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Abstract—The vision of autonomic computing involves distributed 

nodes capable of managing and preserving themselves. In practice, 

autonomic computing is also strongly connected to the concepts of 

mobility and platform heterogeneity since next generation 

networks assume different types of mobile nodes that operate inside 

ad hoc environments. In such cases where the context changes can 

be frequent, the capability of capturing the environmental changes 

is crucial. However, it cannot be assumed that all the nodes are 

equipped with all possible types of sensors in order to locally 

retrieve the required contextual information. Sensor information 

exchange between the nodes through efficient data dissemination 

mechanisms can further improve the overall awareness of the 

network. Another challenging task for autonomic computing 

concerns the self-reconfiguration of the autonomous nodes 

according to the sensed context. This paper presents the overall 

architecture design, the implementation and the evaluation of a 

middleware developed in the context of the Integrated Platform for 

Autonomic Computing (IPAC). This middleware is targeted to 

embedded devices and supports mobile context-aware applications 

that render the aforementioned desired behavior. The paper 

focuses on two aspects of autonomic computing middleware: 
collaborative context-awareness and self-reconfiguration. 

Keywords-middleware, autonomic computing, self-adaptation, 

collaborative context-awareness 

I.  INTRODUCTION 

Autonomic computing refers to a relatively new paradigm 
where computing devices are able to self-tune and operate in 
highly dynamic and mobile environments. In autonomic 
computing environments, there are some special requirements not 
applicable to typical mobile computing case. One of them is the 
lack of any type of structured networking. In such environments 
nodes do not rely on routing techniques for message exchanging. 
Mobility is conceived as random movement or appearance 
(switch-on) and disappearance (switch-off) in random places and 
times. Applications should be able to operate and communicate 
efficiently under such highly varying conditions.  

Moreover, since the nodes are in a continuous change of state, 
context awareness should be exploited by the running 
applications. Towards this direction, readings obtained from 
sensing elements constitute data usable by applications. Such 
information can be used during application execution or even to 
support some fundamental aspects of autonomic computing 
paradigm such as the so called self-CHOP features (i.e., self-
configuration, self-healing, self-optimization, self-protection). 
Reconfiguration is an important aspect of such systems since we 
have changing environment conditions and portable or embedded 
devices (e.g., netbooks, smartphones) with limited capabilities. 

In this paper we present the middleware design of the IPAC 
platform [3]. IPAC aims at delivering a middleware and service 

creation environment for developing embedded, intelligent, 
collaborative, context-aware services in mobile nodes. IPAC 
supports applications that mainly exchange simple data (human-
created messages, sensor values etc.) in very highly dynamic 
environments (e.g., vehicular ad hoc networks). The lightweight 
IPAC middleware stack provides all services required for the 
deployment and execution of diverse applications in a 
collaborative nomadic environment. These services are supported 
by novel knowledge and ontology engineering techniques, which 
deal with interoperability, integration, and reconfiguration 
problems that are met in contemporary embedded platforms. 
IPAC relies on short range communications (e.g., WiseMac [12]) 
for the ad hoc realization of dialogs between nodes and on 
sensing elements for detecting contextual changes and generating 
respective events consumed by the applications. The IPAC 
middleware utilizes the Open Service Gateway initiative (OSGi) 
framework [6] to facilitate the dynamic distribution and 
deployment of its service modules. 

The rest of the paper is organized as follows. Section II 
presents the related work in the area of middleware for mobile 
computing. An overview of the IPAC middleware is discussed in 
Section III. Section IV focuses on the collaborative context 
awareness aspect of the platform. The knowledge based 
reconfiguration mechanism is described in Section V. Section VI 
evaluates IPAC in real-case scenarios. The paper concludes with 
some directions for future work. 

II. PRIOR WORK 

Context-aware systems and mobile computing middleware 
constitute major subareas where a lot of research work has been 
done over the past few years. SENSE (Smart Embedded Network 
of Sensing Entities) [7] is working on the creation of a distributed 
embedded network consisting of heterogeneous portable devices. 
The sensor infrastructure operates in a cooperative fashion to 
record a consolidated view. Contrary to IPAC, SENSE does not 
exploit high level information (e.g. application requirements) to 
enable reconfiguration facilities. 

EMMA (Embedded Middleware in Mobility Applications) 
[8] aims at the deployment of a creation environment for 
embedded software, as well as middleware platform that will 
facilitate the cooperation of sensing entities in the domain of 
transport applications. Specifically, the project emphasizes the 
seamless collaboration of wireless sensing elements in order to 
achieve intelligent behavior of cost-effective services. EMMA 
services are not based on context-aware information. 

DySCAS (Dynamically Self-Configuring Automotive 
Systems) [9] aims to develop methods, tools and architectural 
guidelines for self-configurable systems in the context of 
embedded vehicle electronics, driven by the fact that many 
applications could interact with mobile devices. Hence, DySCAS 



 
considers situations such as automatic discovery and use of new 
devices connected to a vehicle. Contrary to IPAC, DySCAS does 
not investigate any algorithmic solutions in the area of 
information dissemination and rumor spreading. 

Hydra [10] targets at networked embedded systems providing 
an integrated environment that facilitates the development of 
mobile applications. The proposed middleware supports both 
distributed and centralized architectures, while it does not exploit 
any knowledge technologies to drive any adaptation processes. 

MASS (Middleware for Adaptive Semantic Support) [5] is an 
ontology-based middleware, aiming to enhance the development 
of context-aware applications. RDF(S) and OWL ontologies are 
used to express semantic information in mobile devices, allowing 
for automated reasoning and adaptation according to user profile 
and device capabilities. The middleware specifies the means to 
access semantic services, accompanied by a matching algorithm 
capable of identifying compatible services with user applications. 

A notable difference between IPAC and the above efforts is 
that the majority lack in adaptation and reconfiguration of both 
applications and middleware. According to our knowledge, none 
of the existing research or industrial solutions enables a cross-
layer execution and optimization of such reconfiguration 
capabilities in the seamless way indicated by the principles of 
autonomic computing. The self-reconfiguration processes 
performed in the IPAC nodes constitute a novel approach in the 
area of embedded systems since they affect several layers 
(applications, middleware services and hardware). 

III. THE IPAC MIDDLEWARE 

In the context of the IPAC platform a number of basic 
middleware services have been developed to support a wide 
range of application domains (Fig. 1). Here, we provide a brief 
explanation of the core IPAC modules. 

 

 
Figure 1.  IPAC Middleware Architecture. 

Event Checker Service (ECS). The ECS is responsible for 
continuously checking whether the events defined by the 
applications occur. An event is an application-specific Prolog-
like conjunctive rule of the form: 

(Sensor1 op Value1) ^ (Sensor2 op Value2) ^…^ (Sensor3 op 
Value3) � EventName 

where op is some comparison operator. The real innovation in the 
functionality of ECS is that it implements the concept of 
collaborative sensing. If a node is not equipped with the sensors 
required to detect the application events, a mechanism for the 
exchange of sensor values is exploited. We call such 
functionality “context foraging” (Section IV). 

Reconfiguration Service. The Reconfiguration service takes 
into account the node’s contextual information and adapts the 
node behavior and settings accordingly. This adaptation process 
affects parameters associated with the functionality of 

middleware services (e.g., the transmission rate of information 
dissemination algorithms, the device configuration, the user 
interaction), network (e.g., all nodes switch to the same 
communication interface) and, indirectly, the applications. 

Reasoner. This service constitutes the core component for 
realizing the autonomic behavior of the IPAC nodes since it is 
responsible for performing knowledge-based inferences.  
Reasoner drives the self-adaptation process of the IPAC nodes 
and checks possible conflicts regarding the resources shared 
among the IPAC applications. IPAC middleware takes advantage 
of the J2ME (MIDP 2.0, CLDC 1.0) version of Java Internet 
Prolog (JIProlog) engine [1], which is a cross platform 
framework that enables the development of lightweight reasoning 
services on devices with restricted resources. This solution works 
better than reasoning over other knowledge representation 
methodologies that have been investigated, such as lightweight 
ontologies, since no efficient reasoning modules are available for 
such formalisms in resource constrained devices [11]. 

Storage Service. The storage layer consists of the private and 
the public segments. The private segment is used by applications 
and modules that run on the node and need data storage 
functions. The public segment is used for storing measurements 
and messages that may be forwarded to other nodes in proximity. 

SRCC Proxy and Information Dissemination Service. 
IPAC nodes exchange messages using the Short Range 
Communication Component (SRCC) Proxy and the Information 
Dissemination service. The SRCC Proxy is an abstraction of the 
SRC hardware, seamlessly providing basic networking 
functionality (e.g., activation of wireless interfaces, transmission 
and reception of messages) regardless of the underlying protocol. 
The Information Dissemination Service lies on top of it and 
implements the adopted dissemination algorithm [2]. 

SEC Proxy. The Sensing Elements Component (SEC) Proxy 
is responsible to manage the sensing devices hosted on the SEC 
and make possible their interfacing with the middleware services 
in a uniform way. The SEC Proxy performs the following tasks: 

1. Discover sensors recently connected onto the node. 
2. Configuration of sensors (H/W settings, sampling rate).  
3. Data collection from the local sensor elements available. 
4. Storage of the acquired sensor data. 
Our approach is based on “smart sensors”, which comply 

with the IEEE 1451 family of standards [13]. IEEE 1451 
describes a set of open and network-independent interfaces for 
connecting transducers to instruments, systems and networks. Its 
main goals are a) the development of network and vendor 
independent transducer interfaces, b) to allow transducers to be 
hot-swapped, and c) to minimize manual system configuration. 
Each “smart sensor” consists of two main components: a 
transducer interface module (TIM) and a network capable 
application processor (NCAP). A TIM contains one or more 
transducers, signal processing units, A/D and D/A converters and 
an interface through which it can communicate with the NCAP. 
NCAP is the system that interconnects the TIMs with the user 
network or host processor. We have implemented the standard 
using the Sun SPOT [14] nodes as TIMs. The sensors of each 
TIM are the sensors that each Sun SPOT carries by default along 
with some external ones (e.g., GPS) which are connected to 
SPOTs through their I/O interfaces. Regarding the NCAP, we 
proceeded with a software implementation since no hardware 
implementations are available up to now. TIMs and NCAP 
communicate through a USB interface while the communication 
between the NCAP and the applications is performed through an 
HTTP API (invoked by the SEC Proxy). Fig. 2 shows the overall 
architecture of an IPAC node equipped with smart sensors. 
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Figure 2.  An IEEE 1451-compliant architecture based on Sun SPOTs. 

IV. COLLABORATIVE CONTEXT-AWARENESS 

Let us assume an architecture where several highly mobile 
nodes execute situation-aware applications. These are based on 
rules, called Situation Classification Rules (SCR), that have 
conditions related to context classes (e.g., Temperature, 
Location). An example of such a rule is: 

(Temperature>80) ^ (Humidity <10) ^ (Smoke=true) � Fire 
The head of the rule (i.e., Fire) is the situation that holds true 

if all conditions are satisfied. In order for the nodes to 
demonstrate adaptive and context-aware behavior they must have 
the necessary contextual values (i.e., instances of context 
classes). The concept of collaborative sensing is heavily based on 
the assumption that not all nodes have sensors, and context 
values, at their disposal which corresponds to a realistic scenario. 
Hence, in IPAC we have adopted a collaborative scheme for 
context-awareness, termed Context Foraging (CFor) [4]. In CFor, 
three types of nodes can be distinguished: 

Context Requestors (CR). They request context (sensor) 
values from their neighborhood. The Context Request (CReq) is 
derived from the conditions of an SCR that cannot be locally 
evaluated. Each request has a Spatial Validity (SVCReq) which 
is the range within which the context values included in the CReq 
are valid. The requests also have a Temporal Validity (TVCReq) 
that is the period with which the CReqs are disseminated 
according to the adopted probabilistic broadcast scheme. 

Context Providers (CP). They transmit sensor values 
(Context Responses, CRes) if these match with some registered 
CReqs. A context response has also a spatial validity parameter 
which is the maximum of the individual spatial validity values 
included in the response. Each context provider has an index data 
structure used for two purposes: a) as a registry of all context 
requests received, and b) as a mechanism that matches events 
(fresh sensor values) with CReqs. The main idea is that context 
requests will be registered (with their respective timeouts) in this 
index. The sensor stream will be also fed into this index so that 
sensor values that match some requests generate events that are 
disseminated through the network. 
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Figure 3.  The index used in Context Providers. 

The index structure used for the subscription registration and 
matchmaking is depicted in Fig. 3. The FILTERS array contains 
the context conditions received through incoming CReqs and is 
sorted in descending order for the ‘<’ and ‘<=’ operators and in 
ascending order for all other operators. Sorted arrays are used 
because the readings in this index (new context values, generated 

by sensors) are expected to considerably outnumber the updates 
(new event subscriptions). The EQUALS array constitutes an 
optimization in order to avoid unnecessary filters (e.g., filters that 
overlap with the existing ones). SV values denote the spatial 
validity parameter of the context responses. Timeout values are 
also used to remove filters that their validity has been expired. 

Context Relays (CRel). Nodes that do not have the sensors 
required by a context request or are not interested in the context 
response contents. CRels just forward messages. 

The proposed scheme has been evaluated through several 
simulations, where we compared it to Context Polling (CPol), 
which is a suitable scheme for nomadic computing. IPAC seems 
to behave better in all kind of simulated scenarios. Specifically, 
the number of messages for CFor is much lower than for CPol, 
with insignificant reduction in the situation detection capability 
of the nodes. A detailed description of the Context Foraging 
scheme and the simulated scenarios can be found in [4]. 

V. KNOWLEDGE-BASED RECONFIGURATION 

A. IPAC Models 

Sensor model provides a common vocabulary about sensors 
and their features. It defines the basic characteristics of sensors 
and the available sensor types (e.g. GPS receiver, smoke 
detector). Such type of information is modeled through predicate 
hierarchies (taxonomies) in order to take advantage of instances 
classification during the execution of reasoning processes. 

Node profile defines concepts and relationships that refer to 
the basic features of an IPAC node. Some of the metadata 
belonging to the node profile are the available communication 
interfaces, the available storage space and the supported UIs.  

Application profiles. Each application has its own profile that 
describes its features, the preconditions for being deployed and 
the events that the application is interested in. An application 
profile example in terms of Prolog is provided below: 

usesInfoFromSensor(appID03, smoke_sensor). 
usesInfoFromSensor(appID03, temp_sensor). 
requiresUI(appID03, visual). 
event(fire_alarm) :- smoke_sensor>=0.7, temp_sensor>=20. 
In this example, in case of smoke detection 

(probability>=0.7) and of temperature over a limit value (20 
degrees), a “fire_alarm” event is raised (application policy). 

Reconfiguration policies. Besides the reconfiguration requests 
that stem from the applications, IPAC middleware also supports 
the execution of policies that enforce updates in its settings in 
order to achieve optimal operation of the node. These 
dynamically updated policies aim to prevent the appearance of 
unacceptable situations that could aggravate the system 
functionality or in case the system status is error-prone. Similarly 
to the application policies, the reconfiguration policies are 
represented in a declarative manner. An example follows:  

policy(hasCommInterface,X,ieee_802_11):- 
numberOfNeighbors(X,N), N=0, node(X), 
hasCommInterface(X,wisemac). 
The above policy states that in case there is no other node in 

the neighborhood, the communication interface should change to 
reach nodes through some other technology. 

B. Reconfiguration Functionality 

In IPAC, the middleware services that are responsible for 
altering the operation/configuration of the node are called 
through a central dispatching mechanism, the Reconfiguration 
Service. The rationale behind this orientation is that the service 
and device settings are shared resources and should be controlled 



 
by a central entity. Moreover, global and cross-layer knowledge 
may be necessary for some reconfigurations. Based on these 
principles, the reconfiguration workflow is as follows: an 
application sends a request for reconfiguration (it may affect a 
service, the device settings or the network). There are two main 
types of requests: the soft and the hard ones. The former are 
associated with some “timeValidity” parameter (e.g., “whenever, 
within the next five minutes, the UI is able to switch to sound 
mode, do it”). The applications do not require feedback from the 
system and should not make any assumptions on such requests. 
At the most, they can receive a notification when the requested 
change is performed. On the other hand, the hard requests should 
be executed immediately (if at all) and the application should 
receive some feedback whether the reconfiguration has been 
performed or not. Once a reconfiguration request arrives in the 
Reconfiguration service, the Reasoner is invoked and decides if it 
is consistent with the current system status. If not and it is 

• a soft request with “timeValidity” set, then it reschedules 
the request and checks it after a specified period of time.  

• a hard request, it sends a response “Reconfiguration not 
possible” to the Response Queue. 

If the modification is possible, a message with the requested 
parameters is sent to the Dispatcher Queue. The Reconfiguration 
service consumes this message and performs the adaptation. The 
result is inserted to the Response Queue (“Success” or “Failure”). 
Finally, once a message destined for an application arrives at the 
Response Queue, the respective application consumes it and 
continues executing its application logic. 

An example that describes the main processes of the 
reconfiguration phase follows. This scenario assumes that an 
IPAC node (e.g., with id node03) supports both visual and audio 
UIs. Initially, it is assumed that the visual interface has been 
activated. Such knowledge is explicitly captured in the node 
profile, through the following Prolog statements: 

supportsUI(node03, visual). 
supportsUI(node03, audio). 
hasUI(node03, visual). 
The scenario considers that application A (e.g., with id 

app02) is stored on an IPAC node in order to be deployed while 
other applications are already running and A requires audio 
interface to run properly (e.g., the statement 
requiresUI(app02,audio) is part of its profile). First, the 
application manager checks whether the requirements of the new 
application are consistent with those imposed by the applications 
that already run. This is achieved through the Reasoner that 
performs a consistency check with the profiles of all currently 
running applications. Assuming that there is no inconsistency, the 
UI can be switched to audio without any conflicts and a 
reconfiguration request is scheduled to perform the desired 
action. Similar actions are performed for switching on and off the 
communication interfaces and for enabling/disabling sensors. 

VI. IPAC IN HUMANITARIAN RELIEF OPERATIONS 

A. Scenario Description 

This section presents a use-case trial that demonstrates the 
capabilities of the platform and helps to evaluate the 
requirements, and thus backing up the motivation of this work.  
The scenario focuses on the deployment of IPAC in simulated 
humanitarian operations in order to provide a much needed 
communication infrastructure for the execution of multiple 
applications in a collaborative nomadic environment. In this case, 
the IPAC infrastructure assumes the role of communication 
support between pedestrians, and vehicles, or between static 

check points and vehicles or pedestrians of the operations 
workforce. The demonstration took place in a wide open area at 
the Centro Sicurezza circuit in Turin. All experiments were 
performed in ASUS EeePC 900 netbooks with an Intel (R) 
Celeron (R) processor running at 900MHz and 1GB of main 
memory. These nodes used both IEEE 802.11 and WiseMac 
communication interfaces and were equipped with a number of 
sensor devices to capture context information. 

The scenario concerns the detection of bad weather 
conditions while a number of vehicles are moving arbitrarily 
inside an area. The weather is characterized by low temperature 
and snowfalls and the possibility of ice presence on the road. To 
identify hazardous and unsafe conditions in time, IPAC adopted 
the context foraging approach (Section IV). Specifically, the 
scenario assumes three vehicles that are moving at the same 
direction. One of the car nodes is equipped with a camera capable 
of detecting road curvature and ice/snow (the vision sensor) 
while the remaining nodes are equipped with temperature 
sensors. There is also one fixed node along the roadside to relay 
information of high priority. The rationale behind this node is to 
act as a “beacon” in case of receiving possible alerts or warnings.  

The scenario demonstrates a network reconfiguration process 
for power saving. Specifically, at the time a node needs to 
broadcast longer messages such as sensor measurements, it has to 
take advantage of the IEEE 802.11 interface that allows for 
transmitting large packets. Hence, it first broadcasts a short 
“LEAVE-LOW-POWER” message to the network in order to 
enable the activation of the WiFi interface in all the car nodes. 
This way, the nodes are capable of transmitting and receiving 
sensor measurements. The “LEAVE-LOW-POWER” message 
comes with a time validity parameter that is taken as the time-to-
leave (TTL) value of the corresponding IPAC header, which 
denotes the time period that the WiFi interface should be active. 
When this time validity parameter expires, the network nodes 
switch back to low power state (turn the IEEE 802.11 off). 

B. Reconfiguration Performance 

The reconfiguration process was evaluated though the 
following parameters have been quantified in the above scenario: 

(a) the response time of the reconfiguration service and  

(b) the total time required to perform reconfiguration.  
The first measurement concerns the sensitivity of the system 

according to context changes. A modification of the environment 
(e.g., absence of other nodes in the neighborhood) may lead to 
the execution of certain reconfiguration policies (e.g., switch to 
another communication interface). Fig. 4 presents the times 
between a context change that took place and the corresponding 
reconfiguration. Specifically, these are the mean times needed to 
perform the node adaptation across several policy checking 
periods indicating the degree in which the system is responsive to 
context changes. The presented times include (a) the update of 
the knowledge base according to the modification, (b) the policy 
execution, (c) the check of the applicability of the requested 
change, and, (d) the execution of the reconfiguration. Since the 
policy execution is performed periodically, the required time is 
mostly dependent on the policy checking period. One can 
observe that the sum of the above times is approximately the half 
of the period used. For example, using a policy checking period 
of 1sec, the mean reconfiguration time is 0,54s, while setting the 
period to 20s the mean reconfiguration time is 10,425s. This is 
anticipated since context changes occur at random. Hence, taking 
into account that checking the policies does not require a 
significant amount of time, the period can be set to a small value 
(e.g., 1s) in order to increase the system throughput. 



 
Regarding the network reconfiguration experiments, the total 

time between the initial request and the actual reconfiguration of 
the node settings is measured. The clocks of all the nodes 
participating to the scenarios had to be synchronized. The 
experiments demonstrated that these times mainly depend on the 
network traffic (i.e., the time needed for the delivery of the 
“reconfiguration” request across the network) and the time 
needed inside the middleware services to “encode”/“decode” the 
request. In our scenario the total network reconfiguration time 
takes about 7,5s and includes the following tasks: 

- message delivery by the ECS to the SRCC 

- dissemination of the message to the network 

- message reception by the SRCC of the second node 

- message delivery by the SRCC to the Storage service and 
event-based communication with Reconfiguration service 

- requested modification takes place (if feasible). 

 
Figure 4.  Reconfiguration time w.r.t. policy checking period 

C. Network Analytics 

In the humanitarian scenario, the IPAC network has 4 nodes. 
This paragraph performs an analysis on the way the WiseMac-
based network performed, trying to assess its responsiveness and 
detect any possible congestion or message loss. It is based on 
message logs collected using a WiseMac sniffer (independent, 
passive node). In networks with few nodes we expect a high 
retransmission rate in the probabilistic broadcast algorithm 
(retransmission probability equal to 0.9 for 4 neighboring nodes). 
Retransmissions are controlled on one hand by the retransmission 
attempt periods as a function of criticality adopted for the 
scenario, the criticality of the messages set by the message sender 
entity and the neighbor lifetime. The retransmission attempt 
periods were set to 2s, 5s and 10s respectively for high, medium 
and low criticality. The neighbor lifetime was set to 10s to 
accommodate the application periodicity and mobility. 

The scenario starts with subscription of messages (remote 
triggers). The node having the vision sensor registers to 
temperature measurements, while the other car nodes register to 
ice alerts. These messages have a “HIGH” criticality and a very 
long TTL, meaning that they are repeated every 5s throughout 
the scenario execution. To demonstrate the interface re-
configurability feature, the node having a temperature sensor 
emits “LEAVE-LOW-POWER” instructions in order to send the 
temperature data through the WiFi interface. The third type of 
packets in this scenario contains the temperature measurements 
(longer packets). Finally, the ice alert message is a very short 
packet. All messages have “HIGH” criticality, causing frequent 
repetition attempts. Sniffer logs show an exaggerated importance 
of the “LEAVE-LOW-POWER” messages with respect to the ice 
alert and temperature value messages. Having few nodes, 
message repetitions account for 72% of the circulating packet.  

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we have discussed the IPAC approach for a 
middleware able to support context-aware applications for 

autonomic computing environments. IPAC enables several 
desired features of such applications, such as self-reconfiguration 
and collaborative applications. The paper presents the overall 
middleware architecture describing the design approaches 
followed for the development of the platform and focuses on two 
basic aspects: reconfiguration capabilities, and collaborative 
context-awareness. The scalability of the platform under realistic 
conditions according to an extensive real-case scenario was 
shown. Future work includes the improvement of the policy 
checking mechanism of IPAC nodes by optimizing the period 
parameter and by adopting event-based mechanisms that identify 
policy violations (e.g., through database triggers). Finally, we are 
planning to port the IEEE 1451 implementation to the Crossbow 
motes platform (over TinyOS) in order to test the interoperability 
between these two completely different platforms. 
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