
Efficient and Domain-Invariant Competitor Mining

Theodoros Lappas
Boston University

tlappas@cs.bu.edu

George Valkanas
University of Athens
gvalk@di.uoa.gr

Dimitrios Gunopulos
University of Athens

dg@di.uoa.gr

ABSTRACT

In any competitive business, success is based on the abili-
ty to make an item more appealing to customers than the
competition. A number of questions arise in the context of
this task: how do we formalize and quantify the competi-
tiveness relationship between two items? Who are the true
competitors of a given item? What are the features of an
item that most affect its competitiveness? Despite the im-
pact and relevance of this problem to many domains, only
a limited amount of work has been devoted toward an effec-
tive solution. In this paper, we present a formal definition of
the competitiveness between two items. We present efficien-
t methods for evaluating competitiveness in large datasets
and address the natural problem of finding the top-k com-
petitors of a given item. Our methodology is evaluated a-
gainst strong baselines via a user study and experiments on
multiple datasets from different domains.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database application-
s—Data Mining ; H.4.m [Information Systems Applica-
tions]: Miscellaneous

Keywords

competitor mining, competitors, domain-invariant

1. INTRODUCTION
Competitiveness is a challenge that every product or ser-

vice provider has to face, regardless of the application do-
main. A significant amount of relevant work has demon-
strated the strategic importance of identifying and moni-
toring an entity’s competitors [19]. In fact, a long line of
research from the marketing and management community
has been devoted to empirical managerial methods for com-
petitor identification [8, 7, 10, 3, 18], as well as to methods
for analyzing competitors [5], defending against competitive
incursions, and devising appropriate response strategies [11,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

6]. Our own work focuses on competitor identification, a
key step for any competitiveness-driven study or application.
Contrary to the significant amount of available work by the
marketing community, the problem has been largely over-
looked by computer scientists. For the latter, the challenge
is to propose formalizations and competitor-identification al-
gorithms that can utilize the vast amounts of rich data that
is nowadays available on the web and other digital sources.
Some progress toward this direction has been made by the
information systems community [14, 15, 13, 1, 16, 27]. While
the proposed approaches help motivate the problem, they
present significant shortcomings. These include the lack of
a formal definition of competitiveness, as well as the exis-
tence of assumptions that limit the applicability of these ap-
proaches. Specifically, these techniques are based on mining
comparative expressions (e.g. ”Item A is better than Item
B”) from the web or other textual sources. Even though such
expressions can be indicators of competitiveness, they are
absent in many domains. For example, consider the domain
of vacation packages (e.g flight-hotel-car combinations). In
this case, the items have no assigned name by which they
can be queried or compared with each other. Further, the
frequency of textual comparative evidence can vary greatly
across domains. For example, when comparing brand names
from the domain of technology (e.g. “Google Vs Yahoo” or
“Sony Vs Panasonic”), it is indeed likely that comparative
patterns can be found by simply querying the web. However,
it is trivial to consider other mainstream domains where such
findings are extremely scarce, if not non-existent(e.g. shoes,
jewelery, hotels, restaurants, furniture). Finally, even in do-
mains where such approaches are applicable, they cannot
actually evaluate the competitiveness relationship between
any two items. Instead, they can only identify a subset of
the competitors, based on the available evidence. Our own
work overcomes these drawbacks, by providing a formal def-
inition of competitiveness that is applicable across domains.
On a high-level, the fundamental problem we address in our
work is the following:

Problem 1. We are given a set of items I, defined within
the feature space F of a particular domain. Then, given
any pair of items I, I ′ from I we want to define a function
CF (I, I ′) that computes the competitiveness between the two
in the context of the domain.

As mentioned in the statement of the problem, our no-
tion of competitiveness is based on the feature-space F of
the corresponding domain. Our competitiveness paradigm
is based on the following observation: the competitiveness
between two items is based on whether they compete for the

attention and business of the same group of users (i.e. the
same market share), and to what extent. For example, two
restaurants that exist in different countries are obviously not
competitive to each other, since there is no overlap between
their target groups. In the ideal scenario, we would have
access to the complete set of users that could be interested
in a given item. Then, given any two items, we could triv-
ially compute their competitiveness based on the overlap of
their respective sets. In practice, however, this is clearly
not an option. Taking this into consideration, we formalize
the competitiveness between two items based on their re-
spective features. For example, if the considered items are
MP3 Players, F could consist of the features price, sound
quality, battery life, connectivity, capacity and design. Our
motivation is that, regardless of the domain, users compare
and evaluate items based on their features. Therefore, by at-
taching our formalization to the feature space, we ensure the
availability of a consistent and informative resource for com-
petitiveness evaluation. We provide a (simplified) overview
of our approach in Figure 1.

Figure 1: A (simplified) example of our competitiveness
paradigm

The figure illustrates the competitiveness between three
different items I1, I2 and I3. Each item is mapped to the
set of features that it can offer to the users. Three distinct
features are considered in this example: A,B and C. Note
that, for this simple example, we only consider binary fea-
tures (i.e. available/not available). Our actual formalization
accounts for a much richer space of binary, categorical and
numerical features. The left side of the figure shows three
groups of users (g1, g2, g3). The example assumes that these
are the only groups in existence. Users are grouped based on
their preferences with respect to the features. For example,
the users in group g2 are only interested in features A and
B. As can be seen by the figure, items I1 and I3 are not
competitive to each other, since they simply do not appeal
to the same groups of users. On the other hand, I2 is in com-
petition with both I1 (for groups g1 and g2) and I3 (for g3).
Finally, another interesting observation is that I2 competes
with I1 for a total of 4 users, and with I3 for a total of 9 user-
s. In other words, I3 is a stronger competitor for I2, since it
claims a much larger portion of I2’s market-share than I1.
In our work, we propose ways to deduce these user-groups
from sources such as query logs and customer reviews, and
describe methods to estimate the size of the market share
that they represent. Our work is the first to utilize the opin-
ions expressed in customer reviews as a resource for mining
competitiveness.

The formal definition of the competitiveness CF (Ii, Ij) be-
tween two items Ii and Ij , in the context of their domain’s
feature-space F , is the first contribution of our work. As
we demonstrate in our experiments, the evaluation of com-
petitiveness can be a major computational challenge when
dealing with real datasets of hundreds or even thousands of
items. Motivated by this, we propose an algorithm for the
natural problem of finding the top-k competitors of a given
item. The proposed framework is geared toward scalability
and efficiency, which makes it applicable to domains with
large populations of items.

Roadmap
In Section 2 we introduce our competitiveness paradigm. In
Sections 3 and 4 we present an efficient framework for finding
the top-k competitors of a given item. The experimental
evaluation of our work is presented in Section 5. In Section 6
we discuss previous related work. Finally, we conclude the
paper in Section 7.

2. FORMALIZING COMPETITIVENESS
In this section, we describe how we can formalize and

measure the competitiveness between any two items within
a given domain. This formalization serves as the building
block of our framework. Note that our definition can be
easily extended to handle more than two items at a time.

2.1 Competitiveness via Coverage
In order to synthesize a competitor-mining method that

works across domains, we need a formalization of compet-
itiveness that is both accurate and flexible. Motivated by
this, we build upon a crucial factor that remains consistent
across domains: user preferences. In every market, the ulti-
mate goal is to convert users into customers by meeting their
individual requirements. Consider a single user u, interested
in a specific domain (e.g. restaurants). While the domain
may contain numerous items, the user will ultimately choose
only one to spend his money on. In a typical scenario, the
user follows the following steps:

1. Encode requirements and preferences in a query.

2. Submit the query to a search engine and retrieve the
matching items.

3. Process matching items and make the final choice.

We observe that the items that do not match the user’s crite-
ria are never considered. In other words, they never get the
chance to compete for his attention. As far this single user
is concerned, the set of competitors consists of the matching
items retrieved by the search engine. Consider the following
motivating example:

Example: A user is trying to pick a restaurant for din-
ner. He has a very limited budget and is only interest-
ed in Italian restaurants in the Boston Area. Only the
restaurants that satisfy these criteria will compete for the
user’s attention. On the other hand, Chinese restaurants,
restaurants from New York, and expensive establishments
are not truly competitors with respect to this particular
user, since they are outside the boundaries of his personal
requirements and thus never had a chance to be chosen.

In this example, the user is interested in the features {price
range, location, food type}. The respective values that en-
code the user’s requirements are {Cheap, Boston, Italian}.

Clearly, any other assignment of values could be specified for
the same query (e.g. {Cheap, Chicago, Chinese}). In fact,
each possible value-assignment represents the preferences of
a different user. Formally, given a subset of features F ′, let
VF′ be the complete space of all possible value assignments
over the features in F ′. We observe that every item cover-
s a portion of the entire space VF′ , and, hence, covers the
corresponding population of users. For example, a cheap
restaurant in Boston that serves both Italian and American
food covers a user who is interesting in cheap Italian food in
Boston, as well as a user who is interested in cheap American
food in the same city.

In order to evaluate the competitiveness of two given items
Ii, Ij in the context of a subset of features F ′, we need to
compute the number of possible value assignments over F ′

that are satisfied by both items. Formally, we define pairwise
coverage as follows:

Definition 1. [Pairwise Coverage] Given the complete
set of features F in a given domain of interest, let VF′ be the
complete space of all possible value-assignments over the fea-
tures in a subset F ′ ⊆ F. Then, the coverage cov(VF′ , Ii, Ik)
of a pair of items Ii and Ij with respect to VF′ is defined as
the portion of VF′ that is covered by both items.

Considering the above definition, we observe that the cov-
erage of each dimension (i.e. each feature F ∈ F ′) is in-
dependent of the others. Therefore, we first compute the
percentage of each dimension that is covered by the pair.
We can then optimally compute the coverage of the entire
space VF′ as the product of the respective coverage values
V{F} for every F ∈ F ′. Formally:

cov(VF′ , Ii, Ij) =
∏

F∈F′

cov(V{F}, Ii, Ij) (1)

This computation has a clear geometric interpretation: The
portion of the space VF′ that is covered by a pair of items
can be represented as a hyper-rectangle in |F ′|-dimensional
space. For each dimension F , cov(V{F}, Ii, Ij) gives us the
portion of the dimension that is covered by the two items.
Finally, by multiplying the individual coverage values, we
are essentially computing the volume of the hyper-rectangle
that represents the entire space VF′ .

Definition 1 allows us to evaluate the coverage provided by
a pair of items to (the value space of) any subset of features
F ′. Conceptually, F ′ captures the fraction of the population
that is interested in the features included in F ′. In practice,
the size of the corresponding population varies across sub-
sets. For example, in the domain of restaurants, the subset
{food quality, price range} is arguably of interest to more
users than the subset {Wi-Fi availability, delivery options}.
To account for this in our definition of competitiveness, we
attach a popularity weight w(F ′) to each feature subset. We
revisit the computation of these weights in Section 4, where
we discuss practical methods for learning the weights from
sources such as query logs and customer reviews. For the
remaining of our analysis, we assume that the weights are
provided as part of the input. Further, we define Q to be
the collection of subsets with a non-zero weight. Formally:
Q = {F ′ ∈ 2F : w(F ′) > 0}. Taking the above into consid-
eration, we formally define the competitiveness of two items
Ii, Ii as follows:

Definition 2. [Competitiveness] Given the complete set
of features F of a domain of interest, let Q be the set of all

subsets of F that have a non-zero popularity weight. Then,
the competitiveness of two given items Ii and Ii is defined
as:

CF (Ii, Ij) =
∑

F′∈Q

w(F ′)× cov(VF′ , Ii, Ij) (2)

where cov(VF′ , Ii, Ij) is the portion of VF′ that is covered by
both Ii and Ij.

