
Pergamon Comput. & Graphics, Vol. 22. No. 5 , pp. 621-628. 1998
N': 1998 Elsevier Science Ltd. All rights reserved

PII: s0097-8493(98)00069-7 Printed in Great Britaln
0097-84931981s - see front matter

Technical Section

EFFICIENT INTEGER ALGORITHMS FOR THE
GENERATION OF CONIC SECTIONS

A. AGATHOS, T. THEOHARIS? and A. BOEHMs

Department of Informatics, University of Athens, Panepistimioupolis, TYPA Buildings, 157 71 Athens,
Greece

Abstract-Efficient integer 8-connected algorithms for the fast generation of Conic Sections whose axes
are aligned to the coordinate axes are described based on a Bresenham-like methodology. Performance
results show that in the case of the ellipse, the algorithm is at least as fast as other known integer algor-
ithms but requires lower integer range and always performs correct region transitions. Antialiasing is
easily incorporated. 0 1998 Elsevier Science Ltd. All rights reserved

I. INTRODUCTION

Conic sections (ellipse, hyperbola and parabola) are
important geometric primitives and, after the
straight line and circle, have received much atten-
tion from the computer graphics community. A
number of algorithms have appeared in the litera-
ture for the generation of these primitives [I-71.

We have derived efficient integer 8-connected al-
gorithms for the generation of ellipses hyperbolas
and parabolas whose axes are aligned with the axes
of the plane, using a Bresenham-like methodology
[2] simulating, in effect, the midpoint technique [I].
Our algorithms use integer arithmetic in a straight-
forward manner without any scaling and do not
lack in performance with regard to any previous al-
gorithm. Spacewise, they require a small constant
number of integer variables. They are also sym-
metric as to the number of arithmetic operations
per pixel generated in each octant. Thus they are
highly suitable for teaching. Erroneous pixels are

1
not generated at region boundaries due to a better
region transition criterion. In the case of the ellipse
our algorithm requires lower integer ruvuge than
Kappel's integer ellipse drawing algorithm. Our al-
gorithms are very suitable for hardware implemen-
tation especially in view of increasing display
resolutions and the availability of high-resolution
plotters. Our parabola algorithm in particular, is
suitable for very high resolutions due to the elimin-
ation of the calculation of a square factor. We are
also able to exploit the value of the decision vari-
able for antialiasing.

The rest of this paper is organised as follows:
Section 2 presents a modified Bresenham circle al-

tcorresponding author. Tel.: + 0030-1-7275106; Fax:
+ 0030- 1-723 1569; E-mail: theotheo@di.uoa.gr.

e w e would like to dedicate this paper to the memory
of our dear friend Alexandros Boehm who died on May
1st 1998.

gorithm. Section 3 describes the derivation of the
ellipse generating algorithm. Section 4 briefly
describes the parabola and hyperbola algorithm
derivations. Appendix A, Appendix B and
Appendix C give the ellipse, hyperbola and para-
bola Pascal procedures.

2. REFORMATTING THE BRESENHAM CIRCLE
ALGORITHM

We develop a small variation to Bresenham's cir-
cle generating algorithm which concerns the cri-
terion for next pixel selection and octant change
detection. We shall later use this small change in a
generalisation of the algorithm to the more complex
conic sections; the integer algorithms derived in this
way are correct and efficient.

Consider the second octant of a circle of integer
Radius R (Fig. 1). As in Bresenham's algorithm,
having chosen pixel A, we define:

in a manner similar to Fellner [8]. We then take:

d = dl - dZ = (y: - y2) - (y2 - (yi - I)'),

where d is the decision variable for the selection of
the next pixel between the two candidates B and D.

At this point we take a diversion from
Bresenham's algorithm by setting E = y,-y to get:

A. Agathos et al.

Fig. I . Candidate Pixels B or D

The above expression is monotonically increasing in each step in the generation the X value is therefore
the interval E E (-co,yi]. We can therefore use the always incremented. It must be determined whether
value of d (~) at E = 112 i.e. d(1/2) = 112 as the de- the Y value should be decremented or not. This
cision value: region corresponds to the 2nd octant of the circle

(Fig. 1) and we define:
if d l 112 then pixel B is chosen

else pixel D is chosen. d l =y:-y2

Note that since d is the integer, we can replace
the 112 by 0, without affecting the semantics. Note
that what we really accomplish here is to simulate a
midpoint-type technique [I].

