
Pergamon Comput. & Graphics, Vol. 22. No. 5 ,  pp. 621-628. 1998 
N': 1998 Elsevier Science Ltd. All rights reserved 

PII: s0097-8493(98)00069-7 Printed in Great Britaln 
0097-84931981s - see front matter 

Technical Section 

EFFICIENT INTEGER ALGORITHMS FOR THE 
GENERATION OF CONIC SECTIONS 

A. AGATHOS, T. THEOHARIS? and A. BOEHMs 

Department of Informatics, University of Athens, Panepistimioupolis, TYPA Buildings, 157 71 Athens, 
Greece 

Abstract-Efficient integer 8-connected algorithms for the fast generation of Conic Sections whose axes 
are aligned to the coordinate axes are described based on a Bresenham-like methodology. Performance 
results show that in the case of the ellipse, the algorithm is at least as fast as other known integer algor- 
ithms but requires lower integer range and always performs correct region transitions. Antialiasing is 
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I. INTRODUCTION 

Conic sections (ellipse, hyperbola and parabola) are 
important geometric primitives and, after the 
straight line and circle, have received much atten- 
tion from the computer graphics community. A 
number of algorithms have appeared in the litera- 
ture for the generation of these primitives [I-71. 

We have derived efficient integer 8-connected al- 
gorithms for the generation of ellipses hyperbolas 
and parabolas whose axes are aligned with the axes 
of the plane, using a Bresenham-like methodology 
[2] simulating, in effect, the midpoint technique [I]. 
Our algorithms use integer arithmetic in a straight- 
forward manner without any scaling and do not 
lack in performance with regard to any previous al- 
gorithm. Spacewise, they require a small constant 
number of integer variables. They are also sym- 
metric as to the number of arithmetic operations 
per pixel generated in each octant. Thus they are 
highly suitable for teaching. Erroneous pixels are 

1 
not generated at region boundaries due to a better 
region transition criterion. In the case of the ellipse 
our algorithm requires lower integer ruvuge than 
Kappel's integer ellipse drawing algorithm. Our al- 
gorithms are very suitable for hardware implemen- 
tation especially in view of increasing display 
resolutions and the availability of high-resolution 
plotters. Our parabola algorithm in particular, is 
suitable for very high resolutions due to the elimin- 
ation of the calculation of a square factor. We are 
also able to exploit the value of the decision vari- 
able for antialiasing. 

The rest of this paper is organised as follows: 
Section 2 presents a modified Bresenham circle al- 
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gorithm. Section 3 describes the derivation of the 
ellipse generating algorithm. Section 4 briefly 
describes the parabola and hyperbola algorithm 
derivations. Appendix A, Appendix B and 
Appendix C give the ellipse, hyperbola and para- 
bola Pascal procedures. 

2. REFORMATTING THE BRESENHAM CIRCLE 
ALGORITHM 

We develop a small variation to Bresenham's cir- 
cle generating algorithm which concerns the cri- 
terion for next pixel selection and octant change 
detection. We shall later use this small change in a 
generalisation of the algorithm to the more complex 
conic sections; the integer algorithms derived in this 
way are correct and efficient. 

Consider the second octant of a circle of integer 
Radius R (Fig. 1). As in Bresenham's algorithm, 
having chosen pixel A, we define: 

in a manner similar to Fellner [8]. We then take: 

d = dl - dZ = ( y: - y2) - ( y2 - ( yi - I)'), 

where d is the decision variable for the selection of 
the next pixel between the two candidates B and D. 

At this point we take a diversion from 
Bresenham's algorithm by setting E = y,-y to get: 
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Fig. I .  Candidate Pixels B or D 

The above expression is monotonically increasing in each step in the generation the X value is therefore 
the interval E E (-co,yi]. We can therefore use the always incremented. It must be determined whether 
value of d ( ~ )  at  E = 112 i.e. d(1/2) = 112 as the de- the Y value should be decremented or  not. This 
cision value: region corresponds to the 2nd octant of the circle 

(Fig. 1) and we define: 
if d l  112 then pixel B is chosen 

else pixel D is chosen. d l  =y:-y2 

Note that since d is the integer, we can replace 
the 112 by 0, without affecting the semantics. Note 
that what we really accomplish here is to simulate a 
midpoint-type technique [I]. 

