ;

destroy (re1buf2);

tonaster ! u-tup;

A2.2.2 Difference

Difference is also handled in a way which allows the smaller of the two operand relations
to rocate around the ring of slaves. The master compares the sizes of the two operands and
sends their names to the slaves along with a message indicating which is larger. It then
wais for the slaves to return the number of tuples in each partition of the result relation
and updates the relation table.

PdLfference

liaetcr
Pdiffereuce (resreluame, srcrelnanel, srcrelnane2){

reltable-service (create, resrelnane, -, -);

s ize l  = re l table-serv ice ( tota l ,  srcre lnanel ,  - ,  - ) ;

size2 = reltable-service (total , srcrelna.ne2, -, -)i

i f  (s ize l  > s ize2)  b igger  = 1 e lse b igger  = 2;

l l i i n s * * s  {
toslave[i] ! resreluame, srcrelnamel, srcrelnane2,

bigger;
froroslave [i] ? nuntuples;
reltable-service (add, resreluane, i, uuntuples) ;

)
)

Difference is not commutative and the operation of the slave depends on which operand
is smaller. If relation 2 is smaller (the one being subtracted) then its partitions are circulated
around the ring, at each step being subtracted from the local partition of relation I of each
slave. If relation I is the smaller then it is the one circulating around the ring; at each step
the local partition of relation 2 is subEacted from the circulating partition of relation 1.
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PdLfforcacc

SIavq
fronuaster ? resrelname, srcrelnauel, srcrelnane2, bigger;
create (resrelnane);

creat€ (rel 'buf 1);
creat€ ( re lbuf2) ;
if (bigger == 1) {

rcopy (relbuf1, srcrelname2) ;
rcopy (resreJ,nane, srcrelnan€l) ;

)
else rcopy (relbuf1, srcreluanel) ;
f o r ( i = 0 ; i c P ; i + + ) {

i f  even ( i )  {
{fronleftslave ? relbuf2 l l torightslave ! relbufl};
if (bigger == 1) n-tup = differeuce ( resrelnane,

resrelnane, relbuf2)
else D-tup = difference(relbuf2, relbuf2, srcrelname2);

)
e lse {

{fronleftslave ? relbufl l l  torightslave ! relbuf2};
if (bigger == 1) u-tup = difference (resrelnane,

resreluame, relbufl)
else u-tup = differeuce(retbufl, relbufl, srcrelnane2);

) ;
) ;
if (bigger == 2) {

if eveu(P) rcopy(resrelname, relbufl) ;
else rcopy(resrelnane, relbuf2) ;

) ;
destroy ( re lbuf l ) ;

destroy (re1buf2);

tomaster ! n-tup;

42.3 Auxiliary

A2.3.1 Create and destroy

These operators simply create and deshoy a relation respectively over the whole network
of processors. Each slave createVdestroys its local partition of the relation and the master
createVdeletes an entry in the relation table.

A2.3.2 Balance

Balance is a user oriented auxiliary operator which ensures that the tuples of a relation are
evenly distributed among the slaves. It ensures that the sizes of the partitions of any two
slaves differ by no more than one tuple.
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To this effect, the master computes the average number of tuples per slave by using
information stored in the relation table. If this average is not an integer, it is rounded up (in
some slaves) and down (in the rest of them) in order to achieve the correct sum. The precise
distribution is stored in an array, 'avereg€'. This array, along with the relation name and
the existing number of tuples in each slave's partition, are transmitted to the slaves. Finally,
the master waits for confirmation that the correct number of tuples has been added to or
removed from the partition of each slave before updating the relation table.

If a slave has fewer tuples than average, it enters a loop in which it acquires new tuples
coming round the ring and appends them to is local partition. It subsequently creates two
pseudoparallel threads. The first thread deletes tuples from the slave's partition and sends
them into the ring, while the slave possesses more tuples than average. When finished, it
sends a termination message with the slave's identifier into the ring indicating that this
slave has reached the desired number of tuples. The second thread counts the number of
termination messages it receives and terminates when this is equal to the number of slaves.
Termination messages are passed on down the ring (except the one that originated in the
local slave).

Termination messages are a way of terminating the parallel algorithm smoothly. Infor-
mally, this algorithm is deadlock free, because the sum of the tuples 'missing' from all
slaves is equal to the sum of'spare' tuples (above average). It is intented to construct a
formal proof of absence of deadlock and livelock.

Pbalancc

llaatqr
Pbalance (relnane) {

| |  i  i n s n v e s  t
reltable_service (average, relnaue, i, average[i]) ;
reltable_service (current, relna[e, i, current[i]) ;

/* averageli] = no. of tuples slave i nust contaiD
/* current [ i] = uo. of tuples elave i contains r,,/

tos lave[ i ]  !  re lnane,  average[ i ] ,  current [ i ]  ;
fronslave[i] ? difference[i] ;
reltable-service (add, relnane, i, difference[i]) ;

* /

)

Pbalancs

SIavg
t c = 0 ;
d i f f  =  0 ;
fronmaster ? relnane, average, curreut;
while (current < average) {

fronleftslave ? roessage ;
if tennination (neEsage) {

/* ternination nessage count */
/* no. tuples appended/deleted couat*/

/* ternination or tuple? */
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torightslave ! nessage;
t c++ ;

)
else { /* tupLe */

appeud (relname, nessage); /* append to local
partit iou */

d i f f++;
) ;

) ;
{ wh1le (current > average) {

get-one (reluane, tuple); /* pick an arbitrary local
tuple */

torightslave ! tuple;
del-one (relnane, tuple); /* delete the specified

tuPle */

d i f f - - ;
) ;
torightslave ! enbed-pid (nessage, pid);

/* send te:mination */

\ /* n€ssage with local pid */

t l
{  whi le  ( tc  < P)  {

tronlef tslave ? rnessage ;
if temination (nessage) {

tc++;
if (extract-pid (nessage) <> pid)

/* rot local terniuation tnessage */

torightslave ! rnessage;
)
e lse

torigbtslave ! nessage;
) ;

) ;
tonaster  !  d i f f ;
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