2.2 Computing Coverage
Our definition of competitiveness between two given items

is based on the pairwise coverage that they provide to the
value space of the different subsets of features. We observe
that the value space is complex, since it can contain differ-
ent types of features. By supporting virtually every reason-
able feature-type (numeric, ordinal, boolean, categorical),
our framework guarantees the flexibility required to encode
the requirements of virtually any potential customer. Next,
we discuss the different types of features that we consider
in our work, and show how coverage is defined for each of
them.

Categorical Features: In our work, we identify two sub-
types of categorical features: single-value and multi-value.
For a single-value feature F , each item assumes exactly one
value from the respective value-space V{F}, e.g. the brand
of a digital camera. Clearly, boolean features are simply a
special case of this group, assuming values from {YES, NO}.
The pairwise coverage of two items Ii, Ij , given a single-value
feature F , is defined as follows:

cov(V{F}, Ii, Ij) =

{

1 if Ii[F] = Ij [F]
0 otherwise

(3)

For a multi-value feature F , each item can be mapped to
any subset of values from the respective value-space V{F}.
Assume, for example, the feature parking from Table 1, re-
ferring to the parking facilities of a restaurant. Since a
restaurant can in fact provide any number of these options
(even all of them), parking is a multi-value categorical fea-
ture. We define the pairwise coverage of two items Ii, Ij for
a multi-value feature F , as follows:

cov(V{F}, Ii, Ij) =
|Ii[F] ∩ Ij [F]|

|V{F}|
(4)

Conceptually, the covered portion is defined as the overlap
between the sets of values that are mapped to each item, di-
vided by the total number of possible values for F . Clearly,
the dividend is always a value in [0, 1].

[Ordinal Features]: The value space V{F} of an ordinal
feature F assumes values from a finite ordered list: V{F} =
{v1, v2, v3, ...}. Depending on the nature of the feature, high-
er or lower states may be preferable. For example, for the
feature price range, lower values are preferable. On the other
hand, for the feature stars rating, higher values are better.

First, let us introduce two functions that will aid us in
our definition of coverage in the context of ordinal features.
Given an ordinal feature F and two values v1, v2 ∈ V{F}, let
loser(F, v1, v2) return the least preferable between the two
values. In addition, let weq(F, v1) return the set of values
that are worse or equal to v1. For example, for the price
range feature discussed above, weq(F, $$$) = {$$$, $$$$}.
Then, the pairwise coverage of two given items to the value
space is defined as follows:

cov(V{F}, Ii, Ij) =
|weq(loser(F, Ii[F], Ij [F]))|

|V{F}|
(5)

As in the case of categorical features, cov(V{F}, Ii, Ij)
takes values in [0, 1].

[Numeric Features]: A numeric feature F takes values
from a continuous pre-defined range. Without loss of gener-
ality, we assume that all numeric features are normalized to
take values in [0, 1]. Higher or lower values may be prefer-
able, depending on the nature of the feature. As in the case
of ordinal features, we define loser(F, v1, v2) to return the
least preferable of two given values for a feature F . Then,
given two items Ii, Ij , the pairwise coverage of the value
space V{F} is defined as:

cov(V{F}, Ii, Ij) = loser(F, Ii, Ij) (6)

Conceptually, the value space that is commonly covered by
the two items is bounded by the one with the least preferable
value. Consider the following example.

Example: Consider the subset of features F ′ shown in Ta-
ble 1. The respective representations for two items Ii, Ij are
{$$$,Boston, {Street, Valet}, 0.8} and {$$,Boston,
{Street, Priv. Lot}, 0.6}. Then, following Eq. 1, the pairwise
coverage of the two items of is computed as follows:

cov(VF′ , Ii, Ij) =
2

4
× 1×

1

3
× 0.6 = 0.1

Table 1: Feature-subsets and their respective value-spaces.

Feature Type Value-Set V{F}

price range ordinal {$, $$, $$$, $$$$}
location categorical (single) {Boston, New York}
parking categorical (multi) {Street, Priv. Lot, Valet}
food quality numeric [0, 1]

3. FINDING THE TOP-K COMPETITORS
In the previous section we presented a formal definition

of the competitiveness between any two items. Given this
definition, we study the natural problem of finding the top-
k competitors of a given item. Formally, the problem is
defined as follows:

Problem 2. We are given a set of items I, defined within
the feature space F of a domain. Then, given a single item
I ∈ I, we want to identify the k items from I \ {I}, that
maximize the pairwise competitiveness with I:

I
∗ = argmax

I′∈I\{I}

CF (I, I ′) (7)

A naive algorithm for this problem would iterate over all
items in I ′ ∈ I\{I}. For each such item I ′, it would compute
w(F ′) × cov(VF′ , I, I ′) for every subset F ′ ∈ Q, where Q
is the collection subsets with a non-zero weight. It would
then be trivial to obtain the top-k competitors for the given
item. However, considering that I can contain thousands
of items, the computational cost can be overwhelming. We
demonstrate this in our experiments, where we compare our
own CMiner technique with the naive approach.

3.1 The CMiner Algorithm
Motivated by the inefficiency of the naive approach, we

present CMiner, a new algorithm for Problem 2. Our ap-
proach combines scalability with the ability to handle the
online arrival of new items. The latter is crucial in many
mainstream domains. As an example, consider the case
when items are vacation packages. In such a domain, an
arbitrary number of new packages can be introduced at any
point in time. Hence, we would like to preprocess the data
in a way that allows us to compute the competitors of a new
package without having to repeat the entire computation
effort.