Due to the 8-way symmetry of the circle, we need 
not consider another octant; in the case of the 
ellipse, which has 4-way symmetry, we need to con- 
sider 2 regions which make up one-quarter of the 
ellipse. 

3. DERIVATION OF THE ELLIPSE GENERATING 
ALGORITHM 

Consider an ellipse centered at  the origin of the 
2 D  cartesian space defined by: 

The ellipse has a 4-way symmetry and it is therefore 
only necessary to generate its arc in the first quad- 
rant. Here we distinguish two regions separated by 
the point on the ellipse where dyldx = - 1. In the 
first region the axis of major movement is X and in 
the second Y (Fig. 2). 

We must derive an incremental expression for the 
decision variables in Regions 1 and 2, the initial 
values of the decision variables and a condition to 
detect the transition from Region 1 to Region 2. 

3.1. Decision variable for Region I 
Let us begin by considering the 1st region of 

Fig. 2, where the X-axis is the major axis of move- 
ment. Assume that the ellipse is generated in a 
clockwise manner starting from the point (0,b). At 

as in the case of the circle. Taking as decision vari- 
able: 

the following will hold (Fig. 1): 

if d<a2/2  then pixel B(xi + I, yi)  is chosen 

else pixel D(xi + 1, yi - 1) is chosen. (2) 

The only reason for mu-]tiplying by a2 is to facilitate 
its incremental derivation (see below). Of course the 
division of the integer value a2 by 2 can be replaced 
by one Right Shift of a2; since d is an integer the 
result is semantically equivalent. 

We next derive the incremental computation of 
the decision variable; its value for the ith step of 
the algorithm in Region 1 is: 

I-b 
Fig. 2. Ellipse 
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Given that a2y2=a2b2-b2(xi + [equation of 3.2. Transition from Region I lo Region 2 

ellipse], Van Aken [3] proposed a transition criterion 
based on midpoints which gives correct results but 

dl.( = -2a2b2 + 2b2(xi + I ) ~  is computationally expensive. Kappel's method [4] 
is efficient but there exist cases where an erroneous 

+ a2yf + a2( y; - 112.  (3 )  pixel can arise at region boundaries. This is 
because: 

We shall now define dl , /  + I in terms of dl.i: 
i. Region change is detected by taking the tangent on 

dl,i+l = - 2a2b2 + 2b2(xi+l + 112 + a2yf+, integer coordinates rather than the true ellipse as 
acknowledged in Kappel's paper [4] and + a2( Y;+I - 1)2 

ii.A drastic change of curvature can take place within 
a single pixel. 

= - 2a2b2 + 2b2(xi + 1)' + 2b2 We propose a transition criterion which combines 
the advantages of the above two methods (see + 4b2(xi + 1) + a2yk l  + a2( yi+~ - 112 (4)  Fig. 3). 

2 Our integer algorithm uses a correct criterion But - 2a2b2 + 2b2(xi + 1)2=dl,i - a2y? - a2(yi- 1) , 
which is based on the value of the error function in 

therefore the next column of pixels. In particular, the value 
of the error function d at  the point (xi  + 1, yi - 3/ 
2) is considered; note that if the ellipse 'passes 
under' this point then an octant transitibn is 
required. 

