Predicting Download Directories for Web Resources

George Valkanas
Dept. of Informatics and Telecommunications
University of Athens
Athens, Greece

gvalk@di.uoa.gr

ABSTRACT

Browsing the web is one of the most common activities that users
engage in nowadays, and downloading web resources of interest,
such as images, documents, music, etc., is part of this process.
However, users would rather temporarily save that resource to a
default path that they have easy access to (e.g. their “Desktop")
than select the actual directory where they would eventually place
it. This clearly implies that existing user interfaces are not as ef-
fective for this particular task as the users would like them to be.
Instead of proposing a different User Interface, in this paper, we
try to address the problem at its core, and propose a methodology
to suggest the most likely directory where the file would (even-
tually) be saved by the user. By doing so, future interfaces can
also benefit from our technique. We provide a formal definition
of the problem and propose a classification framework to tackle it.
We present our overall solution to this problem, namely Directory
Download PrediCtor, or DiDoCtor for short. We give experimen-
tal evidence of its effectiveness, by implementing our approach as
part of a widely used browser and evaluate it with real user activ-
ity. We also discuss lessons learned from this process, regarding
the efficiency perspective.

Keywords

Web Browsing; Directory Prediction; Ul assistance

Categories and Subject Descriptors

H.5.3. [Information Interfaces and Presentation (e.g. HCI)]:
Group and Organization Interfaces

General Terms

Human Factors; Algorithms; Management

1. INTRODUCTION

Numerous surveys and statistic results reveal that computers are
used in almost all aspects of everyday life [1, 32, 38] and that a lot
of this time is spent on internet activities. Searching for information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WIMS’ 14, June 2-4, 2014 Thessaloniki, Greece.

Copyright ©2014 ACM 978-1-4503-2538-7/14/06... $15.00.

Dimitrios Gunopulos
Dept. of Informatics and Telecommunications
University of Athens
Athens, Greece

dg@di.uoa.gr

and using email still seem to be the most prominent aspects of com-
puter usage on the web, although social media interaction is con-
stantly taking rise. With the wealth of information that is currently
available, provided under a wide range of formats and technologies,
web browsers have evolved, out of a necessity to stay competitive
and maintain or increase their market share. Browsers have, thus,
changed from simple, passive html renderers, to elaborate software
applications with advanced functionalities such as caching, private
browsing, and proactive behavior, such as link prefetching [22]. It
is clear that browsers are one of the most daily used programs in
a computer and are basically a primary component in interacting
with web related content.

Similar surveys [1, 2, 25] have also shown that a usual activity
of internet users is to download content from the web. This in-
cludes downloading software, images, documents, music from on-
line stores, etc. Additionally, email still remains the most popular
activity, and email-related surveys [3] show that a high percentage
of emails contain attachments. Users save these resources to di-
rectories on their computers, in a way that keeps them contextually
organized. Although this is a casual web browsing activity, it has
been mostly overlooked and few steps have been taken so far to
facilitate it. The standard practice that most, if not all, browsers
follow when a user downloads a file is to request from the user
to specify the directory' where it should be placed, displaying the
well-known File Chooser user interface (UI). In the best case sce-
nario, the File Chooser Ul will point to the path that was last used
for saving another resource, whereas another usual approach is to
select one of a predefined set of directories, based on the type of
the downloaded file (e.g., image, document, music, video, etc.).
Alternative Ul-based approaches have also been implemented, all
as browser extensions [4, 5, 6], which use cascading menus, as a
replacement to the File Chooser. The thousands of downloads of
these plugins vividly demonstrate the need for better ways to per-
form the process of saving resources.

However, all of these approaches are rather impractical. More
specifically, the last used location may be completely unrelated to
the current file, because e.g., there is no temporal or contextual co-
herency between them. Similarly, using a fixed set of predefined
directories, means that we disregard entirely the characteristics of
the file that is being downloaded. What is more, users typically
construct several folders, many of which are outside the predefined
ones, essentially negating any advantage that this approach may
have had. Finally, the latter case only offers an alternative UI, but
does not tackle the problem of locating a good candidate directory
at its core. Therefore, it suffers from the same inefficiencies as the

'A directory is the naming equivalent of a folder for *-nix systems.
For our purposes, there are no differences between the two and we
use the terms interchangeably.

previous two. Moreover, it results in Ul clutter, due to several cas-
cading menus appearing all at the same time, which also obstruct a
large portion of the user screen.

Whatever approach is being used, including that of cascading
menus, the user is required to navigate to the right directory ev-
ery time, where they wish to save the file. Despite taking only a
couple of seconds, the selection of the proper download directory
may easily throw the users out of context of their current web task.
To avoid this, users tend to download their files to an easily ac-
cessible directory, e.g., “Desktop” or “Downloads”, and move it to
the desired one afterwards. Evidently, this is a tedious task for the
user, one they would like to avoid overall. We can thus safely ar-
gue that response and interaction times are crucial factors for user
satisfaction, much like other Ul-related processes [14, 16, 36]. Au-
tomatically identifying the right directory to download a file would
then greatly improve the user experience.

In this paper, we tackle the problem mentioned above, namely
how to efficiently and effectively identify the directory where a user
would save a file they wish to download. By file we mean any type
of resource which can be locally saved on the user’s machine. In
particular, in this work, we make the following contributions:

e We provide a concrete problem formulation, viewing it as an
optimization one.

e We cast the original problem to a classification framework,
to solve it efficiently, resulting in our DiDoCtor approach.
We introduce the appropriate concept mappings and identify
applicable techniques, given the particularities of the setting
(time constraints and dynamic setting).

e We present an extensive evaluation on the efficiency and ef-
fectiveness of DiDoCtor, using widely acknowledged mea-
sures. Our experiments are based on real-world deployments
of our implementation, with actual user involvement.

Where appropriate, we also briefly discuss our experiences and
lessons learned from implementing our approach as a plug-in for a
well-known, extensible browser.

The rest of the paper is organized as follows. Section 2 discusses
related work on the subject and similar topics. Section 3 introduces
our problem formulation, followed by Section 4 which provides
both the general approach and the techniques in particular that we
implemented. Section 5 presents our detailed experimental evalua-
tion, followed by Section 6 which concludes the paper.

2. RELATED WORK

Automatic categorization of documents has always been a topic
of active research, in various settings and domains. Approaches re-
lated with hierarchical structures also exist [15, 20], however, they
do not pose the same constraints that we do, i.e., real-time response,
dynamic environment that requires constant updating of classes and
classifiers, and minimal resource consumption, to name a few.

Applications on email organization such as [19, 34] are the most
relevant. The work in [19] classifies emails into activities, using
conversational and reply-back features, but does not consider hi-
erarchies. MailCat [34] aids its users to organize their email in
archives based on their textual content. Though the ultimate goals,
i.e., document organization, largely overlap, the domains of appli-
cation make the actual problem different. For instance, emails are
text-based making classic TF-IDF weighting schemes applicable,
and involved people (e.g., sender and recipients) are high-quality
features. On the contrary, we operate in a heterogeneous, web-
based environment. Resources such as images and videos are by

definition non text-based, which makes text-driven approaches un-
suitable. Moreover, classifying emails can be — and are — performed
in the background because the user is unaware of when an email is
received. However, suggesting a download directory is triggered by
actions performed by the user, therefore the classification process
really needs to run in real-time.