Due to the 8-way symmetry of the circle, we need
not consider another octant; in the case of the
ellipse, which has 4-way symmetry, we need to con-
sider 2 regions which make up one-quarter of the
ellipse.

3. DERIVATION OF THE ELLIPSE GENERATING
ALGORITHM

Consider an ellipse centered at the origin of the
2 D cartesian space defined by:

The ellipse has a 4-way symmetry and it is therefore
only necessary to generate its arc in the first quad-
rant. Here we distinguish two regions separated by
the point on the ellipse where dyldx = - 1. In the
first region the axis of major movement is X and in
the second Y (Fig. 2).

We must derive an incremental expression for the
decision variables in Regions 1 and 2, the initial
values of the decision variables and a condition to
detect the transition from Region 1 to Region 2.

3.1. Decision variable for Region I
Let us begin by considering the 1st region of

Fig. 2, where the X-axis is the major axis of move-
ment. Assume that the ellipse is generated in a
clockwise manner starting from the point (0,b). At

as in the case of the circle. Taking as decision vari-
able:

the following will hold (Fig. 1):

if d<a2/2 then pixel B(xi + I, yi) is chosen

else pixel D(xi + 1, yi - 1) is chosen. (2)

The only reason for mu-]tiplying by a2 is to facilitate
its incremental derivation (see below). Of course the
division of the integer value a2 by 2 can be replaced
by one Right Shift of a2; since d is an integer the
result is semantically equivalent.

We next derive the incremental computation of
the decision variable; its value for the ith step of
the algorithm in Region 1 is:

I-b
Fig. 2. Ellipse

Efficient integer algorithms 623

Given that a2y2=a2b2-b2(xi + [equation of 3.2. Transition from Region I lo Region 2

ellipse], Van Aken [3] proposed a transition criterion
based on midpoints which gives correct results but

dl.(= -2a2b2 + 2b2(xi + I) ~ is computationally expensive. Kappel's method [4]
is efficient but there exist cases where an erroneous

+ a2yf + a2(y; - 112. (3) pixel can arise at region boundaries. This is
because:

We shall now define dl , / + I in terms of dl.i:
i. Region change is detected by taking the tangent on

dl,i+l = - 2a2b2 + 2b2(xi+l + 112 + a2yf+, integer coordinates rather than the true ellipse as
acknowledged in Kappel's paper [4] and + a2(Y;+I - 1)2

ii.A drastic change of curvature can take place within
a single pixel.

= - 2a2b2 + 2b2(xi + 1)' + 2b2 We propose a transition criterion which combines
the advantages of the above two methods (see + 4b2(xi + 1) + a2yk l + a2(yi+~ - 112 (4) Fig. 3).

2 Our integer algorithm uses a correct criterion But - 2a2b2 + 2b2(xi + 1)2=dl,i - a2y? - a2(yi- 1) ,
which is based on the value of the error function in

therefore the next column of pixels. In particular, the value
of the error function d at the point (xi + 1, yi - 3/
2) is considered; note that if the ellipse 'passes
under' this point then an octant transitibn is
required.

If dl,; > a2/2 then yi+ I = yi - 1 by Equation (2), thus
We can express the error function d given in

Equation (3) in terms of &(=yi - y) in a manner

dl,i+l = dlsi + 2b2 + 4b2(,yi + 1) - 4a2(yi - 1) . similar to the circle (I):
2 2 d (~) = -2a E +4a2yie+a2 - 2aZyi

if I n2/2 then yi, I = yi by Equation (2) , thus
setting E = 312 we get:

d(3/2) = -2 a2(3/2)' + 4 a2yi(3/2) + a2 - 2 aZyi
The initial value dl,o is determined by substituting

the coordinates of the first pixel of Region 1 (0.b) = 4 a2(yi - 1) + a2/2.