If dl,; > a2/2 then yi+ I = yi - 1 by Equation (2), thus 
We can express the error function d given in 

Equation (3)  in terms of &(=yi -  y) in a manner 

dl,i+l = dlsi + 2b2 + 4b2(,yi + 1 )  - 4a2( yi - 1 ) .  similar to the circle (I): 
2 2 d ( ~ )  = -2a  E +4a2yie+a2 - 2aZyi  

if I n2/2 then yi, I = yi by Equation (2) ,  thus 
setting E = 312 we get: 

d(3/2) = -2 a2(3/2)' + 4 a2yi(3/2) + a2 - 2 aZyi 
The initial value dl,o is determined by substituting 

the coordinates of the first pixel of Region 1 (0.b) = 4 a2( yi - 1) + a2/2. 

for (xi ,  yi) in the expression for dl.i: The transition criterion is as follows: 

if d l  4a2(y,-1) + a2/2 then we remain in the same 
region 

a=245 b=126 
---,sf! Already Estimated Grid Point 

Approximate Slope 
True Slope 

- - -, 57 Next Grid Poin! : 
Y - Coordinate 

Kappel X-Coordinate 
Our Algorithm X-Coordinate 
Van Aken X-Coordinate 
True X-Coordinate 

Fig. 3. Transition from Region I to Region 2 
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else we change region. d2.i = - 2a2b2 + b2xf + 2a2( yi - 1)' 

As we have already mentioned above the division +h2(xi + I ) ~  (5) 
a2/2 can be replaced by a semantically equivalent 

An incremental expression for d2.; can be derived in 
Right Shift. The above criterion is optimised and 

a similar manner to dl,i to be: 
used in the code fragment in Appendix A. We have 
to note that the above criterion works correctly for 2 2 d2.;+1 =d2.i + b x i f l  + b2(xi+l + 112 - b2xf 
yi 2 1. Square corners, as mentioned by McIlroy [6], 
can be predicted easily in our algorithm using one - b2(xi + 112 + 2a2 - 4a2( yi - 1) 
copy of the pixel last printed in the first region. 
Other degenerate cases, such as Mcllroy's long thin which can be simplified, depending on the value of 

xi + I ,  as follows: ellipses, have been tested. It is heuristically believed 
that no degenerate cases will cause the algorithm to if d2.i> b2/2 then xi+ I = xi, thus 
fail. 

The initial value of the decision variable d2./ for 
d2.;+, = d2.i + 2a2 - 4a2( yi - I), 

Region 2 (see Equation (5) below) can be calculated 
by adding to the final value of dlVi the difference 
d2,; - dl,;. From Equation (4) and Equation (5): if d2.i < b2/2 then xi+ I = x i  + 1 thus 

d2.i = dl,i - ~ ' ( 2 ~ i  - 1) - b2(2xi + I). 
d2,i+1 = d2.i + 2a2 + 4b2(xi + I) - 4a2( yi - I). 

3.3. Decision variable for Region 2 
In Region 2 the expressions for dl and d2, as can 

be seen from Fig. 4, are: 

Having chosen pixel A(xi, y;), the difference 
d = dl  - d2 determines which of the 2 pixels in the 
next row of pixels (y = y, - 1) is closer to the real 
ellipse: 

if d I b2/2 then pixel D(xi + I, y; - 1) is 
selected 

else pixel C(xi, yi - 1) is selected. 

The decision variable (scaling again by b2) for 
Region 2 step i is defined to be: 

3.4. Antialiasing and results 
In the past a linear antialiasing function for conic 

sections has been proposed [5]. A similar function 
could be applied to our algorithm (specifically the 
function ( d ( ~ )  - d(O))/(d(l) - d(O))), but unfortu- 
nately such linear approximation only works cor- 
rectly for very few bits of colour ( [9], page 971). 

We have incorporated a very fast version of the 
box-filtering antialising technique [lo] in the ellipse 
drawing algorithm, achieving satisfactory results, 
see Fig. 5. 

Since it is computationally expensive to compute 
the reverse of d ( ~ )  function, we perform a binary 
search of the given value of d in the space of values 
d(t/n, yi), I = 0. .  .n where n is the number of grey 

d2,; = b2(dl - d2) levels available to  determine the required grey level 
(in the second region we would use d(t/n, xJ). The 

= b2(x; + I ) ~  + b2xf - 2b2x2 (4) 

Given that b2x2 = a2b2 - a2(yi - 112 [equation of 
ellipse], 

.. 

C(xi,yi-1)" 

Fig. 4. Ellipse Construction (Region 2) Fig. 5. Midpoint and Antialiased ellipse (4 Bits per pixel) 
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values of the function d(t/n, yi) can be precomputed. 
Note that in the case of antialiasing we d o  not fol- 
low the midpoint philosophy as it is always necess- 
ary to keep the 2 pixels above and below the true y- 
intercept for Region 1. The y value of these 2 pixels 
is decremented when d 2  d(l,yi) and an octant 
change occurs when d 2 d(2,yi). 

Our 8-connected algorithm produces equally 
good antialiased results as 4-connected algorithms 
[5], but an 8-connected algorithm is advantageous 
in the case of a single bit per pixel since it provides 
regions of constant thickness. 

The time performance of the new algorithm was 
compared against the algorithm described by 
Kappel [4] as well as an integer version of Kappel's 
algorithm which we derived by suitably scaling by 4 
its variables in order to achieve the best possible 
performance. The integer Kappel algorithm exhibits 
similar performance to our ellipse algorithm; this 
should be expected because the integer version of 
Kappel we derived is very similar in structure to 
our algorithm. However, the integer Kappel pro- 
duces arithmetic overflow quicker than ours. It also 
requires a greater integer range as can be seen in 
Scheme 1 which compares the two algorithms in 
terms of the maximum integer value required, as 
ellipse size increases. The maximum integer arises in 
the calculation of y-slope in both of the algorithms. 

It must be restated here that Kappel's algorithm 
can give rise to erroneous pixels a t  the 4 region 
boundaries as pointed out by Kappel (see Fig. 3). 
Our integer algorithm does not exhibit this pro- 
blem. 

4. THE HYPERBOLA AND PARABOLA ALGORITHMS 

In a similar manner to the ellipse, one can derive 
incremental error expressions for the construction 
of our hyperbola and parabola generating algor- 
ithms. 

Fig. 6 .  Hyperbola. 

4.1 . Hyperbola 
Figure 6 shows a hyperbola centered at  (0,0), 

symmetric about the X and Y-axes, defined by the 
equation 

x2 /a2  - y2/b2 = 1 

We consider here only the case a > b  in which the 
hyperbola has 2 regions, one in which the major 
axis of movement is Y (Region 1) and another in 
which the major axis of movement is X (Region 2). 
If a < = b  there is no Region 2. The two regions 
are separated by the point where the tangent to the 
hyperbola has slope dyldx = 1. 

In Region 1 (see Fig. 7), the expressions for a 
measure of the distance of the true hyperbola to the 
2 nearest pixels are: 

dl = b2xZ - b2x: 

Setting E = x - xi we get: 

a 8 b Values 

Scheme I .  Maximum integer graph. 
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Fig. 7. Hyperbola construction (Region 1 ) .  

r 
The above expression is monotonically increasing in 
the interval E E [-xi,  + CO). Thus by noting that 
d(1/2) = - b2/2, the following will hold (Fig. 7): Fig. 8. Parabola. 

if d 2  - b2/2then pixel D(xi  + I,yi + 1 )  is chosen 

else pixel C(xi,y; + I) is chosen. (6)  
d2,i+1 = d2.i - 2b2 - 4b2(xi + 1 )  + 4a2( yi + I),  

We next derive the incremental computation of the 
decision variable whose value for the ith step of the 

if d2,i> a2/2 then yi+ I = yi, thus algorithm in Region 1 is: 

which can be incrementally derived to be: In a manner similar to the ellipse, the transition cri- 
terion from Region 1 to Region 2 is as follows: 

if d 1 , ~ 2 - b ~ / 2  then X ~ + ~ = X ~ +  1 by 
Equation (6), thus if d < 4 b2(xi+ 1 )  - b2/2 then we remain in the 

dl,i+l = dl,; + 2a2 + 4a2( y; + 1 )  - 4b2(xi + I), same region else we 
if dlxi<- b2/2 then xi+ I = x i  by Equation (6), change region. 

thus 

dt,i+~ = d1.i + 2a2 + 4a2( yi + 1 ) .  
The expression for the initial value of the error 
term in Region 2 can then be derived: 

The initial value dl,o is determined by substituting d2,i = dl,i - b2(1 + 2x i )  - a2(1 + 2yi) 
the coordinates of the first pixel of Region 1 (a,O) 
for (xi,  yi) in the expression for dl,i in Equation (7): 

dl.,-, = 2 2  - b2(1 + 2a). 4.2. Parabola 
Figure 8 shows a parabola centered at  (0,O) sym- 

In Region 2, expressions for a measure of the dis- 
metric about the X-axis defined by the equation 

tance of the true parabola to the 2 nearest pixel 
centers are: yL = 2px 

dl =a2(y i  + I ) ~  - a2y2 In Region 1 the axis of major movement is Y 
while in Region 2 it is X.  The two regions meet a t  

d2 = aZy2 - a2y: x = p/2, y = p where the tangent to the parabola 
has slope dyldx = 1 .  

The error term is: In Region 1 the expressions for a measure of the 

d2,j =dl - d2 distance of the true parabola to the 2 nearest pixels 
are: 

=2a2b2 - 2b2(x; + 112 + a2( yi + I ) ~  + a2y; 
dl =px  -px i  

which can be incrementally derived to be: d2=p(xi+ 1 ) - p x  

if d2.i I a2/2 then yi+ = yi + 1 ,  thus The error term is: 
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dl,i =dl - d2 

- 2 
-(yi+ 1) -pxi-p(xi+ 1) 

which can be incrementally derived to be: 

if d ~ , ~ r O  then xi+! =xi+l, thus 

if dl.i< 0 then xi+ I =xi, thus 

i In Region 2, expressions for a measure of the dis- 
tance of the true parabola to the 2 nearest pixel 
centers are: 

b dl =(y; + 1)2 - y2 

d2 = y2 - yj! 

The error term is: 

d2,j=dl -d2 

=(yi+ 1)2+y:4p(xi+ I) 

which can be incrementally derived to be: 

if d2,i< 0 then yi+ = yi+ 1, thus 

derivations, are at  least as fast as previous integer 
algorithms, require lower integer arithmetic pre- 
cision and do not set erroneous pixels at region 
boundaries, thus incorporating the advantages of 
well-known previous algorithms. They are very suit- 
able for high performance applications and teach- 
ing. Fast antialiasing can also be incorporated. 
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if dz,i > 0 then yi+ I = yi, thus 

A P P E N D I X  A 

The expression for the error, when making the tran- . 
sition from Region 1 to Region 2 can be derived to 
be: 

The square in the calculation of d2,i gives rise to 
large integers and is unsuitable for hardware im- 
plementation. We have proved and verified exper- 
imentally that the final value of dl,i will be 1 or  
p + 1 and: 

if dl,i= 1 then dZsi= -4p + 1, 
if dIyi=p + 1 then dz.i= - 2p + 1, 

5. CONCLUSIONS 

Despite years of research into basic graphics al- 
gorithms, new algorithms still emerge. The integer 
algorithms for conic sections described in this paper 
have straightforward Bresenham-like symmetric 

Ellipse Pascal Code 

Procedure Ellipse(a,b:longint); 
var a~sqr,b~sqr,a22,b22,a42,b42,x~slope,y~slope:longint; 

d,mida,midb: longint; 
x, y:integer; 

begin 
x:=o; 
y:=b; 
a-sqr:-sqr (a) ; 
b-sqr: =sqr (b) ; 
a22:=a_sqr + a-rqr; 
b22:=b_sqr + b-sqr; 
a42:=a22 + a22; 
b42:-b22 + b22; 
x slope:=b42; Ix-slope - (4*bA*21*(x + 1) always) 
y~slope:-a42*(y-ll; ly-slope - 14*aAL21*(y - 1) always) 
mida:=a-sqr S H R  1; laA^2 div 2) 
midb:=b-sqr SHR 1; (ba^2 div 2) 
d:-b22 - a-sqr - y-slope S H R  1 - mida; 
(subtract aA*2 div 2 to optimisel 