Suggesting folders to locate files has also been the purpose of
the FolderPredictor system [9]. The target goal is to minimize the
number of clicks to the directory that the user will eventually select,
where the file of interest is located. The advantage of the Folder-
Predictor approach is that it is not restricted to a particular appli-
cation. However, in doing so, the system can not use high quality
task-specific features, as we do. For the same reason, FolderPredic-
tor operates under the fundamental assumption that the users will
break down their actions into discrete tasks, so that the system can
learn the properties related with this task. Therefore, the first time
a directory is used, the user must associate it with a task, to train
the system. Such a process is known to be impractical [35], and
no user would be willing to undergo such a process, when in fact
they try to avoid a procedure (selecting a directory) that requires
even less effort. As this requires additional involvement from the
user’s part, they would simply revert to the downloading files to the
default location. Moreover, today’s web browsers promote mul-
titasking, by allowing multiple tabs to be open with content from
various sources, which contradicts the single-task assumption of
FolderPredictor.

Put in a broader context, our goal is to organize web resources in
hierarchical structures in a principled manner. Therefore, the work
presented in [37] can be seen as relevant, where entire websites
are organized in large online directories, like the Open Directory
Project®. Such services organize web pages by leveraging Subject
Hierarchies, usually a taxonomy or an ontology. These approaches
are not limited by real-time constraints, whereas our technique is
part of a User Interface, triggered by user actions, and response
time is very crucial. Should this process take long enough, the user
will resort to the predefined folder solution, negating any advantage
our method may have had. Secondly, we do not rely on external in-
formation, i.e., Subject Hierarchies, whatsoever. As demonstrated
by our evaluation, users organize their files differently, therefore
a single global hierarchy would be ineffective. Last but not least,
such approaches assume a static set of directories, i.e. all paths
in the hierarchy are known in advance and do not change. On the
contrary, we are dealing with a dynamic environment, where direc-
tories are added and deleted at any time. This trait adds a temporal
dimension, which is not present in web directory orchestration.

Finally, several technical solutions exist [5, 7, 6] with the same
goal in mind. Such approaches rely on user-defined filters, typi-
cally using the file type and domain name of the resource. The file
is then saved to the first directory for which the criteria hold. If
none of the filters apply, a default directory or the last download
directory is used. However, these approaches are restrictive, much
like the ones undertaken by modern browsers: they only faciliate
folders for which a filter has been created. Since users download
files to several directories, the filter construction process easily be-
comes tedious, and the default location becomes the norm. Addi-
tionally, web portals or sites with a broad topical spectrum (e.g.,
social networks, web-based email, etc.) are a bad fit for these al-
ternatives: their content largely varies but it will always be saved
to the same directory. On the contrary, no user setup is required by
our approach, meaning that it can be integrated into any browser.
The only user input we expect is the selection of the final down-

2http: //www.dmoz .org

http://www.dmoz.org

load directory. We also consider a much richer feature space, to
differentiate between items from sites with varied content.

3. PROBLEM FORMULATION

In this section, we present a formal definition of our problem, but
first we introduce some necessary notation. We assume a hierarchi-
cal structure H, e.g. a computer’s file system, like the one shown
in Fig. 1. A user navigates through # by moving up or down one
directory at a time.

A

bin/ dev/ home/ tmp/ usr/ var/

/1N

usrl/ usr2/ usr3/ bin/ lib/ share/

/TN

imgs/ vids/ docs/
Figure 1: An example of a file system’s hierarchical structure

A path P € H is a sequence of directories to which the user may
navigate *. The length of P, len(P), is the distance of the furthest
directory of P from the root node. For instance,

len(“/usr/bin/”) = 2

len(“/home/userl/imgs/Vacation/”) = 4

The Lowest Common Ancestor, LCA, of P1 and P2 is a path P3
of maximal length, from which both P1 and P2 can be derived. In
other words, the LCA is the longest common prefix of the two paths
in the hierarchy. For example,

LCA(%/usr/bin/”, “/usr/lib)”) = “/usr”

LCA(“/usr/bin/”, “/home/userl/imgs/”) = “/” (root)

Using the Lowest Common Ancestor we can define a descendant
relation between two paths.

DEFINITION 1 (DESCENDANT PATH). A path Q is a descen-
dant of path P iff LCA(Q, P) =P

Basically, the definition states that a path Q is a descendant of
path P if and only if Q is derived from P, by appending any num-
ber of directories to it (to P). Since P is a common prefix of the
two paths, it holds that LCA(Q, P) =P

We can then define the cost of navigating from path P1 to path
P2 as follows:

DEFINITION 2 (HIERARCHICAL NAVIGATION COST).
Navigating from path P1 to P2 in the hierarchy H incurs the cost
of moving from P1 to LCA(P1, P2) and then to P2, i.e.

HNC(P1, P2) = cost(P1, LCA(P1, P2)) + cost(LCA(P1, P2),
P2)

3The figure is based on *nix file systems, but the formalism is in-
dependent of a file system

*Until now, we have silently used “directory” as a shortform of the
full associated path.

Several costs could be employed for navigating between paths
in the hierarchy H. For our setting, we assume that moving up or
down a directory both have the same cost c. This assumption is
driven by modeling simplicity and the fact that actual navigation
is commonly performed in the same way (a “double click”), re-
gardless of directionality (epsecially through a File Chooser UI).
Therefore, the total cost of navigating from a path P to a descen-
dant path Q € H is simply the length of their non-common part, or
simply put

cost(P, Q) = len(Q) — len(P)
LEMMA 1. For any two paths P, Q, where Q is a descendant

of P, it holds that cost(P, Q) = len(Q) - len(P) > 0.

Since Q is a descendant path of P, by definition Q has been
derived by appending any number of directories to P. If O =P, i.e.
no directories have been appended, then cost(P, Q) = 0. Otherwise,
at least 1 directory has been appended to P, therefore len(Q) >
len(P) and the inequality surely holds. For the rest of the discussion
we assume this cost function.

We can now define the download directory suggestion problem
as an optimization one, whereby we try to minimize the hierarchical
navigation cost from the directory we suggest to the directory that
the user will eventually select.

PROBLEM 1 (DOWNLOAD DIRECTORY SUGGESTION). Let H
be a hierarchical structure, i.e., a computer’s file system, and let T
€ H be the target path where the user will eventually download
the web resource. We want to suggest a directory (i.e., full path) S
€ H, such that S minimizes the hierarchical navigation cost from

StT,ie.,
arg min HNC(S,T)

Being a Ul related problem, where all actions are triggered by the
user (unlike the email scenario), there is a hard constraint on real
time execution of the suggestion process, so that the user receives
immediate feedback.

Evidently, if we could suggest 7, i.e., S =7, we obtain an opti-
mal solution to Problem 1, because then cost(7, 7) = 0. However,
the problem is that we do not know path 7, until affer the user has
actually selected it.

To confront this shortcoming, we rely on properties, mainly of
the web resource, in order to suggest an appropriate path S. To that
end, we can cast the Download Directory Suggestion problem to a
classification framework, without changing our optimization goal,
in the following way:

e Paths correspond to class values.
e Path 7 € H is the true target class.
e Path S € H is the outcome of the classification process.

e Properties of the web resource are features that we utilize for
the classification process.

Under this framework, we want to find and suggest the class
S that best ressembles T, where the web resource will finally be
saved. We can now rely on prior knowledge and properties of web
resources that the user has already downloaded. Note that the click
minimization goal is a latent one here: all the more similar 7 is
with S, all the fewer clicks will be required to navigate from the
one path to the other.

3.1 C(lassification Framework Issues

Although casting the optimization problem to a classification one
helps addressing it, it also raises some issues we need to tackle.
First of all, it is clearly inefficient to consider every path in # as a
possible class. A vanilla Operating System (OS) installation con-
tains several hundreds, maybe thousands of directories and consid-
ering all of them as classes is a waste of resources: most are related
to the OS itself and default users do not have permission to save
files there. Moreover, as our experimental evidence show, illus-
trated in Figure 2, even highly selective users tend to use a rather
small set of directories to save their work compared to .