for (xi , yi) in the expression for dl.i: The transition criterion is as follows:

if d l 4a2(y,-1) + a2/2 then we remain in the same
region

a=245 b=126
---,sf! Already Estimated Grid Point

Approximate Slope
True Slope

- - -, 57 Next Grid Poin! :
Y - Coordinate

Kappel X-Coordinate
Our Algorithm X-Coordinate
Van Aken X-Coordinate
True X-Coordinate

Fig. 3. Transition from Region I to Region 2

624 A. Agathos er a/.

else we change region. d2.i = - 2a2b2 + b2xf + 2a2(yi - 1)'

As we have already mentioned above the division +h2(xi + I) ~ (5)
a2/2 can be replaced by a semantically equivalent

An incremental expression for d2.; can be derived in
Right Shift. The above criterion is optimised and

a similar manner to dl,i to be:
used in the code fragment in Appendix A. We have
to note that the above criterion works correctly for 2 2 d2.;+1 =d2.i + b x i f l + b2(xi+l + 112 - b2xf
yi 2 1. Square corners, as mentioned by McIlroy [6],
can be predicted easily in our algorithm using one - b2(xi + 112 + 2a2 - 4a2(yi - 1)
copy of the pixel last printed in the first region.
Other degenerate cases, such as Mcllroy's long thin which can be simplified, depending on the value of

xi + I , as follows: ellipses, have been tested. It is heuristically believed
that no degenerate cases will cause the algorithm to if d2.i> b2/2 then xi+ I = xi, thus
fail.

The initial value of the decision variable d2./ for
d2.;+, = d2.i + 2a2 - 4a2(yi - I),

Region 2 (see Equation (5) below) can be calculated
by adding to the final value of dlVi the difference
d2,; - dl,;. From Equation (4) and Equation (5): if d2.i < b2/2 then xi+ I = x i + 1 thus

d2.i = dl,i - ~ ' (2 ~ i - 1) - b2(2xi + I).
d2,i+1 = d2.i + 2a2 + 4b2(xi + I) - 4a2(yi - I).

3.3. Decision variable for Region 2
In Region 2 the expressions for dl and d2, as can

be seen from Fig. 4, are:

Having chosen pixel A(xi, y;), the difference
d = dl - d2 determines which of the 2 pixels in the
next row of pixels (y = y, - 1) is closer to the real
ellipse:

if d I b2/2 then pixel D(xi + I, y; - 1) is
selected

else pixel C(xi, yi - 1) is selected.

The decision variable (scaling again by b2) for
Region 2 step i is defined to be:

3.4. Antialiasing and results
In the past a linear antialiasing function for conic

sections has been proposed [5]. A similar function
could be applied to our algorithm (specifically the
function (d (~) - d(O))/(d(l) - d(O))), but unfortu-
nately such linear approximation only works cor-
rectly for very few bits of colour ([9], page 971).

We have incorporated a very fast version of the
box-filtering antialising technique [lo] in the ellipse
drawing algorithm, achieving satisfactory results,
see Fig. 5.

Since it is computationally expensive to compute
the reverse of d (~) function, we perform a binary
search of the given value of d in the space of values
d(t/n, yi), I = 0. . .n where n is the number of grey

d2,; = b2(dl - d2) levels available to determine the required grey level
(in the second region we would use d(t/n, xJ). The

= b2(x; + I) ~ + b2xf - 2b2x2 (4)

Given that b2x2 = a2b2 - a2(yi - 112 [equation of
ellipse],

..

C(xi,yi-1)"

Fig. 4. Ellipse Construction (Region 2) Fig. 5. Midpoint and Antialiased ellipse (4 Bits per pixel)

Efficient integer algorithms

values of the function d(t/n, yi) can be precomputed.
Note that in the case of antialiasing we d o not fol-
low the midpoint philosophy as it is always necess-
ary to keep the 2 pixels above and below the true y-
intercept for Region 1. The y value of these 2 pixels
is decremented when d 2 d(l,yi) and an octant
change occurs when d 2 d(2,yi).