(Region 1) 
while d <- y-slope do 
begin 

Draw(x,y); 
if d > 0 then 
begin 

d:-d - y-slope; 
y:-y - 1; 
y-slope:-y-slope - a42; 

end; 
d:-d + b22 + x-slope; 
x:=x + 1; 
x-slope:=x-slope + b42; 

end; 

d:-d-(x-slope+y-slope) S H R  1 +(b-sqr-a-sqr)+lmida-midb) 
IOptimised region change using x-slope , y-slope) 
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(Region 2 )  
while y >- 0 do 
begin 

Draw(x,yl; 
if d <= 0 then 
begin 

d:-d + x-slope; 
x:=x + 1; 
x-slope :- x-slope + b42; 

end; 
d:=d + a22 - y-slope; 
y:-y-1; 
y-slope:=y-slope - a42; 

end; 
end; 

APPENDIX B 
Hyperbola Pascal Code 

Procedure Hyperbola(a,b:longint;bound:integer); 
(bound limits the hyperbola in y) 
var x, y,d,mida,midb:longint; 

a22.b22,a-~qr,b-~qr:longint; 
a42,b42:longint; 
x-s1ope.y-s1ope:longint; 

begin 
x:-a; 
y:-0; 
a-sqr:-sqr(a); 
b-sqr:-sqr(b1; 
2122:-a-sqrta-sqr; 
b22:-b-sqrtb-sqr; 
a42:=a22+a22; 
b42:-b22tb22; 
~-slope:=b42~lx+l); (x-slope - 14*bAA21 ' (x + 11 always ) 
y_slope:=a42; (y-slope - 14*aAL21 ly + 11 always I 
mida:=a-sqr shr l;laA^Z div 21 
mi*:-b-sqr shr 1; (b1"2 div 21 
d:-a22 - b-sqr (1+2*a) + midb; [add b^^2 div 2 to optimize) 

(Region 1) 
while ld < x-slope) and ly<=boundl do 
begin 

Draw1x.y); 
if d >- 0 then 
begin 

d:-d.- x-slope; 
x:-X + 1; 
x-slope:-x-slope + b42; 

end; 
d :- d + a22 + y-slope; 
y :- yt1; 
y-slope :- y-slope + a42; 

end; 

d:-d - (x-slope t y-slope) shr 1 + la-sqrtb-sqrl - midb - mida; 
(optimlsed region change using x-slope , y-slope1 

[Region 21 
if a>b then 
while y <- bound do 
begin 

Drav(x,y) ; 
if d<-0 then 
begin 

d:-d+y-slope; 
y:=y+1; 
y-slope:=y-slope + a42; 

end; 
d:-d - b22 - x-slope; 
x:-X + 1; 
x-slope:=x-slope + b42; 

end; 
end; 

APPENDIX C 

Parabola Pascal Code 

Procedure ParabolaIp,bound:integcrl; 
(bound limits the parabola in xl 
var x,y,d:integer; 

~ 2 . ~ 4  :integer; 
begin 

p2 :- 2-p; 
p4 :- 2.~22 
x :- 0; 
y := 0; 
d : - l - p ;  

(Region 1) 
while (y < p) and (x <= bound) do 
begin 

Draw(x.yI; if d >- 0' then 

begin 
x :- x + 1; 
d := d - p2; 

end, 
y :- y + 1; 
d :- d + 2*y + 1; 

end; 
if d - 1 then d :- 1 - p4 
else d :- 1 - p2; 
[Region 2) 
while x <- bound do 
begin 

Drawlx.yl; 
if d <-0 then 
begin 

y :- y + 1; 
d :- d + 4*y; 

end; 
X :- X + 1; 
d :- d - p4; 

end; 
end: 