First, we define the concept of item dominance, which will
aid us in our further analysis:

Definition 3. [Item Dominance]: Given two items Ii, Ij
from a set I defined within a feature-space F, we say that
an item Ii dominates an item Ij if both of the following
conditions are true:

1. Ij [F] ⊆ Ii[F], for every multi-value categorical feature
F ∈ F

2. Ii[F] ≥ Ij [F], for every ordinal, numerical, or single-
categorical feature F ∈ F.

Conceptually, an item dominates another if it has better
values for all features of the considered space F . Clearly, if
Ii dominates Ij , then it is also more competitive with respect
to any other item from I (since it covers at least as much
coverage to any possible sub-space as Ij). This observation
motivates us to utilize the skyline of the entire set of items
I. The skyline is a well-studied concept that represents the
subset of points in a set that are not dominated by any other
point in the set [4]. We refer to the skyline of a set of items I
as Sky(I). The concept of the skyline leads to the following
lemma:

Lemma 1. Given the skyline Sky(I) of a set of items I and
an item Ii ∈ I, let Y contain the k items with the highest
CF (·, Ii) values from Sky(I). Then, an item Ij ∈ I can only
be in the top-k competitors of Ii, if Ij ∈ Y or Ij is dominated
by one of the items in Y.

The proof is by contradiction, given the definition of item
dominance and the skyline concept. We omit it for lack of
space.

By applying Lemma 1, we do not need to consider the
entire set of items in order to find the top-k competitors
of a given item I∗. Instead, it is sufficient to recursive-
ly check for the items that are dominated by the current
top-k items from the upper levels. In order to fully utilize
this observation, we construct a structure that greatly re-
duces the number of items that need to be considered for
the computation of the top-k competitors set. We refer to
this structure as the skyline pyramid. This structure is sim-
ilar to the dominant graph, presented by Zou and Chen [29],
except that it does not allow multiple parents for each item.
The pyramid can be constructed by recursively computing
the skyline and removing the skyline points from the current
set, until the entire collection of items has been exhausted.
Standard techniques can be used for computing the skyline
on each iteration [17], as well as for updating the pyramid
in case new items are introduced [12]. Each item from the
ith layer of the skyline is assigned an inlink from the item

from ith level that dominates it. If multiple such domina-
tors exist, we simply choose one randomly. This is simply
done to avoid re-checking the dominated item during the
competitor-finding process, and does not affect the optimal-
ity of the result. A formal proof is trivial and omitted for
lack of space.An example of the skyline pyramid is shown in
Figure 2.

I
9

I
4

I
1 0

I
8

I
2

I
5

I
1

I
6

I
3

I
7

I
4

I
1 0

I
2

I
5

I
1

I
9

I
8

I
6

I
7

I
3

Figure 2: The left side of the figure shows the complete domi-
nance graph for a given set of items. An edge Ii → Ij means that
Ii dominates Ij . The right side of the figure shows the skyline
domination pyramid.

The CMiner Algorithm: Next, we present CMiner, an
optimal algorithm for finding the top-k competitors of any
given item. Our algorithm makes use of the skyline pyramid
described earlier in this section, in order to reduce the num-
ber of items that need to be considered and minimize the
number of required coverage computation. The intuition is
that, since we only care about the top-k competitors, we can
incrementally compute the score of each candidate and stop
when it is guaranteed that the top-k have emerged. The
pseudocode is given in Algorithm 1.

Discussion of CMiner: The input to the algorithm in-
cludes the set of items I, the set of features F , the item of
interest I∗, the number k of top competitors to retrieve, the
collection Q of feature-subsets with non-zero weights, and
the skyline pyramid DI .

In lines 1-4, the algorithm uses masters(I∗) to retrieve the
set of items that dominate I∗. Note that this set can be
easily pre-computed for all the items during the pyramid-
construction phase. These items are guaranteed to have
the maximum possible competitiveness with I∗. If at least
k such items exist, we can just report them and conclude.
Otherwise, we append them to the final result and decrement
our budget of k accordingly. The LB variable maintains the
lowest lower bound from the current top-k set. This is used
as pruning threshold for the candidates. In lines 6-7 we
initialize the upper and lower bounds for each candidate.
In line 8 we initialize the set of candidates X as the union
of the items in the first layer of the pyramid and the items
dominated by those in the TopK. The latter is returned via
calling getSlaves(TopK,DI).

In every iteration of lines 9-15, the algorithm does the fol-
lowing: (i) it feeds the set of candidates X routine, which
prunes items based on the LB threshold, (ii) updates the
TopK set via the merge(·) function, (iii) updates the prun-
ing threshold LB, (iv) expands the set of items by including
the items that they dominate.

Discussion of UpdateTopK(): This routine processes the
items in X and finds at most k with the highest competi-
tiveness scores among X , subject to the condition that this
score is higher than the global pruning threshold LB. The
approach uses two bounds low and up, for every I ∈ X .

Algorithm 1 CMiner

Input: Set of items I, Item of interest I∗ ∈ I, feature space
F , Collection Q of feature-subsets with non-zero weights, skyline
pyramid DI , int k
Output: Set of top-k competitors for I∗ from I \ {I∗}

1: TopK ← masters(I∗)
2: if (k ≤ |TopK|) then

3: return TopK

4: k← k − |TopK|
5: LB ← −1
6: low(I)← 0, ∀I ∈ X .

7: up(I)←
∑

F′∈Q

w(F ′)× (cov(V′

F′ , I
∗
, I

∗)), ∀I ∈ X .