Our 8-connected algorithm produces equally
good antialiased results as 4-connected algorithms
[5], but an 8-connected algorithm is advantageous
in the case of a single bit per pixel since it provides
regions of constant thickness.

The time performance of the new algorithm was
compared against the algorithm described by
Kappel [4] as well as an integer version of Kappel's
algorithm which we derived by suitably scaling by 4
its variables in order to achieve the best possible
performance. The integer Kappel algorithm exhibits
similar performance to our ellipse algorithm; this
should be expected because the integer version of
Kappel we derived is very similar in structure to
our algorithm. However, the integer Kappel pro-
duces arithmetic overflow quicker than ours. It also
requires a greater integer range as can be seen in
Scheme 1 which compares the two algorithms in
terms of the maximum integer value required, as
ellipse size increases. The maximum integer arises in
the calculation of y-slope in both of the algorithms.

It must be restated here that Kappel's algorithm
can give rise to erroneous pixels a t the 4 region
boundaries as pointed out by Kappel (see Fig. 3).
Our integer algorithm does not exhibit this pro-
blem.

4. THE HYPERBOLA AND PARABOLA ALGORITHMS

In a similar manner to the ellipse, one can derive
incremental error expressions for the construction
of our hyperbola and parabola generating algor-
ithms.

Fig. 6 . Hyperbola.

4.1 . Hyperbola
Figure 6 shows a hyperbola centered at (0,0),

symmetric about the X and Y-axes, defined by the
equation

x2 /a2 - y2/b2 = 1

We consider here only the case a > b in which the
hyperbola has 2 regions, one in which the major
axis of movement is Y (Region 1) and another in
which the major axis of movement is X (Region 2).
If a < = b there is no Region 2. The two regions
are separated by the point where the tangent to the
hyperbola has slope dyldx = 1.

In Region 1 (see Fig. 7), the expressions for a
measure of the distance of the true hyperbola to the
2 nearest pixels are:

dl = b2xZ - b2x:

Setting E = x - xi we get:

a 8 b Values

Scheme I . Maximum integer graph.

626 A. Agathos et al.

Fig. 7. Hyperbola construction (Region 1) .

r
The above expression is monotonically increasing in
the interval E E [-xi, + CO). Thus by noting that
d(1/2) = - b2/2, the following will hold (Fig. 7): Fig. 8. Parabola.

if d 2 - b2/2then pixel D(xi + I,yi + 1) is chosen

else pixel C(xi,y; + I) is chosen. (6)
d2,i+1 = d2.i - 2b2 - 4b2(xi + 1) + 4a2(yi + I),

We next derive the incremental computation of the
decision variable whose value for the ith step of the

if d2,i> a2/2 then yi+ I = yi, thus algorithm in Region 1 is:

which can be incrementally derived to be: In a manner similar to the ellipse, the transition cri-
terion from Region 1 to Region 2 is as follows:

if d 1 , ~ 2 - b ~ / 2 then X ~ + ~ = X ~ + 1 by
Equation (6), thus if d < 4 b2(xi+ 1) - b2/2 then we remain in the

dl,i+l = dl,; + 2a2 + 4a2(y; + 1) - 4b2(xi + I), same region else we
if dlxi<- b2/2 then xi+ I = x i by Equation (6), change region.

thus

dt,i+~ = d1.i + 2a2 + 4a2(yi + 1) .
The expression for the initial value of the error
term in Region 2 can then be derived:

The initial value dl,o is determined by substituting d2,i = dl,i - b2(1 + 2x i) - a2(1 + 2yi)
the coordinates of the first pixel of Region 1 (a,O)
for (xi, yi) in the expression for dl,i in Equation (7):

dl.,-, = 2 2 - b2(1 + 2a). 4.2. Parabola
Figure 8 shows a parabola centered at (0,O) sym-

In Region 2, expressions for a measure of the dis-
metric about the X-axis defined by the equation

tance of the true parabola to the 2 nearest pixel
centers are: yL = 2px

dl =a2(y i + I) ~ - a2y2 In Region 1 the axis of major movement is Y
while in Region 2 it is X. The two regions meet a t

d2 = aZy2 - a2y: x = p/2, y = p where the tangent to the parabola
has slope dyldx = 1 .

