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Abstract In this Technical Report a novel method for 3D landmark detec-
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facial scans is presented. It utilizes 3D information by using 3D
local shape descriptors to extract candidate interest points that
are subsequently identified and labeled as anatomical landmarks.
The shape descriptors include the shape index, a continuous map
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local descriptors of the object’s 3D point distribution. However,
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1 Introduction

In a wide variety of disciplines it is of great practical importance to measure, describe
and compare the shapes of objects. In computer graphics, computer vision and
biometric applications, the class of objects is often the human face. Registration
of facial scan data with a face model is important in face recognition, facial shape
analysis, segmentation and labeling of facial parts, facial region retrieval, partial face
matching, face mesh reconstruction, face texturing and relighting, face synthesis, and
face motion capture and animation.

In recent years, as scanning methods have become more accessible due to lower
cost and greater flexibility, 3D facial datasets are more easily available. In almost
any application, requiring processing of 3D facial data, an initial registration step
is necessary. Therefore, registration based on feature points (landmarks) correspon-
dence is the most crucial step in order to make a system fully automatic. At the
same time, the landmark detection algorithm must be pose invariant in order to
allow the registration of both frontal and side facial scans.

Figure 1: Face registration based on detected landmarks using the proposed method:
(a) facial scan with extensive missing data; (b) extracted landmarks; (c) generic
Reference Face Model (RFM); and (d) registered facial scan with RFM.

Existing 3D feature detection and localization methods, although they claim
pose invariance, fail to address large pose variations and to confront the problem of
missing facial areas in an holistic way (Section 2). The main assumption of these
methods is that even though the head can be rotated with respect to the sensor, the
entire face is always visible. However, this is true only for “almost frontal” scans or
“reconstructed” complete face meshes. Side scans usually have large missing areas,
due to self-occlusion, that depend on pose variations. These scans are very common
in realistic scenarios such as uncooperative subjects or uncontrolled environments.

The goal of the proposed method is to automatically and pose-invariantly detect
landmarks (eye and mouth corners, nose and chin tips) in any 3D facial scan, and
hence consistently register any pair of facial datasets. The main contribution of
our proposed method is its applicability to large pose variations (up to 80◦ of yaw
rotation), that often result in missing facial data, in an holistic way with high success
rates.



2 P. Perakis et al.

At the training phase, our method creates a Facial Landmark Model (FLM) by
first aligning the training landmark sets and calculating a mean landmark shape
using Procrustes Analysis, and then applying Principal Component Analysis (PCA)
to capture the shape variations. At the detection phase, the algorithm first detects
candidate landmarks on the queried facial datasets exploiting the 3D geometry-based
information. The extracted candidate landmarks are then filtered out and labeled
by matching them with the FLM. Registration is then performed, based on resulting
landmarks, with a generic Reference Face Model (RFM) (Fig. 1).

Evaluation of the proposed method is performed by computing the distance be-
tween manually annotated landmarks (ground truth) and the automatically detected
landmarks. The experiments have been carried out on a combination of the largest
publicly available databases: FRGC v2 [PFS∗05] and UND Ear Database [UND08].
The first is a database for 3D face recognition that contains frontal facial scans,
while the second is a database for 3D ear recognition that contains up to 80◦ side
facial scans (both left and right).

In previous work, we have presented methods for detecting landmarks on 3D
facial scans. In [PTPK09] shape index and spin images were introduced to locate
landmarks in a manner that allows consistent retrieval of facial regions from 3D
facial datasets. In [PPT∗09] shape index and extrusion maps were introduced to
locate landmarks for registering partial facial datasets in a face recognition system.

This report describes in detail and extends our previous methods by utilizing
statistically trained spin image templates and alternative similarity distance mea-
sures. It achieves significantly higher landmark detection rates, which result in a
far more robust face registration. It also contains exhaustive comparative analyti-
cal results for landmark localization success rates for all of our methods and other
existing methods (Tables 8 and 9).

The rest of this report is organized as follows: Section 2 describes related work in
the field, Sections 3 and 4 present the proposed method in detail, Section 5 presents
our results, while Section 6 summarizes our method and proposes future directions.

2 Related Work

Facial feature detectors can be distinguished into two main categories: detection of
feature points (landmarks) from the geometric characteristics of 2D intensity or color
images and detection of feature points (landmarks) from the geometric information
of 3D objects or 2.5D scans. Facial feature detectors can also be classified as those
that are solely dependent on geometric information or those that are supported by
trained statistical feature models. Three-D facial feature extraction has aroused
interest with the increasing development of 3D modeling and digitizing techniques
and is reported in a number of publications.

Lu, Colbry, Stockman and Jain [LJ05, CSJ05, LJ06, LJC06, Col06], in a series
of publications, presented methods to locate the positions of eye and mouth corners,
and nose and chin tips, based on a fusion scheme of shape index [DJ97] on range
maps and the “cornerness” response [HS88] on intensity maps. They also developed
a heuristic method based on cross-profile analysis to locate the nose tip more ro-
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bustly. Candidate landmark points were filtered out using a static (non-deformable)
statistical model of landmark positions, in contrast to our approach. The 3D feature
extraction method presented in [CSJ05] addresses the problem of pose variations in
a unified manner, and is tested against a composite database consisting of 953 scans
from the FRGC database and 160 scan from a proprietary database with frontal
scans extended with variations of pose, expressions, occlusions and noise. Their
multimodal algorithm [LJ05] uses 3D+2D information and is applicable to almost-
frontal scans (< 5◦ yaw rotation). It is tested against the FRGC database with
946 near frontal scans. The 3D feature extraction method presented in [LJ06] also
addresses the problem of pose variations, and is tested against the FRGC database
with 953 near frontal scans along with their proprietary MSU database consist-
ing of 300 multiview scans (0◦,±45◦) from 100 subjects. Results of the methods
[LJ05, LJ06, Col06] are presented in Table 8, and of the method [LJ06] in Table 9,
for comparison.

Conde et al. [CCRA∗05] introduced a global face registration method by combin-
ing clustering techniques over discrete curvature and spin images for the detection
of eye inner corners and nose tip. The method was tested on a proprietary database
of 51 subjects with 14 captures each (714 scans). Their database consists of scans
with small pose variations (< 15◦ yaw rotation). Although they presented a feature
localization success rate of 99.66% on frontal scans and 96.08% on side scans, they
do not define what a successful localization is.

Xu et al. [XTWQ06] presented a feature extraction hierarchical scheme to detect
the positions of nose tip and nose ridge. They introduced the “effective energy” no-
tion to describe the local distribution of neighboring points and detect the candidate
nose tips. Finally, an SVM classifier is used to select the correct nose tips. Although
it was tested against various databases, no exact localization results were provided.

Lin et al. [LSCH06] introduced a coupled 2D and 3D feature extraction method
to determine the positions of eye sockets by using curvature analysis. The nose tip is
considered to be the extreme vertex along the normal direction of eye sockets. The
method was used in an automatic 3D face authentication system, but was tested on
only 27 human faces with various poses and expressions.

Segundo et al. [SQBS07] introduced a face and facial feature detection method
by combining a method for 2D face segmentation on depth images with surface cur-
vature information, in order to detect the eye corners, nose tip, nose base, and nose
corners. The method was tested on the FRGC v2 database. Although they claim
over 99.7% correct detections, they do not define a correct detection. Additionally,
nose and eye corner detection presented problems when the face had a significant
pose variation (> 15◦ yaw and roll).

Wei et al. [WLY07] introduced a nose tip and nose bridge localization method
to determine facial pose. The method was based on a Surface Normal Difference
algorithm and shape index estimation, and was used as a preprocessing step in pose-
variant systems to determine the pose of the face. They reported an angular error
of the nose tip - nose bridge segment less than 15◦ in 98% of the 2500 datasets
of BU-3DFE facial database, which contains complete frontal facial datasets with
capture range ±45◦.

Mian et al. [MBO07] introduced a heuristic method for nose tip detection. The
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method is based on a geometric analysis of the nose ridge contour projected on the
x− y plane. It is used as a preprocessing step to cut out and pose correct the facial
data in a face recognition system. However, no clear localization error results were
presented. Additionally, their nose tip detection algorithm has limited applicability
to near frontal scans (< 15◦ yaw and pitch).

Faltemier et al. [FBF08a] introduced a heuristic method for nose tip detec-
tion. The method is a fusion of curvature and shape index analysis and a template
matching algorithm using ICP. The nose tip detector had a localization error less
than 10 mm in 98.2% of the 4007 facial datasets of FRGC v2 where it was tested.
However, no exact localization distance error results were presented. They also in-
troduced a method called “Rotated Profile Signatures” [FBF08b], based on profile
analysis, to robustly locate the nose tip in the presence of pose, expression and
occlusion variations. Their method was tested against NDOff2007 database which
contains 7,317 facial scans, 406 frontal and 6,911 in various yaw and pitch angles.
They reported a 96% to 100% success rate, with distance error threshold 10 mm,
under significant yaw and pitch variations. Although their method achieved high
success rate scores, it is a 2D-assisted 3D method since it uses skin segmentation to
eliminate outliers, and is limited to the detection of the nose tip only. Finally, no
exact localization distance error results were presented.

Dibeklioğlu, Salah and Akarun [Dib08, DSA08] presented methods for detecting
facial features on 3D facial datasets to enable pose correction under significant pose
variations. They introduced a statistical method to detect facial features, based
on training a model of local features, from the gradient of the depth map. The
method was tested against the FRGC v1 and the Bosphorus databases, but data
with pose variations were not taken into consideration. They also introduced a nose
tip localization and segmentation method using curvature-based heuristic analysis.
However, the proposed system shows limited capabilities on facial datasets with yaw
rotations greater than 45◦. Additionally, even though the Bosphorus database used
consists of 3,396 facial scans, they are obtained from 81 subjects. Finally, no exact
localization distance error results were presented.

Yu and Moon [YM08] presented a nose tip and eye inner corners detection
method on 3D range maps. The landmark detector is trained from example fa-
cial data using a genetic algorithm. The method was applied on 200 almost-frontal
scans from FRGC v1 database. However, a limitation of the proposed system is
that it is not applicable to facial datasets with large yaw rotations since it always
uses the three aforementioned control points. Results of the method are presented
in Table 8 for comparison reasons.

Romero-Huertas and Pears [RHP08] presented a graph matching approach to
locate the positions of nose tip and inner eye corners. They introduced the “distance
to local plane” notion to describe the local distribution of neighboring points and
detect convex and concave areas of the face. Finally, after the graph matching
algorithm has eliminated false candidates, the best combination of landmark points
is selected from the minimum Mahalanobis distance to the trained landmark graph
model. The method was tested against FRGC v1 (509 scans) and FRGC v2 (3271
scans) databases. They reported a success rate of 90% with thresholds for the nose
tip at 15 mm, and for the inner eye corners at 12 mm.
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(a) (b)

Figure 2: Depiction of: (a) landmark model as a 3D object; and (b) landmark model
overlaid on a 3D facial dataset.

Nair and Cavallaro [NC09] presented a method for detecting facial landmarks on
2.5D scans. Their method used the shape index and the curvedness index to extract
candidate feature points (nose tip and inner and outer eye corners). A statistical
shape model (PDM) of feature points is fitted to the facial dataset by using three
control points (nose tip and left and right inner eye corners) for coarse registration,
and the rest for fine registration. The localization accuracy of the landmark detector
was tested against the BU-3DFE facial database, which only contains complete
frontal facial datasets with capture range ±45◦. Furthermore, their method is not
applicable to missing data resulting from pose self-occlusion, since it always uses
the aforementioned three control points for model fitting. Results of the method are
presented in Table 8 for comparison purposes.

Finally, Perakis et al. [PTPK09, PPT∗09] presented methods for detecting facial
landmarks (eye inner and outer corners, mouth corners, and nose and chin tips)
on 2.5D scans. Local shape and curvature analysis utilizing shape index, extrusion
maps and spin images were used to locate candidate landmark points. These are
identified and labeled by matching them with a statistical facial landmark model.
The method addresses the problem of extreme yaw rotations and missing facial
areas, and it is tested against FRGC v2 and UND Ear databases.

3 3D Facial Landmark Models

Our method for 3D landmark detection and pose estimation uses 3D information
to extract candidate interest points which are identified and labeled as anatomical
landmarks by matching them with a Facial Landmark Model (FLM) [PTPK09,
PPT∗09].

We use a set of 8 anatomical landmarks: right eye outer corner (1), right eye
inner corner (2), left eye inner corner (3), left eye outer corner (4), nose tip (5),
mouth right corner (6), mouth left corner (7) and chin tip (8) (Fig. 2). Notice that
5 of these points are visible on profile and semi-profile face scans. So the complete
set of 8 landmarks can be used for frontal and almost-frontal faces and two reduced
sets of 5 landmarks (right and left) for semi-profile and profile faces. The right side
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landmark set contains the points (1), (2), (5), (6), and (8), and the left side the
points (3), (4), (5), (7) and (8).

Each of these sets of landmarks constitute a corresponding Facial Landmark
Model (FLM). In the following, the model of the complete set of eight landmarks
will be referred to as FLM8 and the two reduced sets of five landmarks (left and
right) as FLM5L and FLM5R, respectively. The main steps to create the FLMs are:

• A statistical mean shape for each landmark set (FLM8, FLM5L and FLM5R)
is calculated from a manually annotated training set using Procrustes Analysis.
One hundred and fifty frontal face scans with neutral expressions are randomly
chosen from the FRGC v2 database as our training examples.

• Variations of each Facial Landmark Model are calculated using Principal Com-
ponent Analysis (PCA).

3.1 The Landmark Mean Shape

According to Dryden and Mardia [DM98], “a landmark is a point of correspondence
on each object that matches between and within populations of the same class of
objects” and “a shape is all the geometrical information that remains when location,
scale and rotational effects are filtered out from an object”. Shape, in other words,
is invariant to Euclidean similarity transformations.

Since, for our purposes, the size of the shape is of great importance, it is not
filtered out by scaling shapes to unit size. So, “two objects have the same size-and-
shape if they are rigid-body transformations of each other” [DM98].

One way to describe a shape is by locating a finite number of landmarks on the
outline or other specific points. Dryden and Mardia [DM98] sort landmarks into the
following categories:

Anatomical landmarks: Points assigned by an expert that correspond between
organisms in some biologically meaningful way (e.g., the corner of an eye).

Mathematical landmarks: Points located on an object according to some mathe-
matical or geometrical property (e.g., a high curvature or an extremum point).

Pseudo-landmarks: Constructed points on an object either on the outline or
between anatomical or mathematical landmarks.

Labeled landmarks: Landmarks that are associated with a label (name or num-
ber), which is used to identify the corresponding landmark.

Synonyms for landmarks include homologous points, interest points, nodes, ver-
tices, anchor points, fiducial markers, model points, markers, key points, etc.

A mathematical representation of an n-point shape in d dimensions can be de-
fined by concatenating all point coordinates into a k = n×d vector and establishing
a Shape Space [DM98, SG02, CT01]. The vector representation for 3D shapes (i.e.,
d = 3) would then be:

x = [x1, x2, ..., xn, y1, y2, ..., yn, z1, z2, ..., zn]T (1)
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where (xi, yi, zi) represent the n landmark points.
To obtain a true representation of landmark shapes, location and rotational ef-

fects need to be filtered out. This is carried out by establishing a common coordinate
reference to which all shapes are aligned.

Alignment is performed by minimizing the Procrustes distance

D2
P = |xi − xm|2 =

k∑
j=1

(xij − xmj)2 (2)

of each shape xi to the mean shape xm.
The alignment procedure is commonly known as Procrustes Analysis [DM98,

SG02, CT01] and is used to calculate the mean shape of landmark shapes. Al-
though there are analytic solutions, a typical iterative approach,
adapted from [CT01], is the following:

Algorithm 1: Procrustes Analysis

• Compute the centroid of each example shape.

• Translate each example shape so that its centroid is at the origin (0,0,0).

• Scale each example shape so that its size is 1.

• Assign the first example shape to the mean shape xm.

• REPEAT

– Assign the mean shape xm to a reference mean shape x0.

– Align all example shapes to the reference mean shape x0 by an optimal
rotation.

– Recalculate the mean shape xm.

– Translate the mean shape so that its centroid is at the origin (0,0,0).

– Scale the mean shape so that its its size is 1.

– Align the mean shape xm to the reference mean shape x0 by an optimal
rotation.

– Compute the Procrustes distance of the mean shape xm to the reference
mean shape x0:
|x0 − xm|.

• UNTIL Convergence: |x0 − xm| < ε.

In our case, where the size of the facial landmark shape is of great importance,
scaling shapes to unit size is omitted. In these cases, shapes are considered rigid
shapes and are aligned by performing only the translational and rotational transfor-
mations.

Thus the mean shape of landmark shapes (Fig. 3) is created and example shapes
are aligned to the mean shape.

The mean shape xm is the Procrustes mean

xm =
1
N

N∑
i=1

xi (3)
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(a) (b) (c) (d)

Figure 3: Depiction of landmarks mean shape estimation: (a) unaligned landmarks;
(b) aligned landmarks; (c) landmarks mean shape; and (d) landmark cloud and
mean shape at 60o.

of all N example shapes xi.

3.2 Shape Alignment Transformations

As we have previously mentioned, to obtain a true representation of landmark
shapes, location, scale and rotational effects need to be filtered out by bringing
shapes to a common frame of reference. This is carried out by performing transla-
tional, scaling and rotational transformations. Notice that different approaches to
alignment can produce different distributions of the aligned shapes.

Translation to the centroid is performed by applying to the n landmark points
rj the following transformation in 3D original space:

r′
j = rj − rc (4)

where rc the centroid and j ∈ {1, ..., n}.
The centroid of a shape is the center of mass (CM) of the physical system con-

sisting of unit masses at each landmark. This is easily calculated as:

rc =

 1
n

n∑
j=1

xj ,
1
n

n∑
j=1

yj ,
1
n

n∑
j=1

zj

T (5)

in a 3D original space (i.e., d = 3).
Scaling to unit size is performed by applying to the landmark points rj the

following transformation in 3D original space:

r′
j = αrj (6)

where α = 1/S(x) is the scaling factor, S(x) is the shape’s size, and j ∈ {1, ..., n}.
The shape’s size is the square root of the sum of squared Euclidean distances

from each landmark rj to the centroid rc:

S(x)2 =
n∑
j=1

|rj − rc|2 (7)

in the original 3D space.
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Rotation in the original 3D space is slightly more complicated. We must cal-
culate a rotational transformation R(x) so as to minimize the Procrustes distance
|R(x)− x0| of the transformed shape R(x) to a reference shape x0. The rotational
transformation R can be expressed as a product of three rotations around the three
principal axes:

R = Rx,θ ·Ry,φ ·Rz,ψ (8)

These can be expressed in a matrix form:

Rx,θ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (9)

Ry,φ =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 (10)

Rz,ψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (11)

After setting partial derivatives of |R(x)−x0|2 w.r.t each parameter to zero and
some formal calculations, we have:

θ = tan−1

(
Sz0,y − Sy0,z
Sy0,y + Sz0,z

)
(12)

φ = tan−1

(
Sx0,z − Sz0,x
Sz0,z + Sx0,x

)
(13)

ψ = tan−1

(
Sy0,x − Sx0,y
Sx0,x + Sy0,y

)
(14)

where:

Sx0,x =
∑n

j=1 x0jxj , Sx0,y =
∑n

j=1 x0jyj , Sx0,z =
∑n

j=1 x0jzj ,

Sy0,x =
∑n

j=1 y0jxj , Sy0,y =
∑n

j=1 y0jyj , Sy0,z =
∑n

j=1 y0jzj ,

Sz0,x =
∑n

j=1 z0jxj , Sz0,y =
∑n

j=1 z0jyj , Sz0,z =
∑n

j=1 z0jzj .

So, the rotational transformation of every landmark point rj in the original 3D
space gives:

rj
′ = R(rj) = Rx,θ (Ry,φ (Rz,ψ(rj))) (15)

Alignment of a shape x to a reference shape x0 is done by minimizing the Pro-
crustes distance in an iterative way, as described below:
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Algorithm 2: Shape Alignment

• Translate x0 so that its centroid is at the origin (0,0,0).

• Scale x0 so that its size is 1.

• Translate x so that its centroid is at the origin (0,0,0).

• Scale x so that its size is 1.

• Set R← I.

• REPEAT

– Calculate Rx,θ.

– Apply Rx,θ to x shape points.

– Set R← Rx,θ ·R.

– Calculate Ry,φ.

– Apply Ry,φ to x shape points.

– Set R← Ry,φ ·R.

– Calculate Rz,ψ.

– Apply Rz,ψ to x shape points.

– Set R← Rz,ψ ·R.

– Compute the Procrustes distance of the transformed shape x to the
reference shape x0:
|x0 − x|.

• UNTIL Convergence: |x− x0| < ε.

• Get R.

Note that, in our case, where the size of the facial landmark shape is of great
importance, scaling shapes to unit size is omitted. Also note that the proposed
“Shape Alignment” algorithm leaves us the discretion to permit certain rotations
(e.g., only around the y-axis).

3.3 Landmark Shape Variations

After bringing landmark shapes into a common frame of reference and estimating
the landmarks’ mean shape, further analysis can be carried out for describing the
shape variations. This shape decomposition is performed by applying Principal
Component Analysis (PCA) to the aligned shapes.

Due to size normalization of Procrustes analysis, all shape vectors live in a hyper
sphere manifold in shape space, which introduces non-linearities if large shape scal-
ings occur. Since PCA is a linear procedure, all aligned shapes are at first projected
to the tangent space of the mean shape. This way, shape vectors lie in a hyper plane
instead of a hyper sphere, and non-linearities are filtered out. The tangent space
projection linearizes shapes by scaling them with a factor α:

xt = αx =
|xm|2

xm · x
x (16)
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where xt is the tangent space projection of shape x and xm is the mean shape.
If no size normalization is applied, then tangent space projection can be omitted.
Aligned shape vectors form a distribution in the nd dimensional shape space,

where n is the number of landmarks and d the dimension of each landmark. If
landmark points are not representing a certain class of shapes, then they will be
totally uncorrelated (i.e., purely random). On the other hand, if landmark points
represent a certain class of shapes, then they will be correlated to some degree. This
fact will be exploited by applying PCA to reduce dimensionality and obtain the
correlation as deformations.

If landmark points have a specific distribution, we can model this distribu-
tion by estimating a vector b of parameters that describes a shape’s deformations
[CTCG95, CT01, CTKP05, SG02]. The approach is as follows:

Algorithm 3: Principal Component Analysis

• Determine the mean shape.

• Determine the covariance matrix of the shape vectors.

• Compute the eigenvectors Ai and corresponding eigenvalues λi of the covari-
ance matrix, sorted in descending order.

After applying Procrustes analysis, the mean shape is determined and example
shapes are aligned and projected to the mean shape’s tangent space. Typically, one
would apply PCA on variables with zero mean.

The covariance matrix of N example shapes is calculated according to

Cx =
1

N − 1

N∑
i=1

(xi − xm)(xi − xm)T (17)

If A contains (in columns) the k = nd eigenvectors Ai of Cx, by projecting
aligned original example shapes to the eigenspace we uncorrelate them as

y = AT · (x− xm) (18)

and the covariance matrix of projected example shapes

Cy =
1

N − 1

N∑
i=1

(yi − ym)(yi − ym)T (19)

becomes a diagonal matrix of the eigenvalues λi, so as to have

Cx ·A = A ·Cy , Cy = AT ·Cx ·A (20)

The resulting transform is known as the Karhunen-Loéve transform, and achieves
our original goal of creating mutually uncorrelated features.

To back-project uncorrelated shape vectors into the original shape space, we can
use

x = xm + A · y (21)
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(a)
b1 = −3

√
λ1

(b)
b1 = 0

(c)
b1 = +3

√
λ1

Figure 4: First mode of mean shape deformations (viewed at 60◦).

If A contains (in columns) the p eigenvectors Ai corresponding to the p largest
eigenvalues, then we can approximate any example shape x using

x′ ≈ xm + A · b (22)

where b is a p-dimensional vector given by

b = AT · (x− xm) (23)

The vector b is the projection of x onto the subspace spanned by the p most
significant eigenvectors of the eigenspace (principal components). By selecting the
p largest eigenvalues, the mean square error between x and its approximation x′ is
minimized. The number p of most significant eigenvectors and eigenvalues to retain
(modes of variations) can be chosen so that the model represents a given proportion
of the total variance of the data, that is the sum Vt of all the eigenvalues

p∑
i=1

λi ≥ f · Vt (24)

where factor f represents the percentage of total variance incorporated into FLM.
Least significant eigenvalues that are not incorporated are considered to represent
noise [CT01, TK06]. Thus, the Facial Landmark Model (FLM) is created [PTPK09,
PPT∗09].

By applying PCA, we decompose shape variations by projecting to the eigenspace
having an ordered basis of eigenvectors, where each shape component is ranked after
the corresponding eigenvalue. This gives the components an order of significance.
Each eigenvalue represents the variance in eigenspace axes which are orthogonal. No-
tice that the correlation matrix of shape vectors in the eigenspace has only diagonal
elements: the eigenvalues.

Modifying one component at a time we obtain the principal modes of variations.
So, for each selected eigenvalue λi, we calculate the deformation parameter bi within
some limits (±3

√
λi = ±3σi), and we get a corresponding mode of variations, which

represents fi = λi
Vtot

of the total shape variations in the dataset.
We can observe that the first mode (Fig. 4), which is created by setting the

deformation parameter values to (b1 = −3
√
λ1, b1 = 0, b1 = +3

√
λ1), captures the
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(a)
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√
λ2

(b)
b2 = 0

(c)
b2 = +3
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λ2

Figure 5: Second mode of mean shape deformations (viewed at 60◦).

(a)
b3 = −3

√
λ3

(b)
b3 = 0

(c)
b3 = +3

√
λ3

Figure 6: Third mode of mean shape deformations (viewed at 60◦).

face size and shape (circular vs. oval) and represents 21.9% of total shape variations
of FLM8 (Fig. 7).

We can also observe that the second mode (Fig. 5), which is created by setting
the deformation parameter values to (b2 = −3

√
λ2, b2 = 0, b2 = +3

√
λ2), captures

the nose shape (flat vs. peaked) and represents 18.6% of total shape variations of
FLM8 (Fig. 7).

Finally, we can observe that the third mode (Fig. 6, which is created by setting
the deformation parameter values to (b3 = −3

√
λ3, b3 = 0, b3 = +3

√
λ3), captures

the chin tip position (extruded vs. intruded) and represents 11.1% of total shape
variations of FLM8 (Fig. 7).

The first three principal modes of FLM8 capture 51.6% of the total shape varia-
tions. We incorporated 15 eigenvalues (out of the total 24) in FLM8, which represent
99.0% of total shape variations of the complete landmark shapes. We also incorpo-
rated 7 eigenvalues (out of the total 15) in FLM5L and FLM5R, which represent
99.0% of total shape variations of the left and right landmark shapes. By selecting
the most significant eigenvalues and corresponding eigenvectors, each shape vector
in the original shape space is projected to a feature vector in a feature space with
reduced dimensions.
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Figure 7: Landmark shape eigenvalues for FLM8 and percentage of total variations
they capture.

3.4 Statistical Analysis of Landmarks

Point clouds of aligned landmarks represent landmark “movements” in 3D space.
Looking at the correlation matrix we see that these “movements” are highly cor-
related (Fig. 8). Black squares denote negative correlation values, white, positive
correlation values and mean gray, zero correlation. Note that shape vectors are
presented in a (x1, x2, ..., x8, y1, y2, ..., y8, z1, z2, ..., z8) manner.

The main diagonal of the covariance matrix contains the variances of each shape
vector component:

var(xi) =
1

N − 1

N∑
k=1

(xk,i − xm,i)2 (25)

and non diagonal values the covariances between any two components:

covar(xi, xj) =
1

N − 1

N∑
k=1

(xk,i − xm,i)(xk,j − xm,j) (26)

where xm is the mean shape, xk any example shape and N the examples number.
The covariance matrix is symmetrical about the main diagonal, since covar(xi, xj) =
covar(xj , xi).

The values of the covariance indicates the strength of each relationship, and the
sign whether the relationship is positive or negative. If the value is positive, the
two components increase together. If it is negative, then if one component increases
in one direction the other increases in the opposite direction (decreases). Notice
that division is done by N − 1 since we are using an example dataset, which is a
representation of the entire population where division by N can properly been used.

Consider the black square (1,4) in Fig. 8(a); it represents the correlation between
(x1, x4), which are the x coordinates of left and right eye outer corners. We can con-
clude that they are negatively correlated; when right eye moves right, left eye moves
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(a) (b)

Figure 8: Statistical analysis for FLM8: (a) Correlation Matrix; (b) Eigenvalues.

left and vice versa. This is also indicated in the first mode of variations - circular
vs. oval face (Fig. 4). Consider the black square (6,7); it represents the correla-
tion between (x6, x7), which are the x coordinates of mouth left and right corners.
We can conclude that they are also negatively correlated; when mouth right corner
moves right, left corner moves left and vice versa. Black squares (24,22) and (24,23)
represent the correlation between (z8, z6) and (z8, z7), which are the z coordinates
of chin tip versus mouth left and right corners. We can see a negative correlation,
which means that chin tip and mouth corners “move” in opposite directions on z-
axis. This is also indicated in the third mode of variations - extruded vs. intruded
chin (Fig. 6). Consider the gray squares of line (5); they represent the correlation of
x,y,z coordinates of the nose tip with the other landmarks. We can conclude that
the nose is mostly not correlated with any other landmark, because of the same
gray color of the corresponding squares. It is the most robust facial landmark point.
White square (21,21) represents the variance of (z5), which is the z coordinate of
the nose tip. We can observe that this has the maximum variance, which is also
indicated in the second mode of variations - flat vs. peaked nose (Fig. 5).

3.5 Fitting Landmarks to the Model

General-purpose feature detection methods are not able to identify and label the
detected candidate landmarks. It is clear that some topological properties of faces
must be taken into consideration. To address this problem, we use the FLMs. Can-
didate landmarks, irrespectively of the way they are produced, must be consistent
with the corresponding FLM. This is done by fitting a candidate landmark set to
the FLM and checking the deformation parameters b to be within certain margins.

Fitting a set of landmark points y to the FLM x is done by minimizing the
Procrustes distance in a simple iterative approach, adapted from [CT01]:
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Algorithm 4: Landmark Fitting

• Translate y so that its centroid is at the origin (0,0,0).

• Scale y shape so that its size is 1.

• REPEAT

– Align y to the mean shape xm by an optimal rotation.

– Compute the Procrustes distance of y to the mean shape xm: |y−xm|.

• UNTIL Convergence: |y − xm| < ε.

• Project y into tangent space of xm.

• Determine the model deformation parameters b that match to y:
b = AT · (y − xm).

• Accept y as a member of the shape’s class if b satisfies certain constraints.

Notice that scaling is not applied when we need to retain shape size.
We consider a landmark shape as plausible if it is consistent with marginal shape

deformations. Let us say that certain bi satisfy the deformation constraint

|bi| ≤ 3
√
λi (27)

then the candidate landmark shape belongs to the shape class with probability
Pr(y):

Pr(y) =
∑
λi

Vp
(28)

where λi are the eigenvalues that satisfy the deformation constraints and Vp is the
sum of the eigenvalues that correspond to the selected p principal components, and
represents the incorporated data variance.

If Pr(y) exceeds a certain threshold limit, the landmark shape is considered
plausible, otherwise it is rejected as a member of the class. Other criteria of declaring
a shape as plausible can also be applied [CT01, CTKP05].

4 Landmark Detection & Labeling

To detect landmark points, we have used three 3D local shape descriptors that
exploit the 3D geometry-based information of facial datasets: shape index, extrusion
map and spin images.

A facial scan belongs to a subclass of 3D objects which can be considered as a
surface S expressed in a general parametric form w.r.t. a known coordinate system:

S(p) = {p ∈ R3 : p = [x(u, v), y(u, v), z(u, v)]T , (u, v) ∈ R2} (29)

This global native u, v parameterization of the facial scan allows us to map 3D
information into 2D space. Since differential geometry is used for describing local
behavior of surfaces in a small neighborhood, such as surface curvature and surface
normals, we assume that the surface S can be adequately modeled as being at least
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piecewise smooth, that is at least be of class C2 (twice differentiable). Therefore,
to eliminate sensor-specific problems, certain preprocessing algorithms (median cut,
hole filling, smoothing, and subsampling) operate directly on the range data before
the conversion to polygonal data [KPT∗07].

4.1 Shape Index

The Shape Index is extensively used for 3D landmark detection [Col06, LJ06, LJC06,
CSJ05, LJ05]. It is a continuous mapping of principal curvature values (kmax, kmin)
of a 3D object point p into the interval [0,1], according to the formula:

SI(p) =
1
2
− 1
π
tan−1kmax(p) + kmin(p)

kmax(p)− kmin(p)
(30)

We use the Dorai and Jain definition here [DJ97], an extension of Koenderink
and van Doorn’s original definition [KvD92]. The shape index captures the intuitive
notion of “local” shape of a surface. Every distinct surface shape corresponds to a
unique value of shape index, except the planar shape. Points on a planar surface
have an indeterminate shape index, since kmax = kmin = 0. Five well-known shape
types and their locations on the shape index scale are as follows: Cup = 0.0, Rut =
0.25, Saddle = 0.5, Ridge = 0.75, and Cap = 1.0.

After calculating shape index values on a 3D facial dataset, a mapping to 2D
space is performed (using the native u, v parameterization of the facial scan) in order
to create a shape index map (Fig. 9):

SImap(u, v)← ShapeIndex(x, y, z) (31)

Local maxima and minima are identified on the shape index map. Local maxima
(SImap(u, v) → 1.0) are candidate landmarks for nose tips and chin tips and local
minima (SImap(u, v) → 0.0) for eye corners and mouth corners. The shape index’s
maxima and minima that are located are sorted in descending order of significance
according to their corresponding shape index values. The most significant subset of
points for each group (Caps and Cups) is retained (a maximum of 512 Caps and 512
Cups). In Fig. 15(a) and Fig. 16(a), black boxes represent Caps, and white boxes
Cups.

However, experimentation showed that the shape index alone is not sufficiently
robust for detecting anatomical landmarks in facial datasets in a variety of poses.
Thus, candidate landmarks estimated from shape index values serve as a basis, but
must be further classified and filtered according to the following methods.

4.2 Extruded points

Our experiments indicated that the shape index is not sufficiently robust for detect-
ing the nose and chin tips. Thus, we propose a novel method based on two common
attributes for locating these two landmarks. The first attribute is that they extrude
from the rest of the face. To encode this feature we use the radial map (Fig. 10(a)).
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(a) (b) (c)

Figure 9: Depiction of shape index maps: (a) frontal face dataset; (b) 45◦ side face
dataset; and (c) 60◦ side face dataset. (Blue denotes Caps, green Saddle, and red
Cups.)

The radial map is a 2D map that represents, at each u, v pixel, the distance of the
corresponding (x, y, z) point from the centroid of the object, normalized to [0, 1]:

Rmap(u, v)← |r(x, y, z)| (32)

The second attribute is that most of the normals at nose and chin regions have
an outward direction (with respect to the centroid). The tangent map (Fig. 10(b))
encodes this feature. It is a 2D map that represents, at each u, v pixel, the cosine
value of the angle between the normal vector at the corresponding (x, y, z) point
and the radial vector from the centroid of the object:

Tmap(u, v)← cos(r(x, y, z),n(x, y, z)) (33)

Their product constitutes the extrusion map that represents the conjunction of
the above two attributes, and is subsequently normalized to [0, 1] (Fig. 10(c)):

Emap(u, v) = Rmap(u, v)× Tmap(u, v) (34)

Since the extrusion map depends only on the position of the centroid, it can be
considered pose invariant.

Local maxima of the extrusion map (Emap(u, v)→ 1.0) that are also shape index
maxima (SImap(u, v) → 1.0) are candidate landmarks for nose tips and chin tips.
Located candidate nose and chin tips are sorted in descending order of significance
according to their corresponding extrusion map values. The most significant subset
of extruded points is retained (a maximum of 64 extruded points for nose and chin
tips).

By using the extrusion map, the number of candidate landmarks for nose and
chin tips resulting from shape index’s values alone are significantly decreased, and
are more robustly localized. We can retain the shape index’s minima as candidate
landmarks for eye and mouth corners (Fig. 15(a)) and extrusion map maxima as
candidate landmarks for the nose and chin tips (Fig. 15(b)). In Fig. 15(b), simple
crosses represent extrusion map maxima and circled crosses represent extrusion map
maxima that are also shape index’s maxima: candidate nose and chin tips.
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(a) (b) (c)

Figure 10: Depiction of extruded points: (a) radial map; (b) tangent map; and (c)
extrusion map. (Blue denotes high values, and red low values.)

4.3 Spin Images

A Spin Image encodes the coordinates of points on the surface of a 3D object with
respect to a local basis, a so-called oriented point [Joh97]. An oriented point is the
pair (p,n), where n is the normal vector at a point p of a 3D object. A spin image
is a local descriptor of the global or local shape of the object, invariant under rigid
transformations.

The spin image generation process can be visualized as a grid of bins spinning
around the oriented point basis, accumulating points at each bin as it sweeps space.
Therefore, a spin image at an oriented point (p,n) is a 2D grid accumulator of 3D
points, as the grid is rotated around n by 360◦.

Locality is expressed with the Support Distance parameter, which is:

(SupportDistance) = (GridRows)× (BinSize)
= (GridColumns)× (BinSize)

A spin image at (p,n) is a signature of the shape of an object at the neighborhood
of p. For our purposes of representing facial features on 3D facial datasets, a 16×16
spin image grid with 2 mm bin size was used. This represents the local shape
spanned by a cylinder of 3.2 cm height and 3.2 cm radius.
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(a) (b) (c) (d) (e)

Figure 11: Spin Image templates: (a) eye outer corner; (b) eye inner corner; (c) nose
tip; (d) mouth corner; (e) chin tip.

In order to identify interest points on 3D facial datasets by using spin images, we
create spin image templates that represent the classes of the landmarks used. Notice
that due to the symmetry of the face, landmark points cannot be distinguished
according to spin images into left and right. Thus, five classes can be created which
represent the eye outer corner, eye inner corner, nose tip, mouth corner and chin tip
landmarks.

Spin image templates are statistically generated from 975 manually annotated
frontal face scans from FRGC v2 database, and represent the mean spin image grid
associated with the five classes of the used landmarks (Fig. 11).

Landmark points can be identified according to the relevance of their spin image
grids with the five spin image templates that represent each landmark class.

Relevance is estimated according to a similarity measure between two spin image
grids P and Q, which is expressed by the normalized linear correlation coefficient:

S(P,Q) =
N
∑
piqi −

∑
pi
∑
qi√[

N
∑
p2
i − (

∑
pi)2

] [
N
∑
q2i − (

∑
qi)2
] (35)

where pi, qi denotes each of the N elements of spin image grids P and Q, respectively
[Joh97].

Figure 12 depicts the spin image similarity maps of facial datasets for each spin
image template (i.e., landmark class). It is a u, v mapping of the S(P,Q) value
between the spin image P of every facial dataset point and a spin image template
Q(T ):

SSTmap(u, v)← S(P (x, y, z), Q(T )) (36)

Notice that areas of red color in Fig. 12 give an insight into the discriminating
power of each spin image template. Spin image templates for eye inner corner and
nose tip have the most discriminating power, since high similarity areas are located
at the proper face regions, although the nose tip template has some similarity with
eyebrows and chin regions. Spin image templates for eye outer corner and chin
tip have a medium discriminating power, since there is high similarity with other
regions of face. The eye outer corner template has similarity with mouth and cheek
regions and the chin tip template with nose and eyebrows regions. Finally, the spin
image template for mouth corner has the lowest discriminating power, since there
is high similarity with large regions of the face, such as cheeks and forehead. These
error-prone regions can be filtered out by the use of shape index’s values.

Therefore, instead of searching all points of a facial dataset to determine the
correspondence with the spin image templates, we use the shape index’s candidate
landmark points. Thus, local maxima and minima of the shape index map (Caps



Section 4 Landmark Detection & Labeling 21

(a) (b) (c) (d) (e)

Figure 12: Depiction of spin image similarity maps: (a) eye outer corner; (b) eye
inner corner; (c) nose tip; (d) mouth corner; and (e) chin tip. (Blue denotes low
similarity values (−1), and red high similarity values (+1).)

and Cups) are further classified into five classes (eye outer corner, eye inner corner,
nose tip, mouth corner and chin tip) according to the similarity (SSTmap(u, v)→ 1.0)
of their spin image grids with the spin image templates that represent each landmark
class.

The landmarks of the five landmark classes (eye outer corner, eye inner corner,
nose tip, mouth corner and chin tip) are sorted in descending order of significance
according to their similarity measure with their corresponding spin image template.
The most significant subset for each landmark class is retained (a maximum of
128 eye outer corners, 64 eye inner corners, 64 nose tips, 256 mouth corners and
128 chin tips). By using the spin images, the number of all candidate landmarks
resulting from shape index’s values are significantly decreased, and are more robustly
localized.

In Fig. 16(b), blue boxes represent the eye outer corner, red boxes the eye inner
corner, green boxes the nose tip, purple boxes the mouth corner and yellow boxes the
chin tip. Notice that some of the classified landmark boxes overlap due to similarity
with different templates.

4.4 Locating Landmarks on 2D Maps

In order to locate the most significant landmark points on a 2D map, we use general
methods of locating extreme values. First, all 2D maps are normalized by linear
stretching to [0,1] so that the problem of locating maximum or minimum is reduced
to locating a single value (i.e., 1 or 0). Then, if a 2D map is represented by its
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values I(u, v) and a target value V is searched within it, we can consider the function
|I(u, v)− V | as a transformation of the 2D map and search for its minimum values.

The localization of target values on a 2D map can be implemented by the algo-
rithm below:

Algorithm 5: Landmark Localization

• FOR each point (u, v).

– Calculate |I(u, v)− V |.
– IF |I(u, v)− V | > V ar reject point (u, v).

– IF |I(u, v)−V | is not a minimum in a window of neighbors reject point
(u, v).

– IF |I(u, v)−V | is not a majority value in a window of neighbors reject
point (u, v).

– IF NOT rejected add point in a descending ordered list of points ac-
cording to |I(u, v)− V |.

• END FOR.

• Return list of points.

The algorithm calculates the value |I(u, v) − V | and tests if it is within certain
accepted variation limits V ar in order to reject unwanted values (outliers). Then it
tests if |I(u, v)−V | is a local minimum within a window of neighbors by suppressing
non minimum candidate points (hill climbing scheme). Finally, it tests wether the
target value is a majority value (within some limits |I(u, v)−V | ≤ V ar) in a window
of neighbors (voting scheme). Thus a list of points is returned, sorted in descending
order of significance, according to the distance from target value |I(u, v)− V |.

4.5 Landmark Labeling & Selection

As we have previously mentioned, detected geometric landmarks must be identified
and labeled as anatomical landmarks. For this purpose, topological properties of
faces must be taken into consideration. Thus, candidate geometric landmarks, irre-
spectively of the way they are produced, must be consistent with the FLMs. This
is done by applying the fitting procedure as described in Section 3.5.

For each facial dataset, the procedure for landmark detection and labeling has
the following steps:

1. Extract candidate landmarks from the geometric properties of the facial scans.

2. Create feasible combinations of 5 landmarks from the candidate landmark points.

3. Compute the rigid transformation that best aligns the combinations of five candidate
landmarks with the FLM5R and FLM5L.

4. Filter out those combinations that are not consistent with FLM5L or FLM5R, by
applying the fitting procedure as previously described.

5. Sort consistent right (FLM5R) and left (FLM5L) landmark sets in descending order
according to a distance metric from the corresponding FLM.
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6. Fuse accepted combinations of 5 landmarks (left and right) in complete landmark sets
of 8 landmarks.

7. Compute the rigid transformation that best aligns the combinations of eight landmarks
with the FLM8.

8. Discard combinations of landmarks that are not consistent with the FLM8, by apply-
ing the fitting procedure as previously described.

9. Sort consistent complete landmark sets in descending order according to a distance
metric from the FLM8.

10. Select the best combination of landmarks (consistent with FLM5R, FLM5R or FLM8)
based on the distance metric to the corresponding FLM.

11. Obtain the corresponding rigid transformation for registration.

In Fig. 15(c) and Fig. 16(c), blue boxes represent landmark sets consistent with
the FLM5R, red boxes with the FLM5L, green boxes with the FLM8, and yellow
boxes the best landmark set. Notice that some of the consistent landmarks overlap.
Also note that the FLM8 consistent landmark set is not always the best solution;
FLM5L and FLM5R are usually better solutions for side facial datasets (Fig. 15(d)
and Fig. 16(d)).

The consistent landmark sets determine the pose of the face object under con-
sideration from the alignment transformation with the corresponding FLM. Since
our aim is to locate landmark sets on profile, semi-profile and profile faces, we re-
tain the complete landmark solution only if estimated yaw-angle is within certain
limits (±30◦ around y-axis), otherwise the left or right landmark sets are preferred
according to pose.

Finally, using the selected best solution, the registration transformation is calcu-
lated, the yaw-angle is estimated, and the facial dataset is classified as frontal, left
side or right side.

Note that the use of landmark sets of 5 landmarks serves two purposes: (i) it
is the potential solution for semi-profile and profile faces, and (ii) it reduces the
combinatory search space for creating the complete landmark sets in a divide-and-
conquer manner. Instead of creating 8-tuples of landmarks out of N candidates,
which generates N8 combinations to be checked for consistency with the FLMs, we
create 5-tuples of landmarks, and check N5+N5 = 2N5 combinations for consistency
with FLM5L and FLM5R. We retain 256 landmark sets consistent with FLM5L and
256 landmark sets consistent with FLM5R. By fusing them and checking consistency
with FLM8 we have an extra of 256×256 combinations to be checked. Thus, by this
approach 2N5 + 2562 � N8 combinations are checked, with O(N5) � O(N8). For
N = 128 we have approx. 69× 109 instead of 72× 1015 combinations to be checked.

4.5.1 Landmark Detection Methods

We applied two alternative methods for detecting the geometric candidate land-
marks:

METHOD 1: Shape Index + Extrusion Map: In this method, shape index’s
minima are the candidate landmarks for eye and mouth corners and shape
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Figure 13: METHOD 1: Shape Index + Extrusion Map: Process pipeline:
(a) shape index’s maxima and minima; (b) extrusion map’s candidate nose and
chin tips; (c) extracted best landmark sets; (d) resulting landmarks; and (e) Facial
Landmark Model (FLM) filtering.

index’s maxima that are also Extrusion’s map maxima are the candidate land-
marks of the nose and chin tips (Fig. 13). To find the best solution, we used the
normalized Procrustes distance DNP (Eq. 41). This method will be referred
as METHOD SIEM–NP.

METHOD 2: Shape Index + Spin Images: In this method, shape index’s
maxima and minima are further classified into five classes by the spin image
templates and are the candidate landmarks for eye outer corner, eye inner
corner, nose tip, mouth corner and chin tip (Fig. 14). To find the best solution,
we used two alternative distance metrics. The normalized Procrustes distance
DNP (Eq. 41) and the normalized Procrustes × mean spin similarity distance
DNPSS (Eq. 43). These methods will be referred as METHOD SISI–NP
and METHOD SISI–NPSS respectively.

4.5.2 Landmark Constraints

As previously mentioned, from the classified candidate landmark points we create
combinations of 5 landmarks. Since an exhaustive search of all possible combinations
of the candidate landmarks is not feasible, simple landmark position constraints from
the shape model and its deformations are used to reduce the search space (pruning).

We use two types of constraints for the candidate landmarks:

Absolute Distance constraint: This constraint expresses the fact that the dis-
tances between two landmark points must be within certain margins consistent
with the absolute face dimensions.
Distance constraints are created from the facial mean landmark shape and all
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Figure 14: METHOD 2: Shape Index + Spin Images: Process pipeline: (a)
shape index’s maxima and minima; (b) spin image classification; (c) extracted best
landmark sets; (d) resulting landmarks; (e) spin image templates filtering; and (f)
Facial Landmark Model (FLM) filtering.

mean shape variations for the selected eigenvalues. Actually, for all modes
of FLM marginal variations (bi = ±3

√
λi), we calculate the minimum Dmin

and maximum Dmax distance of every pair of landmarks (ri, rj). We constrain
candidate landmark distances |ri− rj| within these margins plus a tolerance t:

(1− t) ·Dmin(ri, rj) ≤ |ri − rj| ≤ (1 + t) ·Dmax(ri, rj) (37)

where ri, rj denote the positions of landmarks, with i 6= j.

Relative Position constraint: This constraint expresses the fact that the relative
positions of landmark points must be consistent with the face shape.
If we define a counter-clockwise direction CCDir, then the vectors from the
nose tip to the other landmarks have also a counter-clockwise direction:

CCDir = (rm − r5)× (rn − r5) (38)

and
[(ri − r5)× (rj − r5)] ·CCDir > 0 (39)

where rm, rn, ri, rj denote the positions of certain landmarks and r5 the
position of nose tip. For FLM5R:
(m,n) = (2, 1) and (i, j) ∈ {(1, 6), (6, 8)},
and for FLM5L:
(m,n) = (4, 3) and (i, j) ∈ {(7, 4), (8, 7)}.

The purpose of the above constraints is to speed up the search algorithm by
removing outliers and not potential solutions, so care must be taken not to be over-
constrained.
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(a) (b) (c) (d)

Figure 15: METHOD 1: Shape Index + Extrusion Map: Results of land-
mark detection and selection process: (a) shape index’s maxima and minima; (b)
candidate nose and chin tips; (c) extracted best landmark sets; and (d) resulting
landmarks.

4.5.3 Distance Metrics

Since FLM5R, FLM5L, FLM8 have different dimensions in shape space, Procrustes
distances cannot be used as a distance measure because they are not directly com-
parable:

DP =

√√√√ k∑
j=1

(xj − yj)2 (40)

where DP is the Procrustes distance, x and y are the two shape vectors and k is
the shape space dimension (k = 24 for FLM8 and k = 15 for FLM5R and FLM5L).

Thus, we must use alternative measures for the distance between two landmark
shapes that can be comparable irrespectively of their dimensions.

We use an intuitive normalized Procrustes distance, taking into consideration the
shape space dimensions:

DNP =
DP

k2
(41)

where DNP is the normalized Procrustes distance, DP the Procrustes distance, and
k is the shape space dimension. The division by k2 instead of k is preferred to give
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(a) (b) (c) (d)

Figure 16: METHOD 2: Shape Index + Spin Images: Results of landmark
detection and selection process: (a) shape index’s maxima and minima; (b) spin
image classification; (c) extracted best landmark sets; and (d) resulting landmarks.

a bias to the complete solution.
Another non-geometric measure of the quality of a landmark shape is its mean

spin image similarity normalized to [0,1] (0 for high similarity and 1 for low similar-
ity). Here, we take into consideration the spin image similarities between detected
landmarks and spin image templates:

DSS =
1
2

[
1−

∑n
i=1 S(Pi, Qi)

n

]
(42)

where DSS is the mean spin similarity distance, S(Pi, Qi) the similarity measure
between the landmark spin image grid Pi and the corresponding template Qi, and
n the number of landmarks (n = 8 for FLM8 and n = 5 for FLM5R and FLM5L).

Finally, we can use an intuitive normalized Procrustes × mean spin similarity
distance, taking into consideration the geometric distance and the spin image simi-
larities:

DNPSS = DNP ·DSS (43)

where DNP is the normalized Procrustes distance and DSS the mean spin image
similarity.
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An overall measure which reflects the quality of the landmark detection process
is the mean Euclidian distance between two landmark shapes in original 3D space:

DME =
∑n

i=1 |xi − yi|
n

(44)

where DME is the mean Euclidian distance, |xi−yi| the Euclidian distance between
the landmark points xi and yi of the two shapes and n the number of landmarks
(n = 8 for FLM8 and n = 5 for FLM5R and FLM5L).

Another measure which reflects the quality of the registration process is the
modified directed Hausdorff distance DMDH , of a face model M to a test face T ,
which is defined as [Gao03]:

DMDH(M,T ) =
1
p

p∑
mi,i=1

min
tj
|mi − tj | (45)

where |mi−tj | is the Euclidian distance between the face model vertices mi and the
test face vertices tj , and p the number of the face model vertices. The DMDH(M,T )
expresses the mean value of the minimum Euclidian distances |mi−tj | of the vertices
of the face model M , to which a test face scan T is registered.

We used the “normalized Procrustes” DNP distance metric to select the best
landmark set solution in “Method SIEM–NP” and “Method SISI–NP”, and the
“normalized Procrustes × mean spin similarity” DNPSS distance metric in “Method
SISI–NPSS”, where spin images are available. Finally, we used the “mean Euclidian
distance” DME to express the mean localization error of the landmarks and the
“modified directed Hausdorff distance” DMDH to express the quality of the regis-
tration process.

4.5.4 Face Registration & Pose Estimation

In a 3D face recognition system, alignment (registration) between the query and
the stored datasets is necessary in order to make the probe and the gallery dataset
comparable. Registration can be done against a common frame of reference, i.e. a
Reference Face Model (RFM) of known coordinates (Fig. 17). Registration of facial
datasets to a reference face model can be accomplished, by minimizing the Procrustes
distance between a set of landmark points on the facial dataset and the corresponding
landmark points on the Reference Face Model. Landmark points x on the facial
datasets have to be detected by applying one of the previously mentioned methods,
and landmark points x0 on the Reference Face Model are manually annotated once
at a preprocessing stage.

Alignment of a set of face landmark points x to the RFM landmark points x0 is
done by minimizing the Procrustes distance in an iterative approach:
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(a) (b) (c)

Figure 17: Reference face model (RFM) and test face superposed after alignment:
(a) frontal face dataset; (b) 45◦ left side face dataset; and (c) 60◦ right side face
dataset. (Gray color denotes the face model. Color range – red: near to blue: far –
denotes min distances of test face vertices to model.)

Algorithm 6: Face Registration

• Calculate T to translate x so that its centroid is at the origin (0,0,0).

• Scale x shape so that its size is 1.

• Calculate T0 to translate x0 so that its centroid is at the origin (0,0,0).

• Scale x0 shape so that its size is 1.

• REPEAT

– Align x to the reference shape x0 by an optimal rotation R.

– Compute the Procrustes distance of x to the reference shape x0.

• UNTIL Convergence: |x− x0| < ε.

• Apply T−1
0 ·R ·T to register face data.

Thus the final transformation to register a facial dataset to an RFM is:

x′ = T0 ·R ·T · x (46)

and pose is estimated from R. Notice that scaling can be omitted when the probe
and reference shapes are of the same size.

Note that the landmark set detected on the probe facial scan (complete, right
or left) determines the set of the landmarks (FLM8, FLM5R or FLM5L) used for
registration with the Reference Face Model. Fig. 17 depicts the registration of a
profile facial dataset to a RFM. Note that a left side 5 landmark set detected on the
facial scan has to be aligned with the left 5 landmark subset of the RFM, to have a
correct global registration.

As a Reference Face Model the complete Facial Landmark Model (FLM8) (Fig. 3(c))
or an Annotated Face Model can be used (Fig. 18). The Annotated Face Model
(AFM) [KPT∗07] is an anthropometrically correct 3D model of the human face [Far94].
It is constructed only once and is used in the alignment, fitting, and metadata gener-
ation for face recognition [KPT∗07, PPT∗09]. The AFM is annotated into different
areas (e.g., mouth, nose, eyes) and can have predefined landmark points. Using
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(a) (b) (c)

Figure 18: Annotated Face Model [KPT∗07]: (a) polygonal mesh; (b) annotated
areas; (c) u, v parameterization.

the global u, v parameterization of the AFM, a 2D mapping of the 3D geometric
information of the facial dataset can be performed. It can also be used for facial
area segmentation and certain 3D facial region retrieval [PTPK09].

5 Landmark Localization Results

5.1 Face Databases

A short description of the databases widely available to the research community is
given below:

The FRGC [PFS∗05] database from the University of Notre Dame (UND) con-
tains 4,950 facial scans and is divided into two completely disjoint subsets: FRGC
v1 and FRGC v2. The hardware used to acquire these range data was a Minolta
Vivid 900/910 laser range scanner, with a resolution of 640× 480.

The FRGC v1 database contains 943 range images of 275 individuals, acquired
before Spring 2003 (FRGC 3D Training Set). Subjects have neutral expressions and
almost frontal pose.

The FRGC v2 database contains a total of 4,007 range images of 466 indi-
viduals, acquired between Fall 2003 and Spring 2004 (FRGC 3D Validation Set).
Subjects have various facial expressions (e.g., happiness, surprise) and almost frontal
pose. FRGC v2 is considered more challenging than FRGC v1.

The Ear Database from the University of Notre Dame (UND), collections F
and G [UND08]. This database (which was created for ear recognition purposes)
contains side scans with a vertical rotation of 45◦, 60◦ and 90◦. In the 90◦ side scans,
both sides of the face are occluded from the sensor, therefore these were excluded
since they contain no useful information. The UND database contains 119 side scans
at ±45◦ (119 subjects, 119 left and 119 right) and 88 side scans at ±60◦ (88 subjects,
88 left and 88 right).

The MSU [LJ06] database from the Michigan State University contains 300
multiview 3D facial scans from 100 individuals. For each subject, three scans where
captured with yaw angles of less than −45◦, 0◦ (frontal) and more than +45◦.

The BU-3DFE [YWS∗06] database from the University of New York at Bing-
hamton contains 2500 3D facial data of 100 individuals. The system used to acquire
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(a) (b) (c) (d) (e)

Figure 19: Front view of scans from the used database: (a) frontal (DB00F); (b)
45◦ right (DB45R); (c) 45◦ left (DB45L); (d) 60◦ right (DB60R); (e) 60◦ left
(DB60L). Notice the extensive missing data in (b-e).

these data consists of six digital cameras and two light pattern projectors evenly
positioned at 45◦ at each side of the subject. The system creates a single com-
plete 3D polygon surface mesh of the face (20,000 - 35,000 polygons), by merging
the cameras’ viewpoints. Subjects perform seven universal expressions (i.e., neutral,
happiness, surprise, fear, sadness, disgust and anger).

5.2 Test Databases

For performance evaluation we combined the largest publicly available 3D face and
ear databases. In order to evaluate performance for the landmark detection and
localization method, we manually annotated the face datasets.

For frontal facial datasets, we used the FRGC v2 database [PFS∗05]. For the
purposes of this evaluation we manually annotated 975 frontal facial datasets from
149 different subjects, randomly selected from the FRGC v2 database, including
several subjects with various facial expressions. This database will be referred as
DB00F (Fig. 19 (a)).

For side facial datasets, we used the Ear Database from the University of Notre
Dame (UND), collections F and G [UND08]. Note that though the creators of the
database marked these side scans as 45◦ and 60◦, the measured average angle of
rotation is 65◦ and 80◦, respectively. However, when we refer to these datasets we
will use the database notation (45◦ and 60◦).

For the purposes of this evaluation, we manually annotated 118 left and 118 right
45◦ side datasets, which come from 118 different subjects. These databases will be
referred as DB45L and DB45R respectively (Fig. 19 (b-c)). We also annotated 87
left and 87 right 60◦ side datasets, which come from 87 different subjects. These
databases will be referred as DB60L and DB60R, respectively (Fig. 19 (d-e)).
Finally, we composed a database with datasets of 39 common subjects found in
DB00F, DB45L and DB45R. This database consists of 117 (3 × 39) scans in
three poses, frontal and 45◦ left and right, and will be referred as DB00F45RL.

In the evaluation databases, only facial datasets with all the necessary landmark
points visible were included (8 for frontal scans and 5 for side scans). Great care
was given to the accuracy of the manual annotation procedure, since the annotated
datasets form our ground truth.
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5.3 Performance Evaluation

For the performance evaluation of the proposed landmark detection method, we
conducted the following three experiments:

Experiment 1: In this experiment we used Method SIEM–NP. Thus, shape in-
dex’s minima are the candidate landmarks for eye and mouth corners and
shape index’s maxima that are also extrusion’s map maxima are the candi-
date landmarks of the nose and chin tips. To find the best solution, we used
the normalized Procrustes distance DNP .

Experiment 2: In this experiment we used Method SISI–NP. Thus, shape index’s
maxima and minima are further classified into five classes by the spin image
templates and are the candidate landmarks for eye outer corner, eye inner
corner, nose tip, mouth corner and chin tip. To find the best solution, we used
the normalized Procrustes distance DNP .

Experiment 3: In this experiment we used Method SISI–NPSS. Thus, shape
index’s maxima and minima are further classified into five classes by the spin
image templates and are the candidate landmarks for eye outer corner, eye
inner corner, nose tip, mouth corner and chin tip. To find the best solution,
we used the normalized Procrustes × mean spin similarity distance DNPSS .

The performance evaluation is generally presented by calculating the following
values, which represent the localization accuracy of the detected landmarks:

Absolute Distance Error: It is the Euclidean distance in physical units (e.g.,
mm) between the position of the detected landmark and the manually anno-
tated landmark, which is considered ground truth.

Success Rate: It is the percentage of successful detections of a landmark over a
tested database. Successful detection is considered a detection of a landmark
with Absolute Localization Distance Error under a certain threshold (e.g.,
10 mm).

In all our experiments, the mean and standard deviation of the absolute distance
error between the manually annotated landmarks and the automatically detected
landmarks was calculated to represent the localization error. Also, the overall mean
distance error of the 8 landmark points for the frontal datasets and of the 5 landmark
points for the side datasets was computed. This error is expressed with the “mean
Euclidian distance” DME (Eq. 44) between the manually annotated landmarks and
the automatically detected landmarks.

Localization error analysis for the mean and standard deviation was carried out
only on results where the pose of the probe was correctly estimated, and is presented
in Tables: 2, 3, 4, 5, 6 and 7. The pose detection rate is the percentage of correct pose
estimations of the probe (frontal, left profile, right profile), according to the known
pose of the probe, and which also have a mean distance error under 30.00 mm. A
false pose estimation or a mean distance error estimation over 30.00mm is considered
a pose detection failure. Also, the yaw angle is calculated and its mean value,



Section 5 Landmark Localization Results 33

Figure 20: Mean Error (mm) Cumulative Distr. for DB00F (x-axis is the mean
distance-error in mm between ground truth and automatically detected landmarks.
y-axis is the percentage of facial datasets which have errors up to an x-value).

Figure 21: Mean Error (mm) Cumulative Distr. for DB00F45RL.

standard deviation, and minimum and maximum values are presented. Finally, we
present the success rate of landmark localization with a threshold of 10 mm.

We depict the Cumulative Error Distribution graphs for the mean distance-error
only in Figs.: 20, 21, 22, 23, 24 and 25. In these graphs the x-axis represents the mean
distance-error between the manually annotated landmarks and the automatically
detected landmarks on a dataset in intervals of 2 mm, and the y-axis the percentage
of face datasets with a mean distance-error up to a certain x-value, out of all gallery
datasets (error cumulative distribution).

Additionally, the “modified directed Hausdorff distance” DMDH (Eq. 45), of the
face model (RFM) to the test face is computed to express the quality of the face
registration process. To get comparative results we used as a model for frontal
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Figure 22: Mean Error (mm) Cumulative Distr. for DB45R.

Figure 23: Mean Error (mm) Cumulative Distr. for DB45L.

face databases (i.e., DB00F) all the vertices of the complete RFM, for left-side
databases (i.e., DB45L and DB60L) the left side vertices of the RFM, and for right-
side databases (i.e., DB45R and DB60R) the right side vertices of the RFM.

Summary results over the tested databases for METHOD SISI–NPSS are
presented in Table 1, and the mean error cumulative distribution is depicted in
Fig. 26. Note that METHOD SISI–NPSS outperforms all other methods, having
more correct pose detections, lesser distance errors and standard deviations. It
also shows a higher successful detection rate irrespective of pose. The mean error
(DME) for METHOD SISI–NPSS is under 6.1 mm on all tested facial scans,
with standard deviation under 2.6 mm on frontal and side scans. Also note that
pose was correctly estimated on over 97.7% of the tested facial scans, irrespective
of pose. Specifically, the best results have been obtained for the frontal facial scans
and the worst for the 60◦ left facial scans. It also shows sufficient robustness across
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Figure 24: Mean Error (mm) Cumulative Distr. for DB60R.

Figure 25: Mean Error (mm) Cumulative Distr. for DB60L.

pose variations at the registration process with Hausdorff distances (DMDH) under
4.7 mm and standard deviation under 3.1 mm.

Notice that, we generally observe larger mean errors with larger standard devia-
tions in side scan results than in frontal scans. Also note that our method performs
better on 45◦ facial scans than on 60◦ facial scans. This is due to the fact that the
problem of landmark detection in side scans as yaw angle increases is more difficult
and the tested data set was much smaller, so outliers had a more significant effect
on results.

The errors that appear in METHOD SIEM–NP are mainly due to the fact
that the eye and mouth corners are detected from the shape index maps without any
other post processing. This fact is alleviated by the spin image methods, METHOD
SISI–NP and METHOD SISI–NPSS, where these landmarks are further filtered
out and more robustly detected. Also note that the use of the combined ‘normalized
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Figure 26: Mean Error (mm) Cumulative Distr. for SSNPSS method.

Table 1: Summary results for METHOD SISI–NPSS

DMDH DME

Database mean std.dev mean std.dev ≤ 10
(mm) (mm) (mm) (mm) (mm)

DB00F (975) 4.72 1.27 5.64 1.74 97.23%
DB45R (118) 3.90 0.95 5.83 2.49 95.76%
DB45L (118) 4.03 1.22 6.02 2.45 93.22%
DB60R (87) 4.37 3.11 5.87 2.47 93.10%
DB60L (87) 4.32 2.41 6.08 2.53 88.51%

Procrustes’ and ‘mean spin similarity’ distance metric DNPSS in METHOD SISI–
NPSS has improved the overall results on all tested databases, irrespectively of
pose.

The most robust facial features are the nose tip and eye inner corners, with a
lesser mean error and standard deviation on almost all tested facial scans and for
all methods. This is due to the fact that they have more distinct geometry which
is more easily captured by the detectors. Contrarily, the least robust facial feature
appears to be the mouth corners and chin tips mainly due to the fact that they
don’t have enough distinct geometry and also expressions change the positions of
these landmarks significantly.

Note that the frontal test database DB00F contains faces with expressions,
which alter facial characteristics mainly at the eyes, eyebrows, mouth and chin.
Although the landmark model (FLM) used has not been trained with examples
having facial expressions, it has enough tolerance and generality to accept these
faces as plausible and label the corresponding landmarks successfully.
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5.4 Comparative Results

For comparison of the performance of our proposed landmark detection method and
other researchers’ methods, we present landmark localization errors in Tables 8 and
9.

Note that each researcher uses a different facial database making direct compar-
isons extremely difficult. However, the comparative results presented in Tables 8
and 9 indicate that our presented METHOD SISI–NPSS outperforms previous
methods for the following reasons: (i) it is more accurate, since it gives the minimum
mean localization distance error for almost all landmarks, and (ii) it is more robust,
since it gives the minimum standard deviation for the localization distance error.

Yu’s method [YM08] shows the minimum mean localization error for the nose
tip but has a large standard deviation. Lu’s method [LJ05] shows the minimum
mean localization error for the mouth corners but it is not a pure 3D method,
since it is assisted by 2D intensity data. Finally, Colbry’s method [Col06] seems
to behave well enough for all landmarks, comparatively close to our method, but it
gives larger standard deviations. Furthermore, the database used contains a small
portion (≈ 5%) of pose variations, occlusions and expressions.

To the best of our knowledge, Lu’s method [LJ06] is the only one that presented
localization errors on mixed frontal and profile facial datasets. Although it shows
small mean localization errors for the mouth corners, it has a large standard devi-
ation. On the other hand, the tested MSU database consists of a larger number of
facial datasets.

Notice that for our methods, the same parameters were used in all cases (across
frontal, semi-profile and profile scans). If the proposed methods are applied to
databases restricted only to frontal scans or only to profile scans, the parameters
can be fine-tuned to achieve higher performance.

5.5 Computational Efficiency

For the evaluation of the proposed method’s computational efficiency, a typical mod-
ern PC was used: Intel Core 2 Duo 2.2GHz, 2GB RAM, NVIDIA GeForce 8600GTS.
Using this PC, 9 seconds on average are required for each facial scan to locate the
facial landmarks. The procedures of determining the optimal rotation for the align-
ment of the landmark shapes to the FLMs require at most 8 iterations to converge.
The registration step (that takes 8 iterations to converge) requires less than 0.1 sec,
depending on dataset size. The computational efficiency of the proposed landmark
detection and registration method makes it suitable for real-world applications.

6 Conclusion

We have presented an automatic 3D facial landmark detection method that offers
pose invariance and robustness to large missing facial areas, with respect to ex-
treme pose variations. The proposed approach introduced new methods for 3D
landmark localization by exploiting the 3D geometry-based information of faces and
the modeling ability of trained landmark models. It has been evaluated using the



38 P. Perakis et al.

most challenging 3D facial databases available that include pose variations up to
80◦ along the vertical axis. All steps of the method (landmark detection and pose
estimation for registration) work robustly, even if half of the face is missing.

Future work will be directed towards increasing the robustness and accuracy of
the landmark detector. This could be accomplished in two ways: firstly by increasing
the examples datasets for creating the facial landmark model, including expression
variations, and secondly by increasing the landmark set, including the nostrils base.
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Table 2: Results for DB00F

Experiment 1: METHOD SIEM–NP
Correct Pose Detection 947 / 975 97.13%
Yaw Estimation −0.94◦ ± 5.58◦ [−14.57◦ ∼ +19.53◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 6.92 4.47 77.64%
Right Eye Inner Corner 6.18 3.71 86.26%
Left Eye Inner Corner 6.85 3.63 83.69%
Left Eye Outer Corner 7.18 4.84 75.90%
Nose Tip 6.32 4.12 86.87%
Mouth Right Corner 7.42 5.60 71.18%
Mouth Left Corner 7.84 5.22 68.72%
Chin Tip 10.26 6.59 58.67%
Mean Distance Error 7.37 3.20 83.18%

Experiment 2: METHOD SISI–NP
Correct Pose Detection 970 / 975 99.49%
Yaw Estimation −0.63◦ ± 5.02◦ [−13.95◦ ∼ +16.47◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 5.87 3.52 86.56%
Right Eye Inner Corner 5.19 2.54 94.56%
Left Eye Inner Corner 5.59 2.63 94.36%
Left Eye Outer Corner 5.81 3.71 87.79%
Nose Tip 5.28 2.40 96.10%
Mouth Right Corner 5.71 4.30 83.69%
Mouth Left Corner 6.47 4.14 82.15%
Chin Tip 6.30 4.36 88.21%
Mean Distance Error 5.78 1.78 97.23%

Experiment 3: METHOD SISI–NPSS
Correct Pose Detection 970 / 975 99.49%
Yaw Estimation −0.63◦ ± 5.02◦ [−13.95◦ ∼ +16.47◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 5.82 3.43 87.18%
Right Eye Inner Corner 5.10 2.53 94.87%
Left Eye Inner Corner 5.52 2.56 94.56%
Left Eye Outer Corner 5.70 3.52 88.10%
Nose Tip 4.88 2.42 96.72%
Mouth Right Corner 5.64 4.26 84.62%
Mouth Left Corner 6.42 4.17 82.15%
Chin Tip 6.03 4.27 89.54%
Mean Distance Error 5.64 1.74 97.23%
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Table 3: Results for DB00F45RL

Experiment 1: METHOD SIEM–NP
Correct Pose Detection 105 / 117 89.74%
Yaw Estimation −1.32◦ ± 36.50◦ [−66.09◦ ∼ +79.81◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 7.17 3.96 68.55%
Right Eye Inner Corner 6.74 3.65 76.03%
Left Eye Inner Corner 7.60 3.69 72.29%
Left Eye Outer Corner 7.91 4.71 64.81%
Nose Tip 6.61 4.92 76.92%
Mouth Right Corner 6.17 5.22 74.79%
Mouth Left Corner 7.29 5.64 68.55%
Chin Tip 8.85 6.02 63.25%
Mean Distance Error 7.49 3.32 74.36%

Experiment 2: METHOD SISI–NP
Correct Pose Detection 117 / 117 100.00%
Yaw Estimation −1.45◦ ± 37.05◦ [−67.39◦ ∼ +60.58◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 6.91 3.94 71.79%
Right Eye Inner Corner 5.87 3.17 89.74%
Left Eye Inner Corner 6.78 2.97 87.18%
Left Eye Outer Corner 6.82 3.89 78.21%
Nose Tip 5.62 3.70 87.18%
Mouth Right Corner 6.13 4.56 84.62%
Mouth Left Corner 7.05 4.72 78.21%
Chin Tip 6.79 4.50 84.62%
Mean Distance Error 6.55 2.26 92.31%

Experiment 3: METHOD SISI–NPSS
Correct Pose Detection 117 / 117 100.00%
Yaw Estimation −1.45◦ ± 37.05◦ [−67.39◦ ∼ +60.58◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 6.49 3.93 76.92%
Right Eye Inner Corner 5.91 3.02 92.31%
Left Eye Inner Corner 6.90 2.85 85.90%
Left Eye Outer Corner 6.40 3.74 79.49%
Nose Tip 4.30 2.93 94.02%
Mouth Right Corner 5.70 4.10 87.18%
Mouth Left Corner 6.20 4.30 83.33%
Chin Tip 6.40 4.17 87.18%
Mean Distance Error 5.96 1.92 96.58%
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Table 4: Results for DB45R

Experiment 1: METHOD SIEM–NP
Correct Pose Detection 100 / 118 84.75%
Yaw Estimation +44.39◦ ± 8.83◦ [+18.09◦ ∼ +79.81◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 7.60 4.73 61.86%
Right Eye Inner Corner 6.46 3.70 68.64%
Nose Tip 7.69 6.69 66.95%
Mouth Right Corner 7.12 6.60 62.71%
Chin Tip 10.23 7.79 55.08%
Mean Distance Error 7.82 4.21 62.71%

Experiment 2: METHOD SISI–NP
Correct Pose Detection 115 / 118 97.46%
Yaw Estimation +43.25◦ ± 8.13◦ [+20.07◦ ∼ +71.42◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 6.31 3.90 77.12%
Right Eye Inner Corner 6.17 3.43 84.75%
Nose Tip 5.50 4.39 87.29%
Mouth Right Corner 5.70 4.80 80.51%
Chin Tip 6.00 4.75 87.29%
Mean Distance Error 5.93 2.51 92.37%

Experiment 3: METHOD SISI–NPSS
Correct Pose Detection 118 / 118 100.00%
Yaw Estimation +43.35◦ ± 8.26◦ [+20.07◦ ∼ +71.42◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 6.62 3.73 80.51%
Right Eye Inner Corner 6.03 3.29 88.14%
Nose Tip 4.39 3.47 94.92%
Mouth Right Corner 5.96 4.98 81.36%
Chin Tip 6.17 5.21 92.37%
Mean Distance Error 5.83 2.49 95.76%
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Table 5: Results for DB45L

Experiment 1: METHOD SIEM–NP
Correct Pose Detection 105 / 118 88.98%
Yaw Estimation −47.19◦ ± 9.19◦ [−84.14◦ ∼ −19.43◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Left Eye Outer Corner 8.41 5.62 60.17%
Left Eye Inner Corner 8.09 4.53 63.56%
Nose Tip 8.21 7.89 66.95%
Mouth Left Corner 9.50 7.48 56.78%
Chin Tip 10.37 7.36 57.63%
Mean Error 8.92 5.17 63.56%

Experiment 2: METHOD SISI–NP
Correct Pose Detection 115 / 118 97.46%
Yaw Estimation −45.71◦ ± 8.58◦ [−68.17◦ ∼ −13.83◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Left Eye Outer Corner 7.00 5.08 77.12%
Left Eye Inner Corner 7.02 3.93 81.36%
Nose Tip 6.82 5.00 78.81%
Mouth Left Corner 8.17 5.89 67.80%
Chin Tip 7.18 5.63 78.81%
Mean Distance Error 7.24 3.48 82.20%

Experiment 3: METHOD SISI–NPSS
Correct Pose Detection 117 / 118 99.15%
Yaw Estimation −45.43◦ ± 8.76◦ [−68.17◦ ∼ −13.83◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Left Eye Outer Corner 6.39 4.21 77.12%
Left Eye Inner Corner 6.61 3.04 86.44%
Nose Tip 4.02 2.70 95.76%
Mouth Left Corner 6.79 5.28 77.12%
Chin Tip 6.29 4.62 85.59%
Mean Distance Error 6.02 2.45 93.22%
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Table 6: Results for DB60R

Experiment 1: METHOD SIEM–NP
Correct Pose Detection 72 / 87 82.76%
Yaw Estimation +58.11◦ ± 6.70◦ [+32.10◦ ∼ +74.89◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 7.30 5.34 63.22%
Right Eye Inner Corner 6.81 4.83 70.11%
Nose Tip 7.51 5.05 70.11%
Mouth Right Corner 8.02 7.48 55.17%
Chin Tip 11.55 8.87 43.68%
Mean Distance Error 8.24 4.43 62.07%

Experiment 2: METHOD SISI–NP
Correct Pose Detection 82 / 87 94.25%
Yaw Estimation +57.00◦ ± 7.19◦ [+31.22◦ ∼ +74.60◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 7.11 5.26 74,71%
Right Eye Inner Corner 5.90 4.33 83.91%
Nose Tip 5.56 4.45 85.06%
Mouth Right Corner 7.01 5.87 71.26%
Chin Tip 8.04 6.07 71.26%
Mean Distance Error 6.72 3.55 82.76%

Experiment 3: METHOD SISI–NPSS
Correct Pose Detection 85 / 87 97.70%
Yaw Estimation +56.97◦ ± 7.38◦ [+31.22◦ ∼ +74.60◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Right Eye Outer Corner 6.88 4.34 77.01%
Right Eye Inner Corner 5.81 3.39 86.21%
Nose Tip 3.98 3.20 95.40%
Mouth Right Corner 6.29 5.08 79.31%
Chin Tip 6.38 4.85 85.06%
Mean Distance Error 5.87 2.47 93.10%
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Table 7: Results for DB60L

Experiment 1: METHOD SIEM–NP
Correct Pose Detection 78 / 87 89.66%
Yaw Estimation −60.57◦ ± 8.71◦ [−87.87◦ ∼ −38.61◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Left Eye Outer Corner 7.41 5.30 67.82%
Left Eye Inner Corner 8.11 4.60 64.37%
Nose Tip 7.25 6.43 71.26%
Mouth Left Corner 10.66 7.46 49.43%
Chin Tip 10.76 7.64 54.02%
Mean Distance Error 8.84 4.52 58.62%

Experiment 2: METHOD SISI–NP
Correct Pose Detection 83 / 87 95.40%
Yaw Estimation −57.63◦ ± 7.46◦ [−74.41◦ ∼ −32.49◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Left Eye Outer Corner 5.56 3.73 83.91%
Left Eye Inner Corner 6.66 3.24 79.31%
Nose Tip 5.49 4.63 83.91%
Mouth Left Corner 8.36 6.19 66.67%
Chin Tip 8.20 6.60 72.41%
Mean Distance Error 6.85 3.27 79.31%

Experiment 3: METHOD SISI–NPSS
Correct Pose Detection 85 / 87 97.70%
Yaw Estimation −57.46◦ ± 7.45◦ [−74.41◦ ∼ −32.49◦]
Localization Error mean (mm) std.dev. (mm) ≤ 10 mm
Left Eye Outer Corner 5.66 3.45 87.36%
Left Eye Inner Corner 6.54 3.15 85.06%
Nose Tip 3.67 1.98 95.40%
Mouth Left Corner 7.78 5.93 73.56%
Chin Tip 6.77 6.02 81.61%
Mean Distance Error 6.08 2.53 88.51%
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Table 8: Comparison of landmark localization error of different approaches on
almost-frontal complete facial datasets

Mean Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
[YM08] (GA model) FRGC v1 (200) 4.74 5.59 - - 2.18 - - -
[NC09] (w/o PDM) BU-3DFE (2350) 25.01 26.68 31.84 34.39 14.59 - - -

(w PDM) 12.11 11.89 20.46 19.38 8.83 - - -
[LJ06] (3D) FRGC v1 (953) 8.30 8.20 9.50 10.30 8.30 - 6.00 6.20
[LJ05] (3D+2D) FRGC v1 (946) 6.00 5.70 7.10 7.90 5.00 - 3.60 3.60
[Col06] (w/o CFDM) FRGC v1 (953) 5.50 6.30 - - 4.10 11.00 6.90 6.70

(w CFDM) + propr. (160) 5.60 6.00 - - 4.00 11.70 5.40 5.40
[PTPK09] (EG-3DOR) FRGC v2 (975) 7.02 7.46 8.13 9.21 5.23 6.71 8.30 9.83
Perakis et al. (current) (SIEM–NP) FRGC v2 (975) 6.18 6.85 6.92 7.18 6.32 10.26 7.42 7.84

(SISI–NP) 5.19 5.59 5.87 5.81 5.28 6.30 5.71 6.47
(SISI–NPSS) 5.10 5.52 5.82 5.70 4.88 6.03 5.64 6.42

Std. Dev. of Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
[YM08] (GA model) FRGC v1 (200) 9.76 16.08 - - 6.83 - - -
[NC09] (w/o PDM) BU-3DFE (2350) - - - - - - - -

(w PDM) - - - - - - - -
[LJ06] (3D) FRGC v1 (953) 17.20 17.20 17.10 18.10 19.40 - 16.90 17.90
[LJ05] (3D+2D) FRGC v1 (946) 3.30 3.00 5.90 5.10 2.40 - 3.30 2.90
[Col06] (w/o CFDM) FRGC v1 (953) 4.90 5.00 - - 5.10 7.60 8.60 9.30

(w CFDM) + propr. (160) 4.80 4.70 - - 5.40 7.30 6.80 6.70
[PTPK09] (EG-3DOR) FRGC v2 (975) 3.18 3.07 3.79 4.25 3.28 4.32 4.53 4.47
Perakis et al. (current) (SIEM–NP) FRGC v2 (975) 3.71 3.63 4.47 4.84 4.12 6.59 5.60 5.22

(SISI–NP) 2.54 2.63 3.52 3.71 2.40 4.36 4.30 4.14
(SISI–NPSS) 2.53 2.56 3.43 3.52 2.42 4.27 4.26 4.17

Landmarks:
REIC & LEIC: Right and Left Eye Inner Corners
REOC & LEOC: Right and Left Eye Outer Corners
NT & CT: Nose and Chin Tips
MRC & MLC: Mouth Right and Left Corners

Table 9: Comparison of landmark localization error of different approaches on mixed
(frontal and profile) facial datasets

Mean Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
[LJ06] (3D) MSU (300) 9.00 7.10 13.60 13.30 6.40 - 6.70 5.20
Perakis et al. (current) (SIEM–NP) FRGC v2 6.74 7.60 7.17 7.91 6.61 8.85 6.17 7.29

(SISI–NP) + Ear (UND) 5.87 6.78 6.91 6.82 5.62 6.79 6.13 7.05
(SISI–NPSS) (117) 5.91 6.90 6.49 6.40 4.30 6.40 5.70 6.20

Std. Dev. of Localization Error (mm)
Method Test DB (scans) REIC LEIC REOC LEOC NT CT MRC MLC
[LJ06] (3D) MSU (300) 13.10 9.20 11.90 10.10 13.40 - 12.90 9.00
Perakis et al. (current) (SIEM–NP) FRGC v2 3.65 3.69 3.96 4.71 4.92 6.02 5.22 5.64

(SISI–NP) + Ear (UND) 3.17 2.97 3.94 3.89 3.70 4.50 4.56 4.72
(SISI–NPSS) (117) 3.02 2.85 3.93 3.74 2.93 4.17 4.10 4.30

Landmarks:
REIC & LEIC: Right and Left Eye Inner Corners
REOC & LEOC: Right and Left Eye Outer Corners
NT & CT: Nose and Chin Tips
MRC & MLC: Mouth Right and Left Corners
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