60 .

50 .

40 |]

30 1

20 |]

#Download Directories

Nl I l] |
0
1 U2 (UK] U4

0 U U5 U6
User

Figure 2: Number of directories used to download resources by
each user in our experimental dataset

On another note, we feel that scanning the file system does not
only take a considerable amount of time — even if that occurs once
at browser startup —, but it is also quite intrusive. Some browsers
allow for “Private Browsing”, meaning that no information is col-
lected during that period. Private browsing promotes additional
safety, especially when a user deals with sensitive data (e.g. tax
agencies) and obtaining such directories by scanning the file sys-
tem negates the entire idea.

Thirdly, users create and delete directories ad-hoc, to contextu-
ally organize their files. Therefore, the classification process should
be able to handle a dynamic environment, with impromptu class ad-
ditions / deletions. Basically, this characteristic implies that train-
ing the classifier 7) should not be time consuming, so that any class
changes are promptly taken into account and :) it should go un-
noticed by the user, without any UI freezes or performance slow
downs in general.

Finally, each user organizes their files a lot differently than oth-
ers. Therefore, we can not make any assumptions regarding the
structure of the hierarchy #, other than its tree form.

4. THE DIDOCTOR APPROACH

Given the general classification framework that we described in
the previous section, we now discuss how these ideas are materi-
alized in practice. In particular, we have integrated the discussed
concepts in our Directory Download PrediC'tor — DiDoCtor for
short — approach.

4.1 Feature Selection

We start by briefly introducing the features that we have con-
sidered in our implementation of the classification framework, and

proceed to justify them afterwards. Selecting a good set of features
is important because it directly affects the classifier’s accuracy. We
also need to bear in mind that the features must be easy to extract,
both in terms of time- and memory-related resources, so that we do
not degrade the user experience.

e Timestamp when the download has been requested.

e Domain name, path and filename (as distinct features) of
the page containing the web resource to download.

e Domain name, path and filename (as distinct features) of
the referrer page. The referrer page is the one from which
the user landed on the current page.

o Title of the page containing the web resource to download,
extracted from the HTML <title> tag.

¢ Filename of the web resource the user is downloading.

o Extension of the web resource the user is downloading, e.g.,
pdf, jpeg, zip, etc.

e Keywords extracted from near the link of the web resource
we are downloading.

The timestamp is used to capture temporal dynamics of a user’s
downloads. For instance, some downloads might exhibit period-
icity. More importantly, temporal information may identify ses-
sions of user activities. Borrowing from web server terminology,
a session is a period of time (typically 20 minutes) during which
a user interacts with a web server under the same context. There-
fore, it makes sense to consider similar periods during which re-
source downloading is highly contextualized. From the timestamp,
we can also extract temporal information such as day of the week
or month.

The domain name, path and filename of the web page where
the resource can be found may be good descriptors of what the
resource is about. Note that the domain name alone is already
used by browsers, on the basis that any item downloaded from a
specific domain (e.g., http://iuiconf. org) will be saved to the
same directory where other resources were saved from that domain.

The idea behind using information from the referrer page is twofold:

¢) it is known that the web exhibits topical locality [17], meaning
that web pages that are hyperlinked tend to have similar content,
and 77) users rely on search engines to find information on the web,
in which case the query terms become part of the referrer link.
Since the user has already left the referrer page, the referrer link
is the most easily accessible information, because it is part of the
HTML headers exchanged with the server.

Using the title of the web page comes from the importance of
the element itself. Quoting from W3C’s HTML 4 specification [8],
“every HTML document must have a TITLE element in the HEAD
section”, and “authors should use the TITLE element to identify the
contents of a document”. It is then only natural that we use the
content of this element as a feature.

The filename, much like the name of the current page, can pro-
vide useful insights on the item in consideration.

The extension of a file define its content (e.g. “jpg” for images,
“avi” for video, “txt” for simple text, etc.), and contemporary op-
erating systems rely on it even today for this very purpose. As the
extension is a discriminating factor, one easily perceived by human
readers, it could improve classification accuracy all the same.

Finally, we extract keywords related with the resource. The
keyword from the anchor text of the hyperlink that points to the
resource of interest. The anchor text is the text found inside and
surrounding the anchor element (<a>). Its significance is known
since the mid 90s [29], and has improved search queries [21], text
classification [23] and scalable web document clustering [31] to

http://iuiconf.org

name a few. The rationale is that the anchor text is a good descrip-
tor of the resource that the hyperlink points to, so it makes perfect
sense to use it to extract such keywords.

4.2 Feature Distances

The features we use have different semantics. For example, the
extension gives a general view of the content type of the resource,
e.g., “video”, “image”, etc., whereas the title and keywords reveal
some information on the content itself, e.g., “cartoon movie” or
“landscape picture”. Basically, this means that various distances
can be employed, and some may be more appropriate than others
for each feature.

For instance, Jaccard distance on web page keywords has been
a proven technique for near-duplicate web page detection [12]. On
the other hand, the edit-distance on the resource filename or simple
equality checks on the domain name could yield better results. Fi-
nally, we could consider a covariance distance matrix for filetypes.
Therefore, two documents with “doc” extension have distance 0,
whereas a document with “doc” and one with “pdf” extension have
an extension distance higher than 0. However, two documents, one
with a “doc” extension and one with an “mp3” extension seem far
less relevant than the pair (“doc”, “pdf”). Such a matrix could be
hardcoded or could be learned from user data.

In the implementation for our evaluation, for each of the dis-
cussed features, we used the distances shown below. Note that we
are given the information of the current item, and we compare it
against previously stored items, for which this information has also
been extracted and stored locally on the user’s system.

e Timestamp: We used an exponentially declining similarity,
of the form exp~*(*2~*1) The difference t; — ¢; measures
the time elapsed (in seconds) between the current timestamp
t2, i.e., when the resource is being stored, and the timestamp
t1 when another resource was saved. The factor A accounts
for the sessions, and is equal to A = Tloo i.e., the num-
ber of seconds in a 20 minute period (so that both are prop-
erly scaled). Recources which have been more recently saved
will have a higher similarity, especially those within the 20
minute period (sessions). Finally, because this is a similarity,
we use 1 — exp~ M*274) a5 the respective distance.

e Domain name, path and filename of both the current page
and the referrer page. For the domain name we check whether
the two domains are the same, returning O if they are equal,
or 1 otherwise. We split the path and compute their Jaccard
distance. Note that more complex techniques could be em-
ployed for both the domain and path [10] but we do not con-
sider them here. Regarding the filename, we also tokenize
it and compute the Jaccard distance between the current re-
source and the potential match.

o Title: We also use the Jaccard distance of the pages’ titles,
after tokenization and normalization (e.g., lowercasing).

e Filename: Filenames of the downloaded resources are com-
pared with the Jaccard distance, after tokenization and nor-
malization (e.g., lowercasing).

o Extension: For this feature, the distance is computed using
a hardcoded covariance matrix. If the two extensions are the
same, the distance is 0. If they are different, we get the gen-
eral type of each extension. For instance, the type of “jpg”
is “image”, whereas for “html” it is “web-page”. If the two
extensions fall under different categories (e.g., “music” and
“document”), the distance is 1. If they fall under the same
category, we return 0.5. We can also have more fine-grained
information at this stage. For example, extensions “doc” and

“docx” should be closer than “doc” and “pdf”, but both cases
should return a value lower than 1.

o Keywords: The distance between the two sets of keywords
is given by their Jaccard distance.

Finally, the total distance between the two items is given as a
weighted sum of the distances that we mentioned above. We pro-
vide more details regarding the weights in a subsequent section.
Feature distances were computed independently of the other fea-
tures, i.e., filenames and keywords were in separate bag-of-words,
over which we computed the Jaccard.

4.3 Identifying target classes

We have already discussed the impracticality of scanning the
computer’s file system to extract target classes. Instead we main-
tain a set of directory paths where the user has downloaded a web
resource at least once in the past.

Moreover, since a computer’s file system is inherently organized
in a hierarchical structure, we could also view the problem as one
of hierarchical classification [20]. This does not change neither the
features we use, nor the target goal. It provides us, however, with
the possiblity to consider intermediate directory paths as candidate
target classes. This approach is useful when we are not entirely cer-
tain of the exact target class, yet suggesting a higher level directory
could minimize the number of clicks on average.

S. EXPERIMENTAL EVALUATION

We implemented our DiDoCtor approach as a plugin (add-on),
for the Mozilla Firefox browser. The browser decision was based
on its open source nature, its wide adoption, and its extensibility
capabilities, as exemplified by the approximate running average of
450M plugins used during April 2013 3.

The plugin was fully implemented in JavaScript, the default lan-
guage for Firefox add-ons. It came with a weighted 1-NN classi-
fier, with custom weights, and we integrated all features presented
in the previous paragraphs. We discuss the effect of weight se-
lection as well. We requested from a group of approximately 50
people (friends, colleagues, relatives, etc.) that they download the
plugin, install it and continue to use the browser as usual. After
a usage period of 4 months minimum, the users were requested to
anonymously submit their locally stored data through a web form.

U2 s U3 0 U5 mm
100 ‘ ‘ : ‘

90
80
70
60
50
40
30
20
10

0

Times used (%)

1 2 3 4 5 6 7 8 9
Directory class id

Figure 3: Directory usage histogram for 3 of our experiment’s
users

5https ://addons .mozilla.org/en-US/statistics/

https://addons.mozilla.org/en-US/statistics/

A total of 6 users voluntarily submitted their usage data, with
varying access patterns: Figure 2 already demonstrated the differ-
ence in the number of directories used by each user. Figure 3 shows
a path usage histogram for 3 users of our plugin. Although all of
them have used at most 9 distinct paths, the usage pattern is com-
pletely different (the actual paths are also different). User U2 uses
a single directory most of the time, with the rest of the directories
being used only 2 or 3 times. On the other hand, users U3 and U5
exhibit a more even behavior among the directories used. Table 1
summarizes some basic statistics on the download patterns of each
user, including the average path length where resources are saved,
the average number of times each path is used, etc.

Table 1: Basic statistics on directory usage (per user)
User || #Paths || Path Length Times used |
AVG || SDEV || AVG || SDEV
U1 60 6.39 1.16 2.68 3.80

U2 7 4.05 0.37 || 37.85 || 89.06
U3 9 4.57 || 0.66 8.44 10.49
U4 17 5.63 1.58 10.23 || 13.19
Us 9 499 || 0.92 11.66 || 13.14

U6 25 4.93 1.40 4.08 7.80

As a baseline comparison, we use the current standard approach
employed by most web browsers: for every domain name, we main-
tain the directory path that was used last to download a resource.
Whenever a new download is initiated, the user is prompted to the
last directory where a resource was saved from that same domain.
For new domain names, a default directory is used (e.g. “Down-
loads”). Therefore, this approach completely neglects content, ex-
tensions, or other properties of the resource. We refer to it as the
Last-By-Domain approach, or LBD for short. We also note that the
idea is implemented differently in practice: unless the user navi-
gates to the download directory via the File Chooser Ul, e.g., if
they copy-paste the target path, the browser will not log the direc-
tory as the last one for that domain name. Essentially, this means
that the actual accuracy may be lower than what is presented in
the graphs below. For ease of discussion and comparison, we as-
sume that the user always navigates with the File Chooser. As a
final note, LBD was never deployed through our plugin; the results
are obtained by simulating its behavior on the data provided by the
users, knowing how browsers operate. ®

To measure the performance of DiDoCtor, we use a number of
metrics reagarding both efficiency and effectiveness. For the effi-
ciency aspect, we report the elapsed time between when the user
requested to download a web resource until the classification pro-
cess was completed, including the time taken to scrape informa-
tion off the page. Regarding effectiveness, we consider two distinct
metrics:

e Click distance: Given that the initial problem formulation is
based on minimizing HNC, counting the number of directo-
ries that a user must traverse might be more suitable. We also
evaluate the breadcrumbs distance, which is a special case of
HNC, as we followingly discuss.

e C(lassification Accuracy: Since we are using a classifier,
measuring its accuracy, i.e., correctly classified instances,
seems like a straightforward approach for comparison.

®One can validate this by looking through the browser’s code.

5.1 Efficiency

We first discuss the efficiency perspective of our approach. Ta-
ble 2 summarizes the average runtime and standard deviation (per
user) required to gather the necessary information, broken down to
the time taken by page scraping and classification steps separately.

Table 2: Runtime (in ms) for the download directory suggestion
process, implemented as a plugin

User Scrape Classify
AVG SDEV AVG SDEV
Ul 8.54 39.38 13.3 59.45
U2 24.78 || 1963.06 || 56.70 || 5498.13
U3 2.95 7.82 3.07 7.08
U4 3.98 33.49 8.8 70.19
us 4.31 19.27 11.54 16.52
Ué 4.34 17.03 7.78 24.14
Average || 8.15 346.67 || 16.87 || 945.92

With the exception of user U2, who appears to be an outlier, all
values are really small for both page scraping and classification.
Even combined, the time taken by both steps to come up with the
download directory is well below 100 milliseconds, hardly notica-
ble by the user.

Regarding user U2, who experiences exceedingly high timings,
we can identify the following reasons:

e The entire process is executed in JavaScriprt, a dynamic script-
ing language, executed as a browser plugin, not as a core
browser component.

e JavaScript implements associative arrays, i.e. (key, value)
pairs, as consecutive memory bytes without any optimiza-
tion. Therefore, keyword lookup in a dictionary is an O(m)
operation, where m is the size of the dictionary.

e In our implementation we did not consider any particular
class model for in-memory manipulation. This led to a sub-
stantial amount of time being spent on (re-)evaluating regular
expressions, which are needed for parsing, so that we could
compute the distance between two items. We did not use any
memory data structures either, therefore the 1-NN was found
by scanning sequentially through the data every time.

e The measurements refer to elapsed wall clock time, meaning
that any other process running concurrently directly influ-
ences these readings.

All these reasons can easily add up to a considerable overhead,
especially when several terms have been extracted as keywords, for
which the Jaccard distance is used. In respect, we have imple-
mented the same classifier (1-NN) as a standalone application in
Java 1.6, executed on a laptop, with Intel Core Duo @1,86GHz and
2GB RAM. This will give us a better view of how long the classi-
fication process would have taken, if the classifier was an integral
browser component.

Table 3 portrays the runtimes (per user) for the classification pro-
cess, which is the most time consuming of the two phases, when
executed in JavaScript and Java. Clearly, if we had addressed all
of the issues we identified earlier, the entire classification process
would have gone completely unnoticed in all of the cases.

* |5 pome s

” Programming H helios H workspaces Hworkspace—didoct " DiDoCtor " content ‘ E|

Location: ||

s

Figure 4: Example of the Breadcrumbs UI

Table 3: Comparative runtimes (in ms) for the download di-
rectory suggestion process, implemented as a plugin and as a
standalone

User JavaScript Java
AVG SDEV || AVG | SDEV
U1 13.3 59.45 9.91 9.3
U2 56.70 || 5498.13 || 1.09 1.26
U3 3.07 7.08 043 | 0.50
U4 8.8 70.19 0.74 || 0.69
Us 11.54 16.52 0.52 || 0.50
U6 7.78 24.14 0.52 1.06
Average || 16.87 || 945.92 2.2 2.21

For instance, hash-based or binary tree-based [11] implementa-
tions of sets would considerably improve lookups for Jaccard com-
putations. In addition, parsing the dataset once at startup, and main-
taing it as class objects would ensure that regular expressions are
only run once. Finally, such huge time savings would make it possi-
ble to gather more information and improve performance or execute
more sophisticated algorithms without the user noticing.

5.2 Click Distance

Considering that the initial problem formulation is based on min-
imizing the navigation cost to the target directory path, we have
computed the click distance between the suggested and the target
directory, using the HNC measure we discussed in an earlier sec-
tion. We assume that the cost of going up or down a directory in
the hierarchy is one click. The lower the value of HNC, the bet-
ter the result, because the user will visit fewer directories until he
reaches the desired one.

Table 4: Average click distance (per user) from target directory
for DiDoCtor and LBD approaches

User DiDoCtor LBD Gain (%)
AVG || SDEV || AVG || SDEV
U1l 1.97 2.11 2.71 2.25 273
U2 0.16 0.72 0.41 1.09 60.9
U3 0.34 0.96 1.58 1.71 78.4
U4 0.69 1.29 1.32 1.81 47.7
Us 0.38 0.78 1.13 1.62 66.3
Ue6 1.21 1.61 2.06 1.78 41.2
Average || 0.79 1.25 1.54 1.71 48.7

Table 4 summarizes the average HNC distance per user, when
suggesting a download directory with either approach, and the gain
of using DiDoCtor over LBD. Clealry, DiDoCtor outperforms LBD
by far, since in most cases we observe a cutdown by nearly half in
the number of clicks performed. The lowest gain is for user Ul,
who is highly selective in the directories that he uses, and each
directory is used a couple of times. Nevertheless, there is still a

27.3% reduction in the number of directories that he will traverse.
By contrast, user U3 has an astonishing 78% improvement, bring-
ing the average number of traversed directories close to 0.

More importantly, though, the standard deviation in the num-
ber of clicks is the same, if not better (smaller) when using the
DiDoCrtor approach. In other words, our approach consistently re-
quires fewer clicks on average, unlike the LBD approach. Averag-
ing across users, DiDoCtor achieves a 48% gain in the directories
that users will visit before reaching the right one, which makes our
approach more suitable for the problem at hand.

We also computed the click distance in the presence of a Bread-
crumbs Ul. The Breadcrumbs Ul facilitates navigation between di-
rectories, by allowing the user to move to a directory with a single
click, provided that:

e The target directory is an ancestor of the one where the user
is currently at (i.e., the suggested directory), or,

e The target directory is a child directory of the current one,
and the user has already visited it in the past.

An example of the Breadcrumbs Ul is shown in Figure 4, with
the current directory being: ‘“/home/<user>/Programming/helios/
workspaces/workspace-didoct/”. The user has already visited the
subdirectories “DiDoCtor” and “DiDoCtor/content/”. Navigating
to a parent directory, e.g., “/home/<user>/ Programming/helios/”
is a single click away. However, the user has already paid the cost
of navigating to the children directories. In other words, revisit-
ing children directories is worth 1 click, but one can not waive the
initial cost altogether.

Given this setting, the breadcrumbs click distance is a special
case of HNC, where the cost of moving to the common ancestor of
the suggested and the target directory is 1, i.e., cost(P1, LCA(P1,
P2))=1. Since the File Chooser is always initialized with the sug-
gested directory, none of its children have been visited ’. Therefore,
the user needs to navigate to the correct subdirectory from the com-
mon ancestor, and cost(LCA(P1, P2), P2) remains unchanged.

Table 5: Average breadcrumbs click distance (per user) from
target directory for DiDoCtor and LBD approaches

User DiDoCtor LBD Gain (%)
AVG || SDEV || AVG || SDEV
U1 1.55 1.55 2.38 2.00 349
U2 0.10 0.47 0.38 1.03 73.7
U3 0.26 0.61 1.54 1.67 83.1
U4 0.48 0.90 1.27 1.77 62.2
U5 0.35 0.72 1.10 1.60 68.2
Ue 0.86 1.15 1.78 1.60 51.7
Average || 0.60 0.90 1.41 1.61 57.4

Table 5 contains the results of the click distance between the
two approaches, under the presence of a Breadcrumbs Ul. Com-

A Breadcrumbs UI that is stateful across downloads may be of
interest, but is outside the goals set forth in this paper.

pared to the standard click distance, we observe that all distances
are smaller, regardless of technique, which is expected given that
the cost of moving to the common ancestor is now always 1. How-
ever, the click distance is always more than half of the default HNC
distance, which signifies that the higher cost is paid for navigating
from the common ancestor to the target directory. DiDoCtor still
outperforms LBD and the gain is in fact higher, per user and on av-
erage. This means that, proportionately, DiDoCtor has had a higher
improvement in the click distance compared with LBD. Therefore,
unlike LBD, the directories suggested by DiDoCtor are always in
a subtree very close to the target one, demonstrating once more the
superiority of our proposed technique.

5.3 Classification Accuracy

We now view the problem from the classification perspective that
we cast our initial problem to, reporting on the accuracy of the
employed classifier.

Overall accuracy

Figure 5 portrays the average, per-user accuracy, of the classifica-
tion process, using either technique. The figure basically shows the
number of times that the classifier correctly suggested the target
directory, where the user saved the resource, during the entire eval-
uation period. The last column demonstrates the average accuracy
across all users, for both techniques.

There are two major conclusions to draw from Figure 5:

1) DiDoCtor performs better in all occasions, with substantial
improvement in several of them. For example, user U3 expe-
riences a 30% improvement on average, and user U6 approx-
imately 20%. This means that our technique suggests the
correct directory right away a lot more frequently than LBD.
Combined with the reduced HNC cost, DiDoCtor emerges as
the most suitable approach.

2) Despite the gains that DiDoCtor achieves, there are still some
cases with objectively low accuracy (e.g., users Ul and U6).
This is indicative of the fact that suggesting the right di-
rectory where to download web resources is not trivial, and
leaves ample room for improvement.

Running average accuracy

To get a more detailed idea of the classification process, we have
plotted for each user the classification accuracy as a function of the
number of their downloads. For instance, an overall low accuracy
could be the result of the user selecting newly created directories, in

DiDoCtor LBD m==
100 : ‘ ‘ ; ‘ ‘

90
80
70
60
50
40
30

Average Accuracy (%)

Ul U2 U3 U4 U5
User id

U6 Avg

Figure 5: Average per-user accuracy of the classification pro-
cess

which case the classifier is destined to fail. Figures 6(a)-(f) demon-
strate for each user the classifier’s behavior, averaging its accuracy
up to the ¢-th download, for all downloads.

Evidently, the DiDoCtor approach is consistently superior to LBD,
across all users. The advantages in performance may be obvious
(Figure 6(c),(e),(f)) or they may be less prominent (Figure 6(b)).
Whichever the case, we observe that unlike LBD, DiDoCtor makes
good use of the features and is better at suggesting the directory
where the resource should be downloaded.

Figure 6(a) shows the running average accuracy of user U1, who
is the most selective one, as shown in Figure 2. The two approaches
perform almost the same up to the 60-th download, with DiDoC-
tor being better, if only marginally. After that point, LBD con-
tinues to deteriorate in performance, whereas DiDoCtor is more
stable for longer periods of time. Looking through the submitted
data, this user downloads resources from sites with varying mate-
rial, such as online email, and web sites with scientific publications,
e.g., http://dl.acm.org. The resource is then downloaded to
different directories, possibly based on publication type, such as
databases, user interfaces, etc., or conference, e.g., CHI, 1UI, SIG-
MOD, etc.

Through manual inspection, we observe that a lot are subdirec-
tories of the same path, e.g., “/0/1/2/3/4/5”, “/0/1/2/3/4/6” 8 etc.
In several cases, the user selects a sibling node of the one that we
suggested, which was not encountered before. Although we do not
have actual timestamps for the creation time of these directories,
the most probable case is that the user was creating new subdirec-
tories to accommodate downloaded files, which our technique is
unable to capture, and also explains the gradual drop in accuracy.

Particularly interesting are users U3 and US, shown in Figure 6(c)
and (e) respectively, who both use 9 directory paths overall. The
interesting part is that in both cases, LBD performs poorly with
so few paths, achieving (in the long run) an approximate 50-60%
accuracy, as depicted by Figure 5 as well. In fact, regarding user
U3, it even takes a few downloads before LBD increases in accu-
racy and levels off at around 60%. On the other hand, DiDoCtor
achieves at least 80% classification accuracy, meaning that we ob-
tain a minimum 20% improvement. More importantly, high accu-
racy is obtained early on, with a 70% average for user U5 and as
high as 90% average for user U3 from the 20-th download. A user
who perceives such good accuracy early on would be more willing
to navigate to the target directory than save the files to a temporal
location.

The case of user U6 is a clear indication of our claim that Di-
DoCtor makes good use of the features we extracted. The LBD
approach has a steep decline in performance after the 20-th down-
load, ending up with 30% accuracy. However, after the 20-th down-
load, DiDoCtor deteriorates slightly only temporarily, but then re-
covers and maintains an average 60% accuracy. Finally, even with
user U2, who uses the least number of directories, DiDoCtor seems
to perform better than LBD. It appears that, around download 25-
30, LBD made some erroneous suggestions consecutively, drop-
ping the overall accuracy from 60% down to 45%. On the contrary,
DiDoCtor managed to predict the right target directory, constantly
increasing its performance.

Weight Optimization

Up until now, we have experimented with the custom weights that
the plugin was provided with. However, it may well be the case that
these weights are sub-optimal, or even bad choices. We want to see
how much the effectiveness measures may improve, if we fine-tune

¥Directory names have been obfuscated before the users submitted
their data, to preserve anonymity

http://dl.acm.org

DiDoCtor —+— LBD =g DiDoCtor —+— LBD eeeedoeees DiDoCtor —+— LBD -3
: - - - - - - 100 ‘ . . . 100 T T T T - - :
90
80 80
S s s
> < 60 > 60
g g 50 g
3 3 40 3 401
Q o Q
< < 30 < X
20 20 % %
0 e
0 e 0 ‘ : : : : 0 mR——————————
0 20 40 60 80 100 120 140 160 0 50 100 150 200 250 0 10 20 30 40 50 60 70
#Downloads #Downloads #Downloads
(a) U1 (60 paths) (b) U2 (7 paths) (c) U3 (9 paths)
80 DiDoCtor —+— LBD - % DiDoCtor —+— LBD g DiDoCtor —+— LBD i
70 | 80 60 |
L 70 t]
~ 60 = S 50
g 5 & 60 1 E
) g 50 1z Ok
& 40 & 3 ;{
5 5 40 f 1 3 30
g 30 8 a0 1 8
< 208 < < 20
10 g 10 10
0 R 0 : : : : : 0 : : : : :
0O 20 40 60 80 100 120 140 160 0 20 40 60 80 100 0 20 40 60 80 100
#Downloads #Downloads #Downloads

(d) U4 (17 paths)

(e) U5 (9 paths)

(f) U6 (25 paths)

Figure 6: Running average of classification accuracy

the classifier’s weights. We use an equi-weight baseline, where all
features contribute equally to the 1-NN classification process. We
also employ the RELIEF_F algorithm, proposed in [28], which is
a weight-optimization technique, based on measuring how similar
attributes are with each other among items of the same and different
classes. We stress that the idea is not to validate the rationale behind
RELIEF_F, but rather find out the extent to which we can improve
the classification accuracy. Table 6 summarizes the results of this
experiment.

Table 6: Average classification accuracy for various 1-NN
weights

User Custom || Equiweight || RELIEF_F

U1 429 39.1 44.1

U2 93.6 93.2 94.7

U3 81.6 81.6 81.6

U4 73.6 70.1 76.4

Us 77.1 78.1 83.8

U6 52.9 51.9 53.9
Average 70.28 69.0 72.42

The equi-weight scheme operates worse than our default choice
values in all but one occasions. The single exception is user US5,
who has a 1% gain with the equi-weight scheme. On the contrary,
user U6 would experience a 1% decrease in accuracy. Overall, the
equi-weight scheme achieves a lower average by 1.3%. The most
important remark, however, is that even with this slight decrease,
the equi-weight scheme still behaves better than LBD (per-user and
on average), thereby strengthening our claim that a classifier is a
much better choice for the download directory suggestion problem.

On the other hand, the RELIEF_F approach improves classifica-
tion accuracy in all occasions but one (user 3), where the accuracy

remains unchanged. In particular, the improvement is as low as 1%,
e.g., for user U6, but can be as high as 6.7%. Even user U1, who is
the most challenging case, experiences a 1.3% improvement over-
all. All in all, by optimizing the weights, we achieve an average
2% classification accuracy gain across all users. We stress at this
point that RELIEF_F needs only be run after the user selected the
download directory. This means that weight optimization can be
executed in the background, and will not affect the runtime of the
suggestion process.

Table 7: Weights computed by the RELIEF_F algorithm

U1 U2 U3 U4 Us U6
time 0.138 || 0.252 || 0.242 || 0.183 || 0.264 | 0.212
dname 0.108 || 0.085 || 0.089 || 0.12 | 0.113 | 0.129
path 0.107 || 0.069 | 0.089 | 0.062 || 0.072 | 0.115
fname 0.069 || 0.078 || 0.074 || 0.043 || 0.053 | 0.069
rdname 0.053 || 0.073 || 0.09 || 0.088 | 0.062 | 0.053
rpath 0.062 || 0.06 0.08 || 0.049 || 0.018 || 0.032
rfname 0.047 || 0.063 || 0.074 || 0.042 || 0.027 | 0.028
title 0.117 || 0.08 || 0.089 || 0.115 || 0.08 | 0.064
filename 0.119 || 0.086 | 0.008 || 0.126 || 0.168 | 0.143
filetype 0.094 || 0.085 || 0.077 || 0.074 || 0.085 | 0.105
keywords || 0.086 || 0.069 || 0.088 || 0.098 || 0.058 || 0.05
STDEV 0.029 || 0.054 || 0.055 || 0.043 || 0.070 || 0.056

Table 7 shows the weights of the features that we have discussed,
as computed by the RELIEF_F algorithm, for each user of our ex-
periment. These weights are the ones obtained after the last down-
load for each user. At the end, we also show the standard deviation
of the weights per user, i.e., how much the features differ in their
contribution to the user’s choices. Time has a high weight in all

K=l —+— K2 wedme K=3 oot KAl K=1 K=2

K=3 e K=All

Accuracy (%)

#Downloads

(a) Ul (60 paths)

#Downloads

(b) U4 (17 paths)

L L L L L L L L O L L L L L L L L 0 L L L L L
0O 20 40 60 80 100 120 140 160 0O 20 40 60 80 100 120 140 160 0 20 40 60 80 100

#Downloads

(c) U6 (25 paths)

Figure 7: DiDoCtor accuracy when suggesting & alternative directories

cases, which means that there is a temporal relation between down-
loads. The domain name, path, and filename of the current page
are also quite important in all cases, and these are the two aspects
that LBD tries to combine. However, the name of the file being
downloaded contributes quite significantly, except for U3, which
is not considered by LBD. Moreover, for user U1 the title is also
especially important, whereas the extension contributes greatly for
U6. On the other hand, it appears that keywords are not as signifi-
cant, and the name of the referal contributes even less. Overall, we
observe that different users value different groups of features, and
to different extents, which validates our claim for a classification-
based approach.

Returning k directory paths

An advantage of the MailCat system is that it suggests multiple
alternative categories for the user to select while organizing their
emails. Similarly, we may suggest more directory paths where the
user can download the resource. We can easily modify our 1-NN
classifier to return up to k results from different classes, ranked
according to their distance from the target item. The user is then
shown all k directory paths to select the most suitable. Note that
such an approach requires a radical redesign of the File Chooser
UL, so that more than 1 paths can be displayed simultaneously, in
a ranked fashion. However, this issue is outside the scope of this
paper, as we are interested in the effectiveness of the technique. A
possible solution to this problem can be found in [9].

Due to lack of space, we will focus on the three users with low-
est accuracy, users Ul, U4 and U6. For each new download, we
retrieve its k nearest neighbors, each one from a different directory
path. We assume that we successfully suggested the download di-
rectory if the user saved the resource in one of the k directories that
were displayed. Clearly, suggesting all of the past directories yields
the highest possible accuracy, but this is an impractical solution as
the UI would be heavily cluttered. Most importantly, though, it is
very unlikely that the user will be able to process all that informa-
tion, considering the “7 &£ 2 rule" [30] about the number of items
someone is capable of dealing with simultaneously.

Following existing approaches [9, 34], we let ¥ < 3 and run
our 1-NN classifier using the weights obtained from RELIEF_F.
We also experiment with a k£ value equal to the total number of
directories ever used by the user. Essentially, this serves as an up-
per bound to the achievable accuracy by any approach that relies
on past knowledge. To achieve higher accuracy, the employed ap-
proach should be able to suggest previously unseen directories, in-
cluding ones that were just created by the user, which is difficult at
best.

Figures 7(a)-(c) portray the results of the above experiment for

users Ul, U4 and U6, for the different values of k. For k = 1, we
obtain the same results as in Figures 6(a),(d),(f). Several remarks
can be made by looking at these figures. First of all, as expected,
accuracy improves in both occasions, when we return more directo-
ries. Especially for user U6, there is a 20% improvement compared
to suggesting a single directory, raising the accuracy very close to
the best attainable (k¢ = ALL). User U4 would also experience
higher satisfaction when presented with more directories, with a
minimum 10% improvement in the classifier’s accuracy. Secondly,
the difference in accuracy between £ = 2 and k£ = 3 is minimal,
compared to the difference between k£ = 1 and k = 2. This is
very important, because it implies that a redesigned File Chooser
UI would have to make less room, to accommodate 2 instead of 3
directories. We note that both statements also hold for the other 3
users not shown here. Finally, regarding user Ul in particular, it
appears that the maximum accuracy we can achieve is around 62%.
Taking this into account, DiDoCtor’s accuracy of 42% with a single
directory is in fact within 67% of the best case scenario.

5.4 Alternative Classifiers

Up to this point, we have only considered variations of the 1-
NN classifier that our plugin was distributed with. Therefore, we
turn our attention to other classifiers that can be used instead, such
as decision trees [33] or SVMs [13]. Note that these techniques
are known to be effective for both numerical and categorical data
and can be efficiently trained and updated [18, 26]. For this ex-
periment, we considered the implementations of Weka [24]. With
the exception of timestamp, we converted all features we have al-
ready described into boolean vectors through Weka filters. Times-
tamps were handled as numerical attributes. Although this experi-
ment was performed offline, we simulate the downloading process,
had our plugin been distributed with the respective classifier. More
precisely, for each download, we perform the classification step to
suggest a directory. The actual selected directory is known from
the submitted data. The new information of the latest download is
used to retrain the classifier. The trained model will be used during
the classification process of the next download action.

Figure 8 portrays the average classification accuracy (i.e., at the
end of all downloads) of an SVM and a C4.5 classifier, compared
with DiDoCtor and LBD, to get a sense of their performance. We
can make the following remarks:

e Using a classifier always yields better results than LBD, both
for users with few (U2) or a lot directories (U6).

e DiDoCtor seems to perform the best among all techniques.
User U2 is the only exception, where DiDoCtor is worse than

SVM and C4.5, but only slightly. On the other hand, DiDoC-
tor outperforms all approaches regarding user Ul.

e SVM seems better than C4.5 on some occasions, whereas
C4.5 is better on others. The two techniques appear to be
somewhat tied on average. Nevertheless, they are both still
better than LBD by ~15% on average.

The basic remark from this experiment is that using a classifier
is a lot better than the LBD approach, currently employed by most
browsers. Browsers already use classifiers for phishing attack [27]
countermeasures or web page prefetching [22]. Therefore, integrat-
ing a classification-based solution to the directory download prob-
lem should be a lot easier to accomplish, and more effective at the
same time.

5.5 Additional Remarks

Up till now, our analysis assumed that the user navigates through
directories by moving up or down, one directory at a time. How-
ever, File Choosers usually have an area with a fixed set of fre-
quently used directories for fast access, such as “Pictures”, Mu-
sic”, etc. This means that the actual click cost is in fact lower than
the one computed through HNC, even when Breadcrumbs are used.
However, this does not invalidate our overall analysis:

a) Recall that we addressed the problem as a classification one.
Even if the user selected the target directory from the fast access
area, the classifier’s accuracy would increase if the suggested di-
rectory was correct, otherwise it would decrease. As we exper-
imentally demonstrated, DiDoCtor’s accuracy was always higher
than that of LBD, meaning that we suggested the correct directory
a lot more often, regardless of the way that the user reached the
target directory.

b) We already showed that DiDoCtor can be used to return k di-
rectories, achieving even better results. Had we known the contents
of the “fast access” area, we could have suggested non-overlapping
directories, effectively increasing the value £ and, consequently,
the classifier’s accuracy. This way, we also provide more starting
points for the user to navigate and reach the target directory faster.

¢) Finally, we acknowledge the fact that a user may search through
their directories before selecting the target one, visiting a lot more
than what HNC mandates. Alternatively, the user may immediately
select a directory by copy-pasting its full path. However, whether
a user will reach the target directory immediately or after deliber-
ation depends on factors which are unrelated to the resource itself,
e.g., the user’s current state of mind, their concentration, etc. Such

DiDoCtor s SVM s
LBD m== C4.5 mmmm
100 : ‘
g 90
& 80
g
3 70
o
< 60
>
g 50
g
z 40
30

Ul U2 U3 U4 U5
User id

U6 Avg

Figure 8: Comparison of classification techniques

aspects neither approach can tackle, and require extensive exper-
imentation and evaluation, providing ground for further research.
‘We highlight the fact, though, that DiDoCtor is able to suggest can-
didate directories which are really close to the target one, thereby
providing a good starting point.

6. CONCLUSIONS AND FUTURE WORK

Web browsers are effectively one of the most basic applications
in todays’ user interaction with computers, and the web in partic-
ular. Surveys have shown that downloading web resources such
as documents, images, etc., and saving them to a local directory is
common among users. However, no particular attention has been
paid to this process in helping users automatically organize their
downloads contextually. In this paper we tackled this problem, sug-
gesting a good directory where the web resource should be down-
loaded. We presented a rigid formalism of the problem and then
cast it to a classification framework to solve it. Taking into account
the efficiency constraints posed by the fact that this is a Ul related
problem, we presented specific techniques to address it. Our ex-
perimental evaluation from real user experience shows a minimum
10% improvement on suggesting the correct directory right away,
and a general minimization of the number of clicks needed to nav-
igate to the target directory.

As future work, we plan to investigate further how the temporal
dynamics of the downloads can be used to facilitate this process.
For instance, statistics regarding the temporal nature of sessions
(e.g., average length), could prove particularly useful. Techniques
known to boost web search, such as entity extraction and recogni-
tion, may also be worth considering. Although our goal is quite
apart from web search, the output of these processes could be used
as additional features to improve classification accuracy. Exten-
sions also include ¢) predicting the creation of a directory, %) sug-
gesting possible names for the web resource, and i) suggesting
the right directory for the reverse process, i.e., uploading an email
attachment or submitting a file online.

Acknowledgements

The authors would like to thank the evaluation volunteers for us-
ing the plugin and submitting their data. This work has been co-
financed by EU and Greek National funds through the Operational
Program "Education and Lifelong Learning" of the National Strate-
gic Reference Framework (NSRF) - Research Funding Programs:
Heraclitus II fellowship, THALIS - GeomComp, THALIS - DIS-
FER, ARISTEIA - MMD" and the EU funded project INSIGHT.

7. REFERENCES

[1] Australian Bureau of Statistics. 4. Personal internet use -
Table 5, Australia, 2010-11,
http://www.abs.gov.au/AUSSTATS/abs @ .nsf/
DetailsPage/8146.02010-11?0OpenDocument, accessed 27
Feb 2014.

[2] Statistics Canada. Internet use by individuals, by type of
activity, http://www.statcan.gc.ca/tables-tableaux/
sum-som/l01/cst01/comm?29a-eng.htm, accessed 29 Sep
2012.

[3] The Radicati Group, Inc., Email Statistics Report 2009-2013,
http://www.radicati.com/wp/wp-
content/uploads/2009/05/email-stats-report-exec-
summary.pdf, accessed 29 Sep
2012.

[4] Save File To.
https://addons.mozilla.org/en-us/firefox/addon/save-file-to/,
accessed 6 Jan 2013.

[5] Automatic Save Folder. https://addons.mozilla.org/en-
US/firefox/addon/automatic-save-folder/, accessed 29 Sep
2012.

[6] Save Link in Folder. https://addons.mozilla.org/en-
US/firefox/addon/save-link-in-folder/, accessed 29 Sep
2012.

[7] Previous Folders. https://addons.mozilla.org/en-
us/firefox/addon/previous-folders/, accessed 29 Sep
2012.

[8] W3C, HTML 4.01 Specification,
http://www.w3.org/TR/html401/, accessed 29 Sep 2012.

[9] X. Bao and T. G. Dietterich. Folderpredictor: Reducing the
cost of reaching the right folder. ACM Trans. Intell. Syst.
Technol., 2(1):8:1-8:23, Jan. 2011.

[10] Z. Bar-Yossef, 1. Keidar, and U. Schonfeld. Do not crawl in
the dust: Different urls with similar text. In WWW, pages
111-120, 2007.

[11] R. Bayer. Symmetric binary b-trees: Data structure and
maintenance algorithms. Acta Inf., 1:290-306, 1972.

[12] A.Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.

Syntactic clustering of the web. Comput. Netw. ISDN Syst.,
29(8-13):1157-1166, Sept. 1997.

[13] C.J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Min. Knowl. Discov.,
2(2):121-167, jun 1998.

[14] T. W. Butler. Computer response time and user performance.
In Proc. CHI, pages 58-62, 1983.

[15] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan.
Scalable feature selection, classification and signature
generation for organizing large text databases into
hierarchical topic taxonomies. The VLDB Journal,
7(3):163-178, aug 1998.

[16] G. Dannenbring. System response time and user
performance. Systems, Man and Cybernetics, IEEE
Transactions on, SMC-14(3):473-478, may-june 1984.

[17] B. D. Davison. Topical locality in the web. In Proc. SIGIR,
pages 272-279, 2000.

[18] P. Domingos and G. Hulten. Mining high-speed data streams.

In Proc. KDD, pages 71-80, 2000.

[19] M. Dredze, T. A. Lau, and N. Kushmerick. Automatically
classifying emails into activities. In Proc. 1UI, pages 70-77,
2006.

[20] S. Dumais and H. Chen. Hierarchical classification of web
content. In Proc. SIGIR, pages 256-263, 2000.

[21] N. Eiron and K. S. McCurley. Analysis of anchor text for
web search. In Proc. SIGIR, pages 459-460, 2003.

[22] D. Fisher and G. Saksena. Link prefetching in mozilla: a
server-driven approach. In F. Douglis and B. D. Davison,
editors, Web content caching and distribution, pages
283-291. 2004.

[23] J. Fiirnkranz. Exploiting structural information for text
classification on the www. In Proc. IDA, pages 487-498,
1999.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11(1):10-18, nov 2009.

[25] Infoplease. Most Popular Internet Activities,
http://www.infoplease.com/ipa/A0921862.html, accessed 29
Sep 2012.

[26] T. Joachims. Training linear svms in linear time. In Proc.
KDD, pages 217-226, 2006.

[27] E. Kirda and C. Kruegel. Protecting users against phishing
attacks. Comput. J., 49(5):554-561, Sept. 2006.

[28] I. Kononenko. Estimating attributes: analysis and extensions
of relief. In Proc. ECML, pages 171-182, 1994.

[29] O. A. McBryan. GENVL and WWWW: Tools for taming the
web. In Proc. WWW, page 15, CERN, Geneva, 1994.

[30] G. A. Miller. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. The
Psychological Review, (2):81-97, March.

[31] D. Milne and 1. H. Witten. An effective, low-cost measure of
semantic relatedness obtained from wikipedia links. In Proc.
AAAI, pages 25-30, 2008.

[32] NielsenWire. What americans do online: Social media and
games dominate activity.
http://blog.nielsen.com/nielsenwire/online_mobile/what-
americans-do-online-social-media-and-games-dominate-
activity/, accessed 29 Sep
2012.

[33] J. R. Quinlan. Induction of decision trees. Mach. Learn.,
1(1):81-106, mar 1986.

[34] R. B. Segal and J. O. Kephart. Mailcat: an intelligent
assistant for organizing e-mail. In Proc. AGENTS, pages
276-282, 1999.

[35] J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker. A hybrid
learning system for recognizing user tasks from desktop
activities and email messages. In Proc. IUI, pages 86-92,
2006.

[36] D. Smith. A business case for subsecond response time:
Faster is better. In Computerworld, pages 1-11, 1983.

[37] S. Stamou, A. Ntoulas, V. Krikos, P. Kokosis, and
D. Christodoulakis. Classifying web data in directory
structures. In Proc. APWeb, pages 238-249, 2006.

[38] D. Sullivan. Top Internet Activities? Search & Email, Once
Again, http://searchengineland.com/top-internet-activities-
search-email-once-again-88964, accessed 29 Sep
2012.

	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Classification Framework Issues

	4 The DiDoCtor Approach
	4.1 Feature Selection
	4.2 Feature Distances
	4.3 Identifying target classes

	5 Experimental Evaluation
	5.1 Efficiency
	5.2 Click Distance
	5.3 Classification Accuracy
	5.4 Alternative Classifiers
	5.5 Additional Remarks

	6 Conclusions and Future Work
	7 References