The error term is: In Region 1 the expressions for a measure of the

d2,j =dl - d2 distance of the true parabola to the 2 nearest pixels
are:

=2a2b2 - 2b2(x; + 112 + a2(yi + I) ~ + a2y;
dl =px -px i

which can be incrementally derived to be: d2=p(xi+ 1) - p x

if d2.i I a2/2 then yi+ = yi + 1 , thus The error term is:

Efficient integer algorithms 627

dl,i =dl - d2

- 2
-(yi+ 1) -pxi-p(xi+ 1)

which can be incrementally derived to be:

if d ~ , ~ r O then xi+! =xi+l, thus

if dl.i< 0 then xi+ I =xi, thus

i In Region 2, expressions for a measure of the dis-
tance of the true parabola to the 2 nearest pixel
centers are:

b dl =(y; + 1)2 - y2

d2 = y2 - yj!

The error term is:

d2,j=dl -d2

=(yi+ 1)2+y:4p(xi+ I)

which can be incrementally derived to be:

if d2,i< 0 then yi+ = yi+ 1, thus

derivations, are at least as fast as previous integer
algorithms, require lower integer arithmetic pre-
cision and do not set erroneous pixels at region
boundaries, thus incorporating the advantages of
well-known previous algorithms. They are very suit-
able for high performance applications and teach-
ing. Fast antialiasing can also be incorporated.

REFERENCES

I. Pitteway, M. L. V., Algorithms for drawing ellipses
or hyperbolae with a digital plotter. Computer J.,
1967, 10(3), 282-289.

2. Bresenham, J. E., A linear algorithm for incremental
digital display of circular arcs. CACM, 1977, 20(2),
100-106.

3. Van Aken, J. R., An efficient ellipse-drawing algor-
ithm. CGbA, 1984,4(9), 24-35.

4. Kappel M. R., An Ellipse-Drawing Algorithm for
Raster Displays. In Earnshaw R. (ed) Fundamental
Algorithms,for Computer Graphics, NATO AS1 Series,
Springer-Verlag, Berlin, 1985, pp. 257-280.

5. Pitteway M. L. V. and Ebadollah Banissi, Soft
Edging Fonts. Computer Graphics Technology and
Systems. In Proceedings of the conference held at
Computer Graphics '87, London, October 1987.

6. Mcllroy, M. D., Getting Raster ellipses right. ACM
TOG, 1992, 11(3), 259-275.

7. Da Silva D., Raster Algorithms for 2D Primitives.
Master's Thesis, Computer Science Department,
Brown University, Providence, R.I., 1989.

8. Fellner W. D., Computer Grafik. Bibliografisches
Institut, Zuerich, 1992.

9. Foley J. D. et a/., Computer Graphics, Principles and
Practice, 2nd Edn. Addison-Wesley, 1990.

10. Wu, X., An efficient antialiasing technique. Computer
Graphics, 1991, 25(4), 143-1 52.

if dz,i > 0 then yi+ I = yi, thus

A P P E N D I X A

The expression for the error, when making the tran- .
sition from Region 1 to Region 2 can be derived to
be:

The square in the calculation of d2,i gives rise to
large integers and is unsuitable for hardware im-
plementation. We have proved and verified exper-
imentally that the final value of dl,i will be 1 or
p + 1 and:

if dl,i= 1 then dZsi= -4p + 1,
if dIyi=p + 1 then dz.i= - 2p + 1,

5. CONCLUSIONS

Despite years of research into basic graphics al-
gorithms, new algorithms still emerge. The integer
algorithms for conic sections described in this paper
have straightforward Bresenham-like symmetric