8: X ← getSlaves(TopK,DI) ∪ DI [0]
9: while (|X | != 0) do

10: X ← updateTopK(k,LB,X)
11: if (|X | != 0) then

12: TopK ← merge(TopK,X)
13: if (|TopK| = k) then

14: LB ← TopK[k]
15: X ← getSlaves(X ,DI)
16: return TopK

17: Procedure updateTopK(k, LB, X)
18: localTopK ← ∅
19: for every F ′ ∈ Q, in sorted order do

20: sc← w(F ′)× cov(V′

F′ , I
∗, I∗)

21: localTopK ← ∅
22: for every item I ∈ X do

23: up(I)← up(I)− sc + w(F ′)× cov(V′

F′ , I
∗, I)

24: if (up(I) < LB) then

25: X ← X \ {I}
26: else

27: low(I)← low(I) + w(F ′)× (cov(V′

F′ , I
∗, I))

28: localTopK.add(I, low(I))
29: if (|localTopK| = k) then

30: LB ← localTopK[k]

31: if (|X | ≤ k) then

32: break

33: for every item I ∈ X do

34: for every remaining F ′ ∈ Q do

35: low(I)← low(I) + w(F ′)× cov(V′

F′ , I
∗, I)

36: localTopK.add(I, low(I))

37: return localTopK

low(I) maintains the competitiveness score of item I , as
new feature subsets are considered. up(I) is an optimistic
upper bound on I ’s competitiveness score. Therefore, up

begins with the maximum possible competitiveness score,
CF (I∗, I∗).

For every feature subset, we examine all items in X and
update their up value. If at any point up(I) < LB (line 24),
item I can be safely removed from the X . If, at any point,
|X | becomes less or equal to k, the loop over the subsets
comes to a halt. In lines 33-36 we update the lower bounds
of the remaining items in X . We do this outside the loop,
in order to avoid unnecessary bound checking and improve
performance. Observe that the routine processes subsets in
sorted order. In Section 4, we elaborate on the impact of
the ordering on the performance of CMiner.

Complexity: The complexity of CMiner depends on the
number of points in each layer of DI . According to Bent-
ley et al. [2], for n uniformly-distributed d-dimensional data

points (items), the expected size of the skyline is Θ(ln
d−1n

(d−1)!
).

Since we need to examine at most k skyline layers to find the

top-k result, this value is upper-bounded by Θ(k ∗ lnd−1n

(d−1)!
).

This bound naively assumes that each layer should be con-
sidered entirely. In practice, however, we only need to check

a small fraction of items that are dominated by the items
considered in the previous layer. For instance, for a uniform
distribution with consecutive skyline layers of similar sizes,
the number of points to be considered will be in the order of
k, since links will be evenly distributed among the skyline
points. As we only expand the top-k items in each step, at
most k new items will be introduced. Therefore, for small
values of k, the complexity of CMiner is O (|I| * |Q| * k2),
where Q is the set of feature subsets with non-zero weights.

4. WEIGHT ESTIMATION
Our analysis has assumed that the weight w(F ′) of each

subset of features F ′ is provided as input. In this section,
we discuss methods for computing these weights.

The motivation of assigning a different weight to each sub-
set stems from the observation that not all features are e-
qually important to users. Based on this, a straightforward
approach is to consider the weight of each individual feature
separately, and then aggregate to the subset level. This ag-
gregation could be achieved by selecting the sum, average,
median, maximum or minimum over all the individual fea-
tures in a set. This approach assumes independence among
the features of an item. This assumption, however, is not
always valid. For example, it may be the case that people
who are interested in the screen resolution of a laptop com-
puter are also more likely to be interested in the included
graphics card. This motivates an approach that considers
the popularity of feature-subsets instead of individual fea-
tures. We identify two sources from which we can learn the
popularity of a subset: query logs and customer reviews.

Query logs: The first source is the query logs of the search
engine on the website where the items are hosted. Re-
gardless of the interface through which the user encodes his
preferences in a query, the set of selected feature is always
recorded in a dedicated log. Assuming the existence of a
large enough user-base, we can simply estimate the popu-
larity of a feature-subset based on the number of times that
it was queried upon by the users.

Customer reviews: In cases when query logs are unavail-
able or inadequate, the weights of the subsets can be esti-
mated by considering the reviews that are available for the
items in the domain. As an example of such a dataset, con-
sider the union of the review sets that are available for all
the digital cameras offered on amazon.com. Each of these
reviews comments on a particular subset of attributes from
the digital-camera domain. Hence, the review corpus serves
as an intuitive way to access user preferences. For example, a
user who is greatly interested in the wheelchair-accessibility
of a restaurant is more likely to discuss this feature in his re-
view. We implement and employ review mining as a means
for estimating the weights of feature-subsets in our exper-
iments. In practice, one can choose to ignore subsets that
appear less frequently than a set threshold. In our own ex-
periments, we consider all subsets that appear at least once.

4.1 Subset Ordering
Given an item of interest I∗, CMiner iterates over the giv-

en set of subsets and computes the coverage provided by I∗

and each candidate item to the value-space that corresponds
to each subset. Given our definition of competitiveness, we
next consider IC, an ordering scheme that processes subsets
in descending order by w(F ′)× cov(V ′

F′ , I
∗, I∗), where I∗ is

the item of interest. As stated in the following lemma, IC
achieves the optimal convergence rate (i.e. there exists no
ordering that leads to a faster convergence).

Lemma 2. [IC Convergence Rate]: Given two items Ii, Ij ,
the ordering imposed by the IC scheme results in the fastest
possible convergence to the target-value CF (Ii, Ij) (i.e. the
true competitiveness between the two items)

Proof. Assume that we want to compute the competi-
tiveness between the target item I∗ and a candidate I ′. Let
li and ui be the lower and upper competitiveness bounds,
after checking F ′

i , the i-th feature subset imposed by the
IC scheme. For ease of notation, we use CF′

i
(I1, I2) =

w(F ′
i) × cov(VF′

i
, I1, I2), for any two items. Every time a

new subset is considered, li and ui are updated, until final-
ly all the subsets have been evaluated and both variables
converge to the actual competitiveness score CF (I∗, I ′). We
now define Ti = ui − li. Since both li and ui ultimately
converge to CF (I∗, I ′), Ti converges to 0. Also, Ti ≥ 0,∀i.
The convergence rate of Ti is:

Ti

Ti−1
= 1−

CF′
i
(I∗, I∗)

ui−1 − li−1
(8)

Also, we know that: ui = CF (I∗, I∗) −
∑

i
j=1

CF′
j
(I∗, I∗) +

∑
i
j=1

CF′
j
(I∗, I∗) and li =

∑
i
j=1

CF′
j
(I∗, I′)

By immediate replacement in Eq. 8, the convergence rate
becomes:

Ti

Ti−1
= 1−

CF′
i
(I∗, I∗)

CF (I∗, I∗)−
i−1
∑

j=1

CF′
j
(I∗, I∗)

(9)

As it can be seen by Eq. 9, the convergence rate depends
only on the score of the target item I∗. The IC ordering
scheme processes subsets in decreasing order of CF′

j
(I∗, I∗),

which is the maximum possible coverage that any item can
jointly achieve with I∗. Thus, the numerator is equal to
the ith maximum possible value among all feature-subsets.
Similarly, the difference in the denominator is minimized, s-
ince the subtracted sum maintains the highest possible value
(and CF (I∗, I∗) is constant).

5. EXPERIMENTAL EVALUATION
For our evaluation, we compiled the following datasets:

Digital Cameras from Amazon.com: The features of this do-
main include the objective attributes of each camera (e.g.
price, number of megapixels), as well as numeric attributes
representing the opinions of the users on the item’s differ-
ent characteristics (e.g. photo quality, video quality). These
were extracted via the method by Ding et al. [9], which as-
signs a numeric opinion-value to each feature of an item,
given the corpus of reviews. All scores were normalized to
be in [0, 1], with higher scores being preferable. The same
method was also used for the datasets from Booking.com

and TripAdvisor.com.

Hotels from Booking.com: The feature-set for this domain
consists of objective features (e.g. price, location) and the
opinion values extracted from the relevant reviews on differ-
ent attributes (e.g. cleanliness, service quality).

Restaurants in New York from TripAdvisor.com: The

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3 10 50 150 300

S
e
c
o

n
d

s

Number of Competitors (k)

Naive CMiner GMiner

(a) Cameras

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

3 10 50 150 300

S
e
c
o

n
d

s

Number of Competitors (k)

Naive CMiner GMiner

(b) Hotels

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

3 10 50 150 300

S
e
c
o

n
d

s

Number of Competitors (k)

Naive CMiner GMiner

(c) Restaurants

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 10 50 150 300

S
e
c
o

n
d

s

Number of Competitors (k)

Naive CMiner GMiner

(d) Recipes

Figure 3: Average time (per item) to compute top-k competitors for the various datasets

feature-set for this domain consists of objective features (e.g.
type of food served) and the opinion values extracted from
the relevant reviews on different attributes (e.g. food quali-
ty,service quality).

Recipes from Sparkrecipes.com: The feature-set for each
recipe consists of the different nutritional values (e.g. grams
of protein and carbohydrates), as listed on the website.

The datasets were selected from different domains to por-
tray the cross-domain applicability of our approach. Table 5
summarizes some basic statistics for each dataset.

Table 2: Dataset Statistics

Skyline

Dataset #Items #Feats. #Subsets Layers

Cameras 579 21 14779 5
Hotels 1283 8 127 5

Restaurants 4622 8 64 12
Recipes 100000 22 133 22

The second, third, fourth and fifth columns include the
number of items, the number of features, the number of
distinct feature-subsets, and the number of layers in the re-
spective (complete) skyline pyramid, respectively. The fea-
ture subsets were extracted from the set of reviews that is
available for each dataset; the frequency of each subset of
features is equal to the number of times they were included
together in a review. For all four datasets, nearly 99% of the
items can be found within the first 4 layers of the pyramid,
with the majority of those falling within the first 2 layer-
s. This is due to the large dimensionality of the datasets,
which makes domination unlikely. As we show in our evalu-
ation, the skyline pyramid helps CMiner clearly outperform
the baselines with respect to the computational cost. This is
despite the high concentration of items within the first lay-
ers, since CMiner can effectively traverse the pyramid and
consider only a small fraction of the included items.

Baselines: We compare our CMiner algorithm with two
baselines. The first is the Naive approach described in Sec-
tion 3. The second is a clustering-based approach that works
as follows. First, it iterates over the considered feature-
subsets. For each subset F ′, it identifies the set of items that
have the same value assignment for the features in F ′, and
places them in the same group. Thus, F ′ is mapped to dif-
ferent groups of items with the save value-assignments over
its features. The algorithm then iterates over the reported
groups. For each group, it updates the pairwise coverage
provided to V ′

F by the target item I∗ and an arbitrary item
from the group (it can be any item, since they all have the

same values with respect to F ′). The computed coverage is
then used to update the competitiveness of all the items in
the group. The process continues until the optimal compet-
itiveness scores for all items have been computed. Assuming
there are at most M groups per feature-subset, the algorith-
m’s complexity is O(|I| * M * |Q|). Obviously, when each
group is a singleton, the algorithm degrades to the Naive
case. We refer to this technique as GMiner.

Unless otherwise stated, we use the IC ordering scheme
in our experiments, as described in Section 4.1. All exper-
iments were run on a desktop with a Quad-Core 3.5GHz
Processor and 2GB RAM.

5.1 Computational Time
In this experiment we compare CMiner with the two base-

lines (Naive and GMiner), in terms of computational time.
First, we use each of the three algorithms to compute the
set of top-k competitors for each item in the four datasets.
The process is repeated for k ∈ {3, 10, 50, 150, 300}. The re-
sults for the four datasets are shown in Figures. 3(a-d). The
x-axis holds the different values of k. The y-axis holds the
respective computational times (in seconds). We report the
average time for each item.

The figures motivate some interesting observations. First,
the Naive algorithm consistently reports the same compu-
tational time regardless of k, since it naively computes the
competitiveness of every single item in the corpus with re-
spect to the target item. Thus, any trivial variations in the
required time are due to the process of maintaining the top-
k set. In general, Naive is outperformed by the two other
algorithms, and is only competitive for very large values of
k for the Hotels Dataset.

For the Cameras dataset, CMiner and GMiner exhibit al-
most identical running times. This is due to the very large
number of distinct feature-subsets for this dataset, which fa-
vors GMiner. In particular, this dataset has 14779 different
subsets and GMiner identifies, on average, 443.63 groups per
subset. This means that the algorithm saves roughly a total
of (579 − 443) × 14779 = 2009944 coverage computation-
s per item, allowing it to be competitive to the otherwise
superior CMiner. In fact, for the other datasets, CMiner
displays a clear advantage. This advantage is maximized
for the Recipes dataset, which is the most populous of the
four, in terms of included items. The experiment on this
dataset also illustrates the scalability of the approach with
respect to k. For the Hotels and Restaurants datasets,
even though the computational time of CMiner appears to
rise as k increases for the other three datasets, it never goes
above 0.035 seconds.

5.2 Feature Subsets
In Section 4.1, we described the IC ordering scheme, which

determines the order in which subsets are processed by CMin-
er. Two alternatives to this scheme are processing the sub-
sets in descending (W-DSC) and ascending (W-ASC) or-
der by weight. Next, we evaluate the impact of the three
schemes on the efficiency of CMiner. We only show the re-
sults for the Recipes dataset, which was by far the largest in
terms of both size and dimensionality. The findings for the
other corpora were identical and are omitted for lack of s-
pace. Figure 4 shows the total number of subset-processings

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

3 10 50 150 300

#
S

u
b

s
e
t

P
ro

c
e
s
s
in

g
s

Number of Competitors (k)

W-ASC W-DSC IC

Figure 4: Number of subset processings that required under
different ordering schemes.

(i.e. the total number of times the for-loop in line 19 of Algo-
rithm 1 is executed) required by each ordering scheme until
CMiner converges to the top-k competitors, for different val-
ues of k. We report the average over all items in the corpus.
The results demonstrate that IC clearly outperforms the t-
wo baselines, consistently requiring far less subsets for all
values of k. We also obeserve that no more than 110 sub-
sets had to be processed, for all considered values of k. This
allows CMiner to quickly converge to the optimal top-k set.

5.3 A User Study
In order to validate our competitiveness paradigm, we con-

duct a user study as follows. First, we select 10 random item-
s from the Cameras corpus. We refer to these 10 items as the
seed. For each item I∗ in the seed, we compute its compet-
itiveness with every other item in the corpus, according to
our definition. In addition to our own CMiner approach, we
also rank all the items in the corpus based on their distance
to I∗ in the feature-space. The L1 distance was used for
numeric and ordinal features, and the Jaccard distance was
used for categorical attributes. We refer to this as the NN ap-
proach (i.e. Nearest Neighbor). We then chose the two items
with the highest score, the two items with the lowest score,
and two items from the middle of the ranked list. This was
repeated for both approaches, for a total of 12 candidates
per item in the seed (6 per approach). We then created a
user study on the online survey-site kwiksurveys.com. The
survey was taken by 20 different human annotators. Each
of the 10 seed-items was paired with each of its 12 corre-
sponding candidates, for a total of 120 different pairs. The
pairs were shown in a randomized order to the annotators,
who were also given access to a table including the values

 0

 0.2

 0.4

 0.6

 0.8

 1

TOP MIDDLE BOTTOMP
e
rc

e
n

ta
g

e
 c

o
v
e
re

d
 b

y
 r

e
s
p

o
n

s
e

Groups of Candidates

NNCMiner CMiner NN CMiner NN

YES
NO

NOT SURE

Figure 5: Results of the user study comparing our competitive-

ness paradigm with the Nearest-Neighbor approach.

of each item for every feature. For each pair, the annotator
was asked whether he would consider buying the candidate
instead of the seed item. The possible answers were “YES”,
“NO” and “NOT SURE”. The results are shown in Figure 5.

The y-axis holds the percentage covered by each approach.
The figure shows 3 pairs of bars. The left bar of each pair
corresponds to our CMiner approach, while the right bar to
the NN approach. The first two bars from the left represen-
t the responses of the users to the top-ranked candidates
for each approach. The two bars in the middle represent the
responses to the candidates ranked in the middle, and, final-
ly, the two bars on the right represent the responses to the
bottom-ranked candidates. Each bar captures the fraction of
each of the three possible responses. The lower, middle, and
upper part of the bar represent the “YES”, “NO” and “NOT
SURE” responses, respectively. For example, the first bar
on the left, reveals that about 90% of the annotators would
consider our top-ranked candidates as a replacement for the
seed item. The remaining 10% was evenly divided between
the “NO” and “NOT SURE” responses.

The figure motivates some interesting observations. First,
we observe that the vast majority of the top-ranked items
by our method were identified by the annotators as possible
replacements for the seed item. These are thus verified as
strong competitors that could deprive the seed item from
potential customers. On the other hand, the top-ranked
candidates of the NN approach were often rejected by the
users, who did not consider these items to be competitive.

The middle-ranked candidates of our approach attracted
mixed responses from the annotators, indicating that it was
not straightforward to determine whether the item is indeed
competitive or not. An interesting observation is that the
middle-ranked candidates of the NN approach were more
popular than its top-ranked ones. The interpretation is that
this approach fails to emulate the way the users perceive the
competitiveness between two items.

Finally, the bottom-ranked candidates of our approach
were consistently rejected by the annotators, verifying their
lack of competitiveness. The bottom-ranked items by the
NN approach were also frequently rejected, indicating that it
is easier to identify items that are not competitive to the
target. In conclusion, the survey demonstrated the ability
of our paradigm to capture the competitiveness between two
items. Further, our approach consistently outperformed an
intuitive baseline, indicating that the task is non-trivial.

6. RELATED WORK
While our work is the first to consider domain-invariant

competitor mining, it has ties to existing relevant literature.

Competitor Mining: Previous work [14, 13, 1, 26] focus-
es on mining competitors based on comparative expressions
found in web results and other textual corpora. The intu-
ition is that the occurrence of expressions like “Item A is
better than Item B” “or item A Vs. Item B” is indicative
of the competitiveness relationship between the two item-
s. However, as we have already discussed in the introduc-
tion, such comparative evidence are typically scarce, or even
non-existent in many mainstream domains. As a result, the
applicability of such approaches is greatly limited.

Finding Competitive Products: Recent work [22, 23,
28] explored competitiveness in the context of product de-
sign. The first step in these approaches is the definition of
a dominance function that represents the value of a produc-
t. This can measure domination of other items or potential
customers. The goal is then to use this function to create
non-dominated items, or items with the maximum possible
dominance value. A similar line of work [25, 24] represents
items as points in a multidimensional space and looks for
subspaces where the appeal of the item is maximized. While
relevant, the above projects have a completely different fo-
cus from our own, and hence the proposed approaches are
not applicable in our setting (and vice versa).

Skyline computation: Our work leverages concepts and
techniques from the extensive literature on skyline computa-
tion [4, 12, 17]. These include the dominance concept among
items, as well as the construction of the skyline pyramid used
by our CMiner algorithm. Our work also has ties to the re-
cent publications in reverse skyline queries [20, 21]. Even
though the focus of our work is different, we intend to s-
tudy the advances in this field and evaluate their potential
to improve the efficiency of our framework in future work.

7. CONCLUSION
In this work, we presented a formal definition of the com-

petitiveness between two items. Our formalization is appli-
cable across domains, overcoming the shortcomings of pre-
vious approaches. We consider a number of factors that
have been overlooked by previous approaches, such as the
position of the items in the multi-dimensional feature space,
and the preferences and opinions of the users. A user study
was conducted to verify the validity of our notion of com-
petitiveness. Based on our competitiveness paradigm, we
addressed the problem of finding the top-k competitors of a
given item. Our framework is designed to be efficient and
scalable, in order to be applicable to large populations of
items. Our methodology was evaluated via an experimental
evaluation on real datasets from different domains.

Acknowledgments
This work was supported by the MODAP and DISFER
projects.

8. REFERENCES
[1] S. Bao, R. Li, Y. Yu, and Y. Cao. Competitor mining with

the web. IEEE Trans. Knowl. Data Eng., 2008.
[2] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D.

Thompson. On the average number of maxima in a set of
vectors and applications. J. ACM, 1978.

[3] M. Bergen and M. A. Peteraf. Competitor identification
and competitor analysis: a broad-based managerial
approach. Managerial and Decision Economics, 2002.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[5] M.-J. Chen. Competitor analysis and interfirm rivalry:
Toward a theoretical integration. Academy of Management
Review, 1996.

[6] M.-J. Chen and I. C. MacMillan. Nonresponse and delayed
response to competitive moves: The roles of competitor
dependence and action irreversibility. 1992.

[7] B. H. Clark and D. B. Montgomery. Managerial
Identification of Competitors. Journal of Marketing, 1999.

[8] R. Deshpandé and H. Gatingon. Competitive analysis.
Marketing Letters, 1994.

[9] X. Ding, B. Liu, and P. S. Yu. A holistic lexicon-based
approach to opinion mining. WSDM ’08.

[10] W. T. Few. Managerial competitor identification:
Integrating the categorization, economic and organizational
identity perspectives. Doctoral Dissertaion, 2007.

[11] H. Gatignon, E. Anderson, and K. Helsen. Competitive
reactions to market entry: Explaining interfirm differences.
Journal of Marketing Research, 1989.

[12] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: an online algorithm for skyline queries. VLDB ’02,
2002.

[13] R. Li, S. Bao, J. Wang, Y. Liu, and Y. Yu. Web scale
competitor discovery using mutual information. In ADMA,
2006.

[14] R. Li, S. Bao, J. Wang, Y. Yu, and Y. Cao. Cominer: An
effective algorithm for mining competitors from the web. In
ICDM, 2006.

[15] Z. Ma, G. Pant, and O. R. L. Sheng. Mining competitor
relationships from online news: A network-based approach.
Electronic Commerce Research and Applications, 2011.

[16] G. Pant and O. R. L. Sheng. Avoiding the blind spots:
Competitor identification using web text and linkage
structure. In ICIS, 2009.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. SIGMOD ’03.

[18] J. F. Porac and H. Thomas. Taxonomic mental models in
competitor definition. The Academy of Management
Review, 2008.

[19] M. E. Porter. Competitive Strategy: Techniques for
Analyzing Industries and Competitors. Free Press, 1980.

[20] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørv̊ag.
Reverse top-k queries. In ICDE, 2010.

[21] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and Y. Kotidis.
Identifying the most influential data objects with reverse
top-k queries. PVLDB, 2010.

[22] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and
Y. Peng. Creating competitive products.

[23] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k
profitable products. In ICDE, 2011.

[24] T. Wu, Y. Sun, C. Li, and J. Han. Region-based online
promotion analysis. In EDBT, 2010.

[25] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in
multi-dimensional space. PVLDB, 2009.

[26] K. Xu, S. S. Liao, J. Li, and Y. Song. Mining comparative
opinions from customer reviews for competitive intelligence.
Decis. Support Syst., 2011.

[27] D. Zelenko and O. Semin. Automatic competitor
identification from public information sources.
International Journal of Computational Intelligence and
Applications, 2002.

[28] Z. Zhang, L. V. S. Lakshmanan, and A. K. H. Tung. On
domination game analysis for microeconomic data mining.
ACM Trans. Knowl. Discov. Data, 2009.

[29] L. Zou and L. Chen. Pareto-based dominant graph: An
efficient indexing structure to answer top-k queries. IEEE
Trans. Knowl. Data Eng., 23(5):727–741, 2011.