Ellipse Pascal Code

Procedure Ellipse(a,b:longint);
var a~sqr,b~sqr,a22,b22,a42,b42,x~slope,y~slope:longint;

d,mida,midb: longint;
x, y:integer;

begin
x:=o;
y:=b;
a-sqr:-sqr (a) ;
b-sqr: =sqr (b) ;
a22:=a_sqr + a-rqr;
b22:=b_sqr + b-sqr;
a42:=a22 + a22;
b42:-b22 + b22;
x slope:=b42; Ix-slope - (4*bA*21*(x + 1) always)
y~slope:-a42*(y-ll; ly-slope - 14*aAL21*(y - 1) always)
mida:=a-sqr S H R 1; laA^2 div 2)
midb:=b-sqr SHR 1; (ba^2 div 2)
d:-b22 - a-sqr - y-slope S H R 1 - mida;
(subtract aA*2 div 2 to optimisel

(Region 1)
while d <- y-slope do
begin

Draw(x,y);
if d > 0 then
begin

d:-d - y-slope;
y:-y - 1;
y-slope:-y-slope - a42;

end;
d:-d + b22 + x-slope;
x:=x + 1;
x-slope:=x-slope + b42;

end;

d:-d-(x-slope+y-slope) S H R 1 +(b-sqr-a-sqr)+lmida-midb)
IOptimised region change using x-slope , y-slope)

A. Agathos el al.

(Region 2)
while y >- 0 do
begin

Draw(x,yl;
if d <= 0 then
begin

d:-d + x-slope;
x:=x + 1;
x-slope :- x-slope + b42;

end;
d:=d + a22 - y-slope;
y:-y-1;
y-slope:=y-slope - a42;

end;
end;

APPENDIX B
Hyperbola Pascal Code

Procedure Hyperbola(a,b:longint;bound:integer);
(bound limits the hyperbola in y)
var x, y,d,mida,midb:longint;

a22.b22,a-~qr,b-~qr:longint;
a42,b42:longint;
x-s1ope.y-s1ope:longint;

begin
x:-a;
y:-0;
a-sqr:-sqr(a);
b-sqr:-sqr(b1;
2122:-a-sqrta-sqr;
b22:-b-sqrtb-sqr;
a42:=a22+a22;
b42:-b22tb22;
~-slope:=b42~lx+l); (x-slope - 14*bAA21 ' (x + 11 always)
y_slope:=a42; (y-slope - 14*aAL21 ly + 11 always I
mida:=a-sqr shr l;laA^Z div 21
mi*:-b-sqr shr 1; (b1"2 div 21
d:-a22 - b-sqr (1+2*a) + midb; [add b^^2 div 2 to optimize)

(Region 1)
while ld < x-slope) and ly<=boundl do
begin

Draw1x.y);
if d >- 0 then
begin

d:-d.- x-slope;
x:-X + 1;
x-slope:-x-slope + b42;

end;
d :- d + a22 + y-slope;
y :- yt1;
y-slope :- y-slope + a42;

end;

d:-d - (x-slope t y-slope) shr 1 + la-sqrtb-sqrl - midb - mida;
(optimlsed region change using x-slope , y-slope1

[Region 21
if a>b then
while y <- bound do
begin

Drav(x,y) ;
if d<-0 then
begin

d:-d+y-slope;
y:=y+1;
y-slope:=y-slope + a42;

end;
d:-d - b22 - x-slope;
x:-X + 1;
x-slope:=x-slope + b42;

end;
end;

APPENDIX C

Parabola Pascal Code

Procedure ParabolaIp,bound:integcrl;
(bound limits the parabola in xl
var x,y,d:integer;

~ 2 . ~ 4 :integer;
begin

p2 :- 2-p;
p4 :- 2.~22
x :- 0;
y := 0;
d : - l - p ;

(Region 1)
while (y < p) and (x <= bound) do
begin

Draw(x.yI; if d >- 0' then

begin
x :- x + 1;
d := d - p2;

end,
y :- y + 1;
d :- d + 2*y + 1;

end;
if d - 1 then d :- 1 - p4
else d :- 1 - p2;
[Region 2)
while x <- bound do
begin

Drawlx.yl;
if d <-0 then
begin

y :- y + 1;
d :- d + 4*y;

end;
X :- X + 1;
d :- d - p4;

end;
end